五相十拍步进电动机控制程序

五相十拍步进电动机控制程序
五相十拍步进电动机控制程序

摘要

本论文主要阐述了五相十拍步进电动机控制领域中的应用,其中可编程控制器是工业自动化设备的主导产品,具有控制功能强,可靠性高,适用于不同控制要求的各种控制对象等优点,其工作原理,设计和使用方法为电气和机电类专业必修课程的学习内容。

本设计涉及的内容有:步进电动机的硬件驱动过程、五相十拍步进电动机的PLC软件实现等。通过对硬件软件的结合,从而实现电动机的正反转控制。PLC是现代工业自动控制的一种通用计算机,但其工作方式与微机控制系统不同,与继电接触器控制系统也有本质的不同。PLC应用系统设计包括硬件设计和软件设计两个方面。

关键词:步进电动机;PLC软件设计;PLC硬件设计

目录

1 绪论 (2)

1.1可编程控制器 (2)

1.1.1 PLC的工作原理 (2)

1.1.2可编程序控制器的组成 (2)

1.1.3可编程序控制器的特点 (3)

1.1.4可编程控制器的应用 (4)

1.2步进电动机 (5)

1.2.1 步进电机概述 (5)

1.2.2步进电动机的特点 (5)

1.2.3 步进电动机的基本原理及步距角的计算 (5)

1.2.4 步进电动机的动态指标及术语 (6)

2 软件设计 (7)

2.1西门子S7-200介绍 (7)

2.1.1 CPU22X型的选择 (8)

2.1.2 S7-200元件的介绍 (8)

2.2五相十拍步进电动机的PLC设计过程 (10)

2.2.1 五相十拍步进电动机的控制要求 (10)

2.2.2 PLC外部接线图 (11)

2.2.3 I/O地址分配表 (11)

2.2.4 程序设计 (12)

3 硬件设计 (15)

3.1环形分配器 (17)

3.2功率放大器 (18)

结束语 (19)

参考文献 (19)

1 绪论

1.1 可编程控制器

1.1.1 PLC的工作原理

PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种机械或生产过程。

一般来说,PLC的扫描周期包括自诊断、通讯等,如下图1-1所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。

图1-1 可编程控制器的扫描周期

1.1.2可编程序控制器的组成

可编程序控制器硬件由中央处理器、电源、输出组件、输入组件、输入输出、编程器六部分构成:

中央处理器( Central Processor Unit 简称CPU):它是可编程序控制器的心脏部分。CPU由微处理器(Microproce-ssor)存储实际控制逻辑的程序存储器和存储数据、变量的数据储器构成。

电源(Power Supply):给中央处理器提供必需的工作电源。

输入组件(Inputs):输入组件的功能是将操作开关和现场信号送给中央处理器。现场信号可能是开关量、模拟量或针对某一特定目的使用的特殊变量。

输出组件(Outputs):输出组件接收CPU的控制信号,并把它转换成电压或电流等现场执行机构所能接收的信号后,传送控制命令给现场设备的执行器。

输入输出(简称I/O)是可编程序控制器的“手”和“脚”或者叫作系统的“眼睛”和“视觉”。输入信号包括按扭开关、限位开关、接近开关、光电传感器、热电偶、热电阻、位置检测开关和编码器等。输出信号包括继电器、指示灯、显示器、电机启动等直流和交流设备。

编程器(Programmer):在正常情况下,编程器用于系统初始状态的配置,控制逻辑程序编制和加载,不能对系统操作。编程器也可用于控制程序的调试和控制系统故障时作为检查故障的有效工具。

1.1.3可编程序控制器的特点

现代工业生产是复杂多样的,它们对控制的要求也各不相同。可编程序控制器一经出现就受到了广大工程技术人员的欢迎。它的主要特点如下:

(1)抗干扰能力强,可靠性高

微机虽然具有很强的功能,但抗干扰能力差,工业现场的电磁干扰,电源波动,机械振动,温度和湿度的变化,都可以使一般通用微机不能正常工作。而PLC在电子线路、机械结构以及软件结构上都吸取生产厂家长期积累的工业控制经验,主要模块均采用大规模与超大规模集成电路,I/0系统设计有完善的通道保护与信号调理电路;在结构上对耐热、防潮、防尘、抗震等都有精确考虑;在硬件上采用隔离、屏蔽、滤波、接地等抗干扰措施;在软件上采用数字滤波等抗干扰和故障诊断措施;所有这些使PLC具有较高的抗干扰能力。PLC的平均无故障时间通常在几万小时以上,这是一般微机不能比拟的。

继电器—接触器控制系统虽有较好的抗干扰能力,但使用了大量的机械触点,使设备连线复杂,且触点在开闭时易受电弧的损害,寿命短,系统可靠性差。而PLC

采用微电子技术,大量的开关动作由无触点的电子存储器件来完成,大部分继电器和繁杂连线被软件程序所取代,故寿命长,可靠性大大提高。

(2)控制系统结构简单,通用性强

PLC及外围模块品种多,可由各种组件灵活组合成各种大小和不同要求的控制系统。在PLC构成的控制系统中,只需在PLC的端子上接入相应的输入输出信号线即可,不需要诸如继电器之类的物理器件和大量而又繁杂的硬接线线路。当需要变更控制系统的功能时,可以用编程器在线或离线修改程序,同一个PLC装置用于不同的控制对

象,只是输入输出组件和应用软件的不同。PLC的输入输出可直接与交流220 V,直流24V等强电相连,并有较强的带负载能力。

(3)编程方便,易于使用

PLC是面向用户的设备,PLC的设计者充分考虑到现场工程技术人员的技能和习惯。PLC程序的编制,采用梯形图或面向工业控制的简单指令形式。梯形图与继电器原理图相类似,这种编程语言形象直观,容易掌握,不需要专门的计算机知识和语言,只要具有一定的电工和工艺知识的人员都可在短时间学会。

(4)功能完警

PLC的输入输出系统功能完善,性能可靠,能够适应于各种形式和性质的开关量和模拟量的输入输出。由于采用了微处理器,它能够很方便地实现定时、计数、锁存、比较、跳转和强制I/O等诸多功能,不仅具有逻辑运算、算术运算、数制转换以及顺序控制功能,而且还具备模拟运算、显示、监控、打印及报表生成功能。此外,它还可以和其他微机系统、控制设备共同组成分布式或分散式控制系统,还能实现成组数据传送、矩阵运算、闭环控制、排序与查表、函数运算及快速中断等功能。因此PLC 具有极强的适应性,能够很好地满足各种类型控制的需要。

1.1.4可编程控制器的应用

随着计算机技术的迅猛发展及元器件成本大幅度下降,PLC的性能价格比以前大大提高,其应用范围也日益广泛。如今,PLC已经在电力、纺织、机械、汽车制造、造纸、钢铁、食品、轻工、化工、公用事业等领域得到广泛使用。PLC的应用可以划分如下类型。

(1)顺序控制及时序控制

从PLC诞生之日起,顺序控制和时序控制就是PLC最基本的功能,并取代了传统的继电器控制回路。如今,PLC仍在这一领域发挥着气无可比拟的优越性。

(2)过程控制

现在的PLC系统在软件硬件上提供了一系列措施,使用户可以方便地实现回路控制,如现在广泛使用的PID控制功能。许多PLC在硬件上提供了PID调节智能模块,这种模块可以独立实现PID调节功能;在软件上,许多PLC提供了PID算法功能块,通过软件功能块及模拟量输入/输出模块,也可实现PID控制功能。

(3)运动控制

随着工厂自动化的日趋发展,PLC的运动控制功能也日益完善。借助其运动控制模块、驱动器、伺服电动机等,PLC可以方便地实现装配、输送、存放及取回、材料移动、成型等自动控制功能,甚至可以完成一些复杂的仿行功能。

(4)数据处理

现在的PLC指令系统不仅可以实现传统的逻辑运算及整数四则运算,还可以实现32位浮点复杂运算、ASCII码读写、矩阵处理、数据传送、移位、数据检索、BCD及二进制码的相互转换,工程量转换等各项功能。

(5)网络通信

为了实现PLC与远程之间、PLC之间、PLC与上位机之间及PLC与第三方产品之间的联系,PLC的网络通信功能已得到飞速发展,各PLC厂家都开发了自己的工业控制网络,如美国A-B公司PLC使用的DH+网、美国MODICON PLC使用的MB+网、德国SIEMENS PLC使用的SINEC

1.2步进电动机

1.2.1 步进电机概述

步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉

冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。

1.2.2步进电动机的特点

步进电机具有控制简便、定位准确等特点。随着科学技术的发展,在许多领域将得到广泛的应用。鉴于传统的脉冲系统移植性不好,本文提出微机控制系统代替脉冲发生器和脉冲分配器,用软件的方法产生控制脉冲,通过软件编程可以任意设定步进电

机的转速、旋转角度、转动次数和控制步进电机的运行状态。以简化控制电路,降低生产成本,提高系统的运行效率和灵活性。在此基础上提出了双三拍步进电机程序控制的硬件接口电路、程序流程图和汇编程序。

1.2.3 步进电动机的基本原理及步距角的计算

(1).步进电机的基本原理:步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控

制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。现在比较常用的步进电机包括反应式步进电机(VR )、永磁式步进电机(PM )、混合式步进电机(HB )和单相式步进电机等。永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。 (2)步距角的计算

步距角的选择 电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度 (三相电机)等。 步距角的大小和通电方式、转子齿数、定子励磁绕组的相数的关系: α=360°/mZK=21005360???=0.36 m ——步进电机的相数; Z ——转子齿数;取Z=100

K ——通电方式系数;K=拍数/相数=10/5=2

所以五相步进电动机采用的步距角为0.36°/0.72°。

1.2.4 步进电动机的动态指标及术语

(1) 步距角精度: 步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。

(2) 失步: 电机运转时运转的步数,不等于理论上的步数。称之为失步。 (3) 失调角: 转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

(4) 最大空载起动频率: 电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

(5) 最大空载的运行频率: 电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

(6) 运行矩频特性: 电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

如下图所示:其它特性还有惯频特性、起动频率特性等。电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。如下图1-2-1所示:其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

图1-2 步进电动机的矩频特性

(7) 电机正反转控电动机的矩频特性制:

当电机绕组通电时序为ABC→BC→BCD→CD→CDE→DE→DEA→EA→EAB→AB

为正转,通电时序为ABC←BC←BCD←CD←CDE←DE←DEA←EA←EAB←AB时为反转。

2 软件设计

2.1 西门子S7-200介绍

本设计以西门子公司的S7-200系统小型PLC为主要讲述的。S7-200以其极高的性能价格比,在国内占有很大的市场份额。S7-200适用于各种各业的检测、监测及控制的自动化,无论独立运行或连成网络,都能实现复杂的控制功能。

2.1.1 CPU22X型的选择

CPU22X型PLC,具有两种不同的电源供电电压,输出电路分为继电器输出和晶体管直流输出两大类。CPU22X系列PLC可提供4个不同型号的I/O种基本单元CPU供用户选用,型及参数如表2-1所示。

表2-1 CPU22X系列PLC的类型及参数

CPU22X型类型电源电压输入电压输出电压输出电流

CPU221 直流输入

直流输出24V直流24V直流24V直流0.75A,

晶体管

直流输入继电器输

出85~264V交流24V直流24V直流

24~230V交流

2A,

继电器

CPU222 CPU224 CPU226 CPU226XM

直流输入

直流输出

24V直流24V直流24V直流0.75A,

晶体管直流输入

继电器输出

85~264V交流24V直流24V直流

24~230V交直流

2A,

继电器

CPU221集成6输入/4输出共10个数字量I/O点,无I/O扩展能力,6KB程序和数据存储器空间。

CPU222集成8输入/6输出共14个数字量I/O点,可连接2个扩展模块,最大扩展至78路数字量I/O或10路模拟量I/O点,6KB程序和数据存储空间。

CPU224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,最大扩展至168路数字量I/O或35路模拟量I/O点,13KB程序和数据存储空间。

CPU226集成24输入/16输出共40个数字量I/O点,可连接7个扩展模块,最大扩展至248路数字量I/O或35路模拟量I/O点,13KB程序和数据存储空间。

根据以上本设计应采用CPU224系列。

2.1.2 S7-200元件的介绍

1、基本位操作指令

PUC运行扫描到触点符号时,到触点位地址指定的存储器位访问,该位数据状态为1时,触点为动态,即“合触点闭合,动合触点断开”;数据状态为0时,触点为常态,即“动合触断开,动断触点闭合”。当逻辑运算结果为1时,能量流可以到达线圈,使线圈通电,CPU将线圈位地址指定的存储器位置1;当逻辑运算结果为0时,线圈不通电,存储器位置置0。基本位操作指令格式及功能如表2-2所示。

表2-2 基本位操作指叙的格式及功能

LAD STL 功能

LD BIT LDN BIT A BIT AN BIT

O BIT ON BIT =BIT 用于网络段起始的动合/动断触点

动合/动断触点串联,逻辑与/与非指令动合/动断触点并联,逻辑或/或非指令线圈输出,逻辑置位指令

2、边沿触发指令

边沿触发是指用边沿触发信号产生一个机器周期的扫描脉冲,通常用作脉冲整形。边沿触令分为正跳变触发(上升沿)和负跳变触发(下降沿)两大类。正跳变触发指输入脉冲的上升沿使触点闭合(ON )一个扫描周期。负跳变触发指输入脉冲的下降沿使触点闭合(ON)一个扫描周期。边沿触发指令格式及功能如表2-3所示。

表2-3 边沿触发指令格式及功能

LAD STL 功能、注释

EU(Edge Up) 正跳变,无操作元件

ED(Edge Down) 负跳变,无操作元件

3、通电延时定时器指令

使能端(IN)输入有效时,定时器开始计时,当前值从0开始递增,大于或等于预置值(PT)时,定时器输出状态位置1(输出触点有效),当前值的最大值为32767。使能端无效(断开)时,定时器复位(当前值清零,输出状态位置0)。通电延时定时器指令格式及功能如表2-4所示。

表2-4 通电延时定时器指令格式及功能

LAD STL 功能、注释

TON 通电延时型

5、增计数器指令

增计数器指令在CU端输入脉冲上升沿,计数器的当前值增1计数。当前值大于或等于预置值(PV)时,计数器状态位置1。当前值累加的最大值为32767。复位输入(R)有效时,计数器状态复位(置0),当前计数值清零。增计数器指令格式及功能如表2-5所示。

表2-5 增计数器指令格式及功能

LAD STL 功能

CTU (Counter Up)增计数器

2.2 五相十拍步进电动机的PLC设计过程

PLC应用系统软件设计的主要内容就是编写PLC用户程序。设计步骤包括分析控制要求,确定控制方案、I/O地址分配表、PLC外部接线图、程序设计、系统调试等。

2.2.1 五相十拍步进电动机的控制要求

(2) 用五个开关控制其工作:

1号开关控制其运行(启/停)

2号开关控制其低速运行(转过一个步距角需0.5s)

3号开关控制其中速运行(转过一个步距角需0.1s)

4号开关控制其低速运行(转过一个步距角需0.03s)

5号开关控制其转向(ON为正转,OFF为反转)

(3) 设有五台电动机作顺序循环控制,控制时序图如图2-7所示。

(4) 设有四台电动机作顺序循环控制,控制时序图如图2-8所示。

图2-7 五台电动机顺序循环控制图2-8 四台电动机顺序循环控制

2.2.2 PLC外部接线图

PLC外部接线图的输入输出设备、负载电源的类型等的设计就结合系统的控制要求来设定。步进电动机采用五相十拍控制外部接线图如图2-9所示。步进电动机采用单相控制外部接线图如图2-10所示。

图2-9 步进电动机采用五相十拍控制图2-10 步进电动机采用单相控制

外部接线图外部接线图

2.2.3 I/O地址分配表

根据PLC外部接线图可以列写出电器元件符号及功能说明表和I/O地址分配表,见表2-11。这直观地描述了外部信号与PLC接线端子的关系。I/O地址分配表如表2-12。

表2-11 电器元件符号及功能说明表

序号符号功能描述序号符号功能描述

1 K1 启/停开关7 A A绕组

2 K2 0.5s低速运行开关8 B B绕组

3 K3 0.1s中速运行开关9 C C绕组

4 K4 0.03s低速成运行开关10 D D绕组

5 K5 控制转向开关11 E E绕组

6 K6 运行控制开关12 KM1 一号电机

13 KM2 二号电机

14 KM3 三号电机

15 KM4 四号电机

16 KM5 五号电机

序号符号功能描述序号符号功能描述

1 I0001 启动按钮 3 KM1 一号电机

2 I0002 停止按钮 4 KM2 二号电机

5 KM3 三号电机

6 KM4 四号电机

表2-12 I/O地址分配表

输入输出

K1 I0.0 A Q0.0

K2 I0.1 B Q0.1

K3 I0.2 C Q0.2

K4 I0.3 D Q0.3

K5 I0.4 E Q0.4

K6 I0.5 KM1 Q0.5

KM2 Q0.6

KM3 Q0.7

KM4 Q1.0

KM5 Q1.1 输入输出

SB1 I0.0 KM1 Q0.0

SB2 I0.1 KM2 Q0.1 2.2.4 程序设计

(1) 五相十拍步进电动机的拍数实现梯形图如图2-13所示。

低速0.5s时所采用的定时器从T37——T46。

中速0.1s时所采用的定时器从T47——T56。

低速0.03s时所采用的定时器从T57——T63、T101——T103。

图2-13 五相十拍步进电动机的拍数实现梯形图

(2) 五台电动机采用五相十拍作顺序循环控制如图2-15所示。电机的工作过程如图2-14 所示。定时器从T104——T107。

图2-14 电动机的工作过程

图2-15 五台电动机采用五相十拍作顺序循环控制(3) 四台电动机采用单相作顺序循环控制如图2-16所示。

图2-16 四台电动机采用单相作顺序循环控制

3 硬件设计

步进电机控制系统的结构图如图3-1所示。主要由PLC控制器、步进电动机驱动器及步进电机组成。步进电动机的五相十拍控制由软件实现,而步进电动机驱动器及步进电动机由硬件设计。

图3-1 步进电动机控制系统的结构图

步进电动机的驱动器包括环形分配器和功率放大器组成。控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制进给量;同时通过编程控制脉冲频率——既控制进给速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,步进电机功率放大器

将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。一般PLC 的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十~几百毫安。但对于功率步进电机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用放大器对输出脉冲进行放大。进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如五相步进电机通电顺序为ABC→BC→BCD→CD→CDE→DE→DEA→EA→EAB→AB 时步进电机正转;当绕组按ABC←BC←BCD←CD←CDE←DE←DEA←EA←EAB←AB顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。开环步进电动机控制系统图如图3-2所示。五相十拍步进电动机的驱动电路如图3-3所示。通过环形分配器和功率放大器共同完成步进电机的驱动。

图3-2 开环步进电动机控制系统图

图3-3 五相十拍步进电动机的驱动电路

3.1环形分配器

环形分配器又称脉冲分配器,它接收控制脉冲和方向信号,并按步进电动机的分配方式要求的状态顺序产生各相控制绕组导通或截止的信号,实现对脉冲按分配方式进行分配送到功率放大器。五相十拍环形分配器电路图如图3-4所示。

图3-4 五相十拍环形分配器电路图

CP是进给脉冲,和分别代表了进给脉冲是正方向还是负方向。为高电平时,代表 CP 进给脉冲为正方向;为高电平时,代表 CP 是反方向进给脉冲,两者不会同时到来。

对于五相步进电机,五相十拍的通电顺序为:

ABC→BC→BCD→CD→CDE→DE→DEA→EA→EAB→AB→ABC

按照五相十拍步进电机的通电方式和通电顺序,列出控制定子绕组通、断电的真值表,如表3-5所示。根据真值表,如果采用上一拍的通电状态作为下一拍通电状态的控制条件,可写出逻辑式为:

正转时

反转时

表3-5 五相十拍环形分配器真值表

按上述逻辑式再分别考虑到进给方向,可设计出该五相十拍环形分配器线路的逻辑结构。

3.2功率放大器

功率放大器是输出级带一定的负载,为使负载能正常工作,输出级就必须输出足够大的功率,即输出级不但要输出足够高的电压,同时,还要提供足够的电流。通过功率放大器对脉冲分配回路输出的控制信号进行放大驱动步进电机的各相绕组,使步进电机转动。

功率放大电路有单电压型功放电路、高低压切换型功放电路、斩波恒流功放电路、升频升压功放电路、细分功放电路、H桥功率与多相功放电路。

当电机相数较多时,使用大功率晶体管较多。而使用多相桥可以减小一半晶体管。例如,用五个H桥驱动五相混合式步进电动机要用20个功率晶体管,而采用五相桥功放只用10个功率晶体管。五相功放电路的原理图见图3-6所示。这个电路有十个输入端,其中a、b、c、d、和e各端表示高压管的输入端,a'b'c'd'和e'表示低压管的输入端。这些输入端的控制逻辑比较复杂,必须根据选定的分配方式进行设计。例如,要求以实现五相十拍的第一拍ABC,即A相、B相、C相绕组同时接高压电源,电流从高压电源沿正向同时经过A、B、C相绕组,然后实现ABC的状态。以此类推实现五相十拍步进电动机的其它拍数。

图3-6 五相功放电路的原理图

结束语

本论文在李振凯老师的悉心指导和严格要求下完成的,从课题选择到具体构思和内容,无不凝聚着老师的心血和汗水,在三年的学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向老师表示深深的感谢和崇高的敬意。

这次做论文的经历也会使我终身受益,我感受到做论文是要真真正正用心去做的一件事情,是真正的自己学习的过程和研究的过程,没有学习就不可能有研究的能力,没有自己的研究,就不会有所突破,那也就不叫论文了。希望这次的经历能让我在以后学习中激励我继续进步。不积跬步何以至千里,本设计能够顺利的完成,使我能够很好的掌握和运用专业知识,并在设计中得以体现。正是有了他们的悉心帮助和支持,才使我的毕业论文工作顺利完成。

参考文献

[1] :周雪编著模拟电子技术西安:西安电子科技大学出版社,2005,7

[2] :孙津平编著数字电子技术西安:西安电子科技大学出版社,2005,7-9

[3] :胡幸鸣编著电机及拖动基础北京:机械工业出版社,2002,6

[4] :廖常初编著 PLC编程及应用北京:机械工业出版社,2005,5-6

[5] :杨宜民编著新型驱动器及其应用北京:机械工业出版社,1997,12-15

[5] :梅晓榕等编著自动控制元件及电路北京:科学出版社,2005

[6] :孙平编著可编程控制器原理及应用高等教育出版社,2002,11

[7] :张凯编著可编程控制器教程南京:东南大学出版社,2005,2-5

五相十拍步进电动机控制程序

摘要 本论文主要阐述了五相十拍步进电动机控制领域中的应用,其中可编程控制器是工业自动化设备的主导产品,具有控制功能强,可靠性高,适用于不同控制要求的各种控制对象等优点,其工作原理,设计和使用方法为电气和机电类专业必修课程的学习内容。 本设计涉及的内容有:步进电动机的硬件驱动过程、五相十拍步进电动机的PLC软件实现等。通过对硬件软件的结合,从而实现电动机的正反转控制。PLC是现代工业自动控制的一种通用计算机,但其工作方式与微机控制系统不同,与继电接触器控制系统也有本质的不同。PLC应用系统设计包括硬件设计和软件设计两个方面。 关键词:步进电动机;PLC软件设计;PLC硬件设计 目录 1 绪论 (2) 1.1可编程控制器 (2) 1.1.1 PLC的工作原理 (2) 1.1.2可编程序控制器的组成 (2) 1.1.3可编程序控制器的特点 (3) 1.1.4可编程控制器的应用 (4) 1.2步进电动机 (5) 1.2.1 步进电机概述 (5) 1.2.2步进电动机的特点 (5) 1.2.3 步进电动机的基本原理及步距角的计算 (5) 1.2.4 步进电动机的动态指标及术语 (6) 2 软件设计 (7) 2.1西门子S7-200介绍 (7) 2.1.1 CPU22X型的选择 (8) 2.1.2 S7-200元件的介绍 (8) 2.2五相十拍步进电动机的PLC设计过程 (10) 2.2.1 五相十拍步进电动机的控制要求 (10) 2.2.2 PLC外部接线图 (11) 2.2.3 I/O地址分配表 (11) 2.2.4 程序设计 (12) 3 硬件设计 (15) 3.1环形分配器 (17) 3.2功率放大器 (18) 结束语 (19) 参考文献 (19)

相与五相86系列步进电机的差异

步进电机主要是依相数来做分类,而其中又以二相、五相步进电机为目前市场上所广泛采用。二相步进电机每转最细可分割为400等分,五相则可分割为1000等分,所以表现出来的特性以五相步进电机较佳、加减速时间较短、动态惯性较低。 二相/五相步进电机差异比较8个主极;4相(2相)4极线圈10个主极;5相2极线圈分解能1.8°/0.9°(200、400分割/圈)0.72°/0.36°(500、1000分割/圈)较二相步进电机高出2.5倍分解能。振动性100-200PPS之间为低速共振领域,振动较大无显著共振点低振动速度—转矩特性于速度上不及五相步进电机高速度、高转矩步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、1.8°,五相混合式步进电机步距角一般为0.72

°、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGERLAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为 1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

五相十拍步进电机

机电传动与控制综合课程设计设计说明书设计题目: 五相十拍(2/3)步进电机 控制程序设计 院系名称:机电工程学院专业班级:机制F09 学生姓名:学号: 20094805 指导教师:王宗才 2012年12 月05 日

内容摘要 本文主要是介绍采用可编程控制器(PLC) 对五相十拍步进电机进行控制的设计原理及方法进行分析。其中步进电动机具有快速起停、精确步进和定位等特点,是一种控制精度极高的电机,常用作工业过程控制及仪器仪表的控制元件。可编程控制器是工业自动化设备的主导产品,具有控制功能强,可靠性高,适用于不同控制要求的各种控制对象等优点。 本文详细的介绍了用PLC控制步进电机系统的原理,及硬件和软件设计方法。其内容主要包括I/O地址分配、PIC外部接线图、控制流程图、主电路图、梯形图、元件清单以及语句表。本文设计过程中使用了十六位移位寄存器,大大简化了程序的设计,使程序更间凑,方便了设计。在实际应用中表明此设计是合理有效的。 关键词: PLC;梯形图;元件清单;五相十拍步进电机

目录 第1章引言 (1) 第2章系统总体方案设计 (2) 2.1 程序设计的基本思路 (2) 2.2 五相步进电动机的控制要求 (2) 2.3 方案原理分析 (2) 第3章 PLC控制系统设计 (4) 3.1 设计流程分析 (4) 3.1.1 控制流程图 (4) 3.1.2电机工作过程图 (5) 3.2 I/O地址分配表 (5) 3.3 PLC外部接线图 (6) 3.4 主电路 (7) 3.5 元件清单 (8) 3.6 程序设计 (8) 3.6.1 步进控制设计 (8) 3.6.2 梯形图设计 (10) 3.7 调试说明 (11) 第4章设计总结 (12) 致谢 (13) 参考文献 (14) 附录 (15) 附录一程序梯形图 (15) 附录二程序语句表 (20) 1

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

嵌入式电机转动控制实验..

《嵌入式系统设计与实例开发》(2011-2012学年第2学期) 实 验 报 告 实验五电机转动控制实验----c语言实现方法

电机转动控制实验—C语言实现方法 一、实验目的 1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。 2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。 3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。 4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。 二、实验内容 学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。 1.编程实现ARM芯片的一对PWM输出用于控制直流电机的转动,通过A/D旋钮控制其正反转及转速。 2.编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动,通过A/D 旋钮转角控制步进电机的转角。 3.通过超级终端来控制直流电机与步进电机的切换。 三、预备知识 1、用ARM SDT 2.5或ADS1.2集成开发环境,编写和调试程序的基本过程。 2、ARM应用程序的框架结构。 3、会使用Source Insight 3 编辑C语言源程序。 4、掌握通过ARM自带的A/D转换器的使用。 5、了解直流电机的基本原理。 6、了解步进电机的基本原理,掌握环形脉冲分配的方法。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 2.51或ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理 1.直流电机 1)直流电动机的PWM电路原理 晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图2-22所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制 (PWM)变速控制。在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。 构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用 "T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

三相六拍步进电机FX2NPLC控制

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学号: 学生姓名:

指导教师: 电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计 基层教学单位:电气工程及自动化系指导教师:

2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科 摘要 PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。本设计是用PLC做三相六拍步进电机的控制核心,用按钮开关来实现对步进电机正、反转运行控制,而且正、反转切换无须经过停车步骤。其次可以通过对按钮的控制来实现对高、低速度的切换控制。 关键词:PLC控制三相六拍正反转运行高低速运行

目录 封皮 (1) 任务书 (2) 摘要 (3) 目录 (4) 第一章三相六拍步进电机的PLC控制及要求 (5) 1.1步进电机的工作原理 (5) 1.2三相六拍步进电机控制要求 (5) 1.3 步进电机的驱动 (6) 第二章参数选择 (7) 2.1 三相六拍步进电机的参数选择 (7) 2.2 PLC的选择 (7) 2.3 功率放大电路参数选择 (7) 第三章整体设计 (7)

3.1 PLC的I/O端口分配表 (7) 3.2 硬件接线图 (8) 3.3 程序流程图 (8) 3.4 状态转移图 (9) 3.5 步进梯形图 (10) 3.6 时序图 (12) 总结 (13) 参考文献 (14) 评审意见表 (15) 第一章三相六拍步进电机的PLC控制及要求 1.1步进电机的工作原理 电机的定子上有六个均布的磁极,其夹角是60o。各磁极上套有线圈,连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为θE=360o/40=9o,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3o。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3o;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,

五项步进电动机的控制

毕业设计(论文) 学院 专业 姓名

XX大学 毕业设计(论文)任务书

前言 随着现代工业自动化的日益发展,电动机作为重要的电器元件,被广泛的应用在各种自动化控制系统中。步进电动机由于其具有易于电脑操作、步数误差小、精度高、使用系统时间长和成本低等优点,被广泛应用于工业控制中。其中五相混合式步进电机总体性能优于其它种类的步进电动机,是工业上应用最为广泛的步进电动机品种,被广泛的应用在各个领域中。所以对五相步进电动机实现自动化是工业自动化的必然趋势。打印机作为计算机的输出设备之一,运用步进电动机作为打印机的字车动力源和走纸机构,通过牵引机构将步进电动机的转动转变为走纸移动,可以实现打印纸的纵向移动,因其要求精度比较高,所以,打印机的走纸结构能够使用五相步进电动机来控制。对五相步进电动机的使用,工业中应用比较广泛,但大都应用于高精度的机床控制系统中,整个系统比较庞大,所以,本文以步进电动机在的打印机中的精密控制为背景介绍使用PLC控制五相步进电动机按照给定频率自动运行和自由调速的模拟控制方法。

摘要 主要阐述了以五相步进电动机在针式打印机走纸结构中的应用为背景,介绍了一种用三菱FX-2N系列PLC实现对规格型号90BYG550A-0301的五相步进电动机控制的方法,利用PLC产生脉冲信号对五相步进电动机进行模拟控制,实现对五相步进电动机五个绕组的通电状态,达到五相步进电动机按照固定速度的循环自动运行的目的,并实现步进电动机正反转和调速控制。用PLC控制五相步进电动机驱动针式打印机的走纸结构控制纸张的进退,实现打印机的打印工作。基于PLC控制的步进电动机具有设计简单,实现方便,定位精度搞,参数设置灵活等有点,在工业过程控制中使用可靠性高,监控方便。本设计还包括步进电动机的工作原理和特点,PLC的主要功能和应用,各硬件软件元件的介绍选择以及控制程序的编程方法。 关键字:五相步进电动机,PLC控制

实验6(步进电机实验)

实验6:步进电机实验 一、实验目的 了解直流电机和步进电机的工作原理 学会Linux下用软件的方法实现步进电机的脉冲分配,用软件 的方法代替硬件的脉冲分配器 二、实验内容 学习步进电机的工作原理,了解实现电机转动对于系统的软件和硬件要求。学习ARM知识,要掌握I/O的控制方法。Linux下编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动。 三、预备知识 C语言的基础知识、程序调试的基础知识和方法,Linux的基本操作。Linux关于module的必要知识。 四、实验设备及工具 硬件:UP-NETARM2410-S嵌入式实验平台、PC机Pentium 500以上,硬盘10G以上 软件:PC机操作系统REDHAT LINUX 9.0+MINICOM+ARM-LINUX开发环境 五、实验原理 1、步进电机概述 步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相方波脉冲驱动,用途很广。使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受

电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2、步进电机的种类 目前常用的步进电机有三类: 1、反应式步进电动机(VR)。它的结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。 2、永磁式步进电动机(PM)。它的出力大,动态性能好;但步距角一般比较大。 3、混合步进电动机(HB)。它综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。 3、步进电机的工作原理 现以反应式三相步进电机为例说明其工作原理。定子铁心上有六个形状相同的大齿,相邻两个大齿之间的夹角为60度。每个大齿上都套有一个线圈,径向相对的两个线圈串联起来成为一相绕组。各个大齿的内表面上又有若干个均匀分布的小齿。转子是一个圆柱形铁心,外表面上圆周方向均匀的布满了小齿。转子小齿的齿距是和定子相同的。设计时应使转子齿数能被二整除。但某一相绕组通电,而转子可自由旋转时,该相两个大齿下的各个小齿将吸引相近的转子小齿,使电动机转动到转子小齿与该相定子小齿对齐的位置,而其它两相的各个大齿下的小齿必定和转子的小齿分别错开正负1/3的齿距,形成“齿错位”,从而形成电磁引力使电动机连续的转动下去。 和反应式步进电动机不同,永磁式步进电动机的绕组电流要求正,反向流动,故驱动电路一般要做成双极性驱动。混合式步进电动机的绕组电流也要求正,反向流动,故驱动电路通常也要做成双极性。 4、开发板中步进电机控制的实现 本开发板中使用的步进电机为四相步进电机。转子小齿数为64。 系统中采用四路I/O进行并行控制,ARM控制器直接发出多相脉冲信号,在通过功率放大后,进入步进电机的各相绕组。这样就不再需要脉冲分配器。脉冲分配器的功能可以由纯软件的方法实现。

五相单双十拍步进电动机控制程序的设计与调试概论

XXXXX学院 课程设计说明书 设计题目:五相单双十拍步进电动机控制程序的设计与调试 学生姓名: XXXXX 学号: XXXXX 专业班级: XXXXX 指导教师: XXXXX 2012年12 月13 日

内容摘要 步进电机是一种控制精度极高的电机, 在工业上有着广泛的应用。步进电动机具有快速起停、精确步进和定位等特点,所以常用作工业过程控制及仪器仪表的控制元件。基于PLC控制的步进电动机具有设计简单,实现方便,参数设计置灵活等优点。矩角特性是步进电机运行时一个很重要的参数,矩角特性好,步进电机启动转矩就大,运行不易失步。改善矩角特性一般通过增加步进电机的运行拍数来实现。本文主要是介绍采用可编程控制器(PLC) 对五相十拍步进电机进行控制的设计原理及方法进行分析。本文详细的介绍了用PLC控制步进电机系统的原理,及硬件和软件设计方法。其内容主要包括I/O地址分配、PIC外部接线图、控制流程图、梯形图以及语句表。本文设计过程中使用了移位指令,大大简化了程序的设计,使程序更间凑,方便了设计。在实际应用中表明此设计是合理有效的。 关键词: PLC;梯形图;五相十拍步进电机

目录 第1章引言 (1) 1.1 五相步进电动机的控制要求 (1) 1.2 程序设计的基本思路 (1) 第2章 PLC控制系统硬件设计 (3) 2.1 PLC类型选择 (3) 2.2 I/O点的分配与编号 (3) 2.3 PLC外部接线图 (4) 第3章 PLC控制系统软件设计 (5) 3.1 绘制控制流程图 (5) 3.2 梯形图程序设计 (6) 3.2.1 步进控制设计 (6) 3.2.2梯形图 (8) 3.3程序指令表 (13) 3.4程序调试 (16) 结论 (21) 设计总结 (22) 谢辞 (23) 参考文献 (24)

五线四相步进电机简介

1、概念 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 【开环控制系统:不将控制的结果反馈回来影响当前控制的系统 举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起已对按开关的这个活动没有影响;投篮——篮球出手后就无法再继续对其控制,无论球进与否,球出手的一瞬间控制活动即结束。 闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统 举例:调节水龙头——首先在头脑中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的用手进行调节形成一个反馈闭环控制;骑自行车——同理,不断的修正行进的方向与速度形成闭环控制。 开环闭环的区别:1、有无反馈;2、是否对当前控制起作用。开环控制一般是在瞬间就完成的控制活动,闭环控制一定会持续一定的时间,可以借此判断, 投篮第一次投篮投近了第二次投的时候用力一些,这也是一种反馈但不会对第一次产生影响了,所以是开环控制】 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。 【所谓时序,就是内存的时钟周期数值,脉冲信号经过上升再下降,到下一次上升之前叫做一个时钟周期,随着内存频率提升,这个周期会变短。例如CL9的意思就是CL这个操作的时间是9个时钟周期。 时序电路,是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。 如触发器、锁存器、计数器、移位寄存器、存储器等电路都是时序电路的典型器件,时序逻辑电路的状态是由存储电路来记忆和表示的。虽然组合逻辑电路能够很好地处理像加、减等这样的操作,但是要单独使用组合逻辑电路,使操作按照一定的顺序执行,需要串联起许多组合逻辑电路,而要通过硬件实现这种电路代价是很大的,并且灵活性也很差。为了实现一种有效而且灵活的操作序列,我们需要构造一种能够存储各种操作之间的信息的电路,我们称这种电路为时序电路。】 【步进电机、直流电机和无刷直流电机的主要区别在于他们的驱动方式。步进电机是以步阶方式分段移动,直流电机和无刷直流电机通常采用连续移动的控制方式。步进电机采用直接控制方式,它的主要命令和控制变量都是步阶位置。直流电机则是以电机电压为控制变量,以位置或速度为命令变量。

五相十拍步进电动机控制

铁道大学四方学院 集中实践报告书 课题名称 五相十拍步进电动机控制 姓 名 *** 学 号 2012**** 系 部 电气工程系 专业班级 方**** 指导教师 ** 2014 年 12 月 31 日 ※※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※※ ※ ※ ※ ※ ※ ※ ※ ※ ※ 2012级 PLC 课程设计

目录 第1章设计目的 (1) 第2章设计要求 (1) 2.1 任务描述 (1) 2.2 控制要求 (2) 第3章PLC选型、I/O分配表和接线图 (2) 3.1 PLC选型 (2) 3.2 I/O分配表 (2) 3.3 I/O接线图 (3) 第4章程序设计 (3) 4.1 梯形图设计 (3) 4.2 指令语句表 (8) 第5章设计总结 (13) 参考文献 (14)

第1章 设计目的 本课程设计主要用于步进电动机的控制,矩角特性是步进电动机运行时一个很重要的参数。矩角特性好,步进电动机的启动转矩就越大,运行不易失步。通过增加步进电动机的拍数来改善矩角特性。 第2章 设计要求 2.1 任务描述 五相步进电动机有五个绕组:A 、B 、C 、D 、E 正转顺序:ABC BC BCD CD CDE DE DEA EA EAB AB 反转顺序:ABC BC BCD CD CDE DE DEA EA EAB AB 图2-1-1 步进电动机五相十拍正 图2-1-2 步进电动机五相十拍反转 图2-1 控制步进电动机五相十拍的时序图

2.2 控制要求 用五个开关控制其工作: 1号开关控制其运行(启/停)。 2号按钮控制其低速运行(转过一个步距角需0.5S)。 3号按钮控制其中速运行(转过一个步距角需0.1S)。 4号按钮控制其高速运行(转过一个步距角需0.03S)。 5号开关控制其转向(ON为正转,OFF为反转) 第3章PLC选型、I/O分配表接线图3.1 PLC选型 三菱公司近年来推出的FX系列PLC有FX 0、FX 2 、FX 0S 、FX 0N 、FX 2C 、FX 1S 、FX 1N 、FX 2N 、 FX 2NC 等系列型号。FX系列PLC的特点有先进美观的外部结构,提供多种系列机型供 用户选用,灵活多变的系统配置。三菱公司近年来推出的FX系列PLC有FX 0N 、FX 0S 、 FX 2N 等系列型号。 FX 2N 是三菱公司推出的高性能小型可编程控制器,FX系列PLC中应用最广泛的产 品,该系列PLC是1991年推出,因其具有较高的性能价格比,受到广大用户的青睐.FX 2N 系列PLC是采用整体式和模块式相结合的叠装式结构.它的基本单元、扩展单元和扩展模块的高度和宽度相同。它们的相互连接不用基板,仅用扁平电缆连接,紧密拼装后组成一个整齐的长方体。其体积小,很适于在机电一体化产品中使用。 3.2 I/O分配表 输入 X1 启/停开关 X2 0.5s低速运行按钮X3 0.1s中速运行按钮X4 0.03s高速运行按钮X5 控制转向开关输出 Y0 A绕组Y1 B绕组Y2 C绕组Y3 D绕组Y4 E绕组

电机传动与控制实验指导书

实验一步进电机基本原理实验 一、实验目的 1、了解步进电动机的基本结构和工作原理。 2、掌握步进电机驱动程序的设计方法。 二、实验原理 步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和 制动的执行元件。其功能是将电脉冲转换为相应的角位移或直线位移。步进电动机的运 转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一 个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。步进电机旋转的角度由 输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。 当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点, 转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转 的原因。 四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如 表1,表2和表3 表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表 表3 四相八拍脉冲分配表 如步进电动机每一相均停止通电,则电机处于自由状态;若某一相一直通直流电时,

则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电动机可以实现停车时转子定位。这就是步进电动机的自锁功能。当步进电机处于自锁时,若用手旋转它,感觉很难转动。 三、实验步骤: 1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。 2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。 启动硬件设备。 3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷 工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。 没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。 4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验 目录中选择“步进电机基本原理”实验,并启动该实验。 5.点击该实验脚本中的“开关”按钮,向运动控制卡下载实验程序。 6.本实验中先做步进电机的驱动实验:选择运行方式为“连续驱动”,依次选 择步进电机的工作方式为:四相单四拍、四相双四拍、四相八拍;方向可以是任意的;脉冲间隔参数可用5~10ms。点“电机驱动”按钮,驱动电机工作。观察电机的工作情况。(对于四相八拍的工作方式,脉冲间隔最小可以到2ms)终止电机运行请在运行方式中选择“停止保持”或“停止不保持”。 7.步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电 机驱动”按钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带轮,可以感到转动比较困难。 8.步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。 每点击一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于本实验台步距角为1.8o。 除了可以使用DRLink平台下的实验脚本进行本实验外,还可以使用C-51的C语言程序进行本实验。本运动控制平台在内部使用了DRMC-A型运动控制卡,其CPU是ADUC842,关于ADUC842的硬件的详细信息,请参考我们提供的pdf 文档。在DRMC-A型运动控制台,步进电机的端口地址:0x8000,用低4位表示电机的4相,1表示发送脉冲,0表示空。根据步进电机的工作方式的脉冲分配表(表1~3),逐步向端口的低4位写入0和1就可以了。具体的程序请参考StepMotor1.c~StepMotor5.c。在生成执行代码后,按运动控制台的“PRG”+“RST”按钮后,使用Windows Serial Downloader将执行程序下载到单片机内。

开题报告-五相十拍步进电机驱动器的研究与分析

2009 届毕业设计(论文)开题报告 二级学院:延陵学院班级:09电Y1 学生:尚严鑫学号:09120920 指导教师:张建生职称:教授 课题名称 课题类型 □毕业设计□毕业论文 起止时间 开题报告 (毕业设计:含课题来源及现状、设计要求、工作内容、设计方案、技术路线、预期目标、时间安排及参考文献等。字数为3000以上。) (毕业论文:含课题来源、研究价值,国内外研究现状,研究内容,研究方法,研究思路,论文提纲,预期目标,时间安排及参考文献等。字数为3000以上。) 一.课题来源及研究价值 步进电动机是将电脉冲信号转化为机械角位移或线位移的控制电机,它可以看作是一个比较特殊的运行方式的同步电机。步进电机是由专门的电源提供脉冲信号。当每输入一个电脉冲信号时,步进电机就会往前移动一小步,移动的角度大小叫做步距角,因此这种不同于普通的匀速旋转的电机被称为步进电动机。步进电动机是受走脉冲信号控制的,直线位移量、角位移量和电脉冲数的关系成正比例,所以电动机的线速度、转速也与脉冲频率构成正比关系。利用改变脉冲频率的高与低,可以在很大范围内调节电动机的转速,从而实现电机的快速启动、制动和反转控制。步进电机的优点是在不失步的情况下工作,步距误差不会积累。从而完全适用数字控制的开环系统中,并使整个系统运行可靠。是工业生产中性能优良的数字执行元件。随着单片机应用技术、电力电子技术和自动控制技术在工业生产中的普及和深入,步进电机的的需求量愈来愈大。根据调查显示,全球步进电机的年产量在以13%以上的速度增加。同时国内对步进电机的要求也与日增加。对步进电机的研究,提高步进电机的系统性能,可以改善劳动条件、节约能源、提高产品质量和经济效益。基于微型单片机的控制系统则通过软件控制步进电机,能够更好地发挥步进电机的潜力。因此,用微型单片机控制步进电机已经成为一种必然的趋势,也符合数字化的时代发展需要。 步进电机作为数字式执行元件,具有成本低廉、容易控制、定位方便和步距误差不会长期累积等优点,被广泛应用在数控装置、绘图机、机械手、印刷和包装设备等工业、军事和医疗自动化领域中。在多种步进电机中,混合式步进电机集反应式和永磁式步进电机的优点于一身,应用更加普遍。但是步进电机在应用当中仍然存在一些制约性的因素,步进电机及其系

实验五 步进电机单轴定位控制实验

方向信号 (a) 脉冲+方向 (b) 正脉冲+负脉冲 实验五 步进电机单轴定位控制实验 一、实验目的 1. 学习和掌握步进电机及其驱动器的操作和使用方法; 2. 学习和掌握步进电机单轴定位控制方法; 3.学习和掌握PLC 单轴定位模块的基本使用方法。 二、实验原理 步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。运动速度正比于脉冲频率,角位移正比于脉冲个数。 步进电动机典型控制系统框图如图1-2-9所示。 图1-2-9 步进电动机典型控制系统框图 位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。 由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。输出脉冲形式通过参数设定来选择。其脉冲形式如图1-2-10所示。 图1-2-10 定位模块的两种输出脉冲形式

PLS ) 由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。步进电机升、降频过程如图1-2-11。一般情况下,S 2=S 3。 图 1-2-11 步进电机升、降频示意图 其中:f 1——设定的运行频率,应小于步进电动机的最高频率; S 1——设定的总脉冲个数; S 2——升频过程中脉冲个数,由加速时间和运行频率确定; S 3——降频过程中脉冲个数,由减速时间和运行频率确定。 步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。 步进电动机驱动生产机械的运动部件。 图1-2-12 实验系统结构框图 位置定位模块、步进电动机及驱动器种类很多,本实验中采用的是三菱FX2N 系列PLC 中的双轴定位模块FX2N-20GM ,该模块与PLC 相连,可以单独或同时控制两个步进电动机,

两相步进电机的原理

两相步进电机的工作原理 工业上电机用三相制,普通的小玩具马达两相也可以。拿玩具电机来说。上下是两个磁铁。中间是线圈。通了直流电以后,就成了电磁铁。被上下的磁铁吸引后就产生了偏转。但是因为中间连接电磁铁的两根线不是直接连接的。是采用在转轴的位置用一个滑动的接触片。这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了。所以电磁铁的n极s 极就和以前相反了。但是电机上下的磁铁是不变的。所以又可以继续吸引中间的电磁铁。当电磁铁继续转。由于惯性又转过头了。所以电极又相反了。重复上述过程就转了。 但是他有缺陷。因为在刚好要变换电极的时候是需要靠惯性的。所以他不利于自己启动。功率也达不到很高。所以就产生了三相的电机。每隔120度放一个磁铁。分布在电机一圈。这样的电机改善了很多。 另外注意。不一定磁铁非要放外边。可以放内侧。而外侧是电磁铁。常见的发电厂大致都是这个结构的电机。 电机不一定当作机械动力使用。也可以当小型发电机来用。比如用一个柴油的机器产生一个持续的扭力矩,连接到电机上。就可以发电了。 下面是交流的。 如果中间放一个磁铁。外面放电磁铁来吸引中间的磁铁呢。还是从两相开始。假如上边一个电磁铁产生磁力把磁铁n极吸到了上边,然后刚好电磁铁的正负极颠倒了,那么就产生斥力把n极推到下边去。同样道理下边的也是对中间的磁铁产生吸力和斥力。但是大家一想就知道了。两相的交流也存在一个惯性的问题。就是刚好磁铁和电磁铁直上直下的时候。 所以三相的,明显比两相的有优势。而且中间的磁铁也不一定非得是一个直上直下的n极和s极的磁铁。可以把三个磁铁s极放中间,n极冲外面。这样外面的三个电磁铁就轮番的吸引中间的n极磁铁。 如果轴承的滑动摩擦力够小的话。只要电磁铁变化。就可以不断的吸引中间的三个n极磁铁产生偏转旋转。电磁铁变化磁极速度快,中间的轴承旋转就快。电磁铁变化速度就是频率了。发电厂的频率是一定的。所以你可以用变频的机器把电频率变成你需要的。就可以控制电机的速度了。 另外电机也不一定是三相的,还可以是四相的、五相的、六相的、七相的。但是由于大家做试验做过。太多相的,电磁互相干扰大,另外大家也知道,每个电磁铁都通电,是很浪费电的。因为电磁铁是用电线缠绕成的线圈。但是电线都有电阻。如果做一个六项的电机,耗电

实验六 五相步进电动机控制的模拟

实验六五相步进电动机控制的模拟 在五相步进电机的模拟控制实验区完成本实验。 一、实验目的 了解并掌握移位指令在控制中的应用及其编程方法。 二、控制要求 要求对五相步进电动机五个绕组依次自动实现如下方式的循环通电控制: 第一步:A~B~C~D~E 第二步:A~AB~BC~CD~DE~EA 第三步:AB~ABC~BC~BCD~CD~CDE~DE~DEA 第四步:EA~ABC~BCD~CDE~DEA 三、五相步进电动机的模拟控制的实验面板图: 上图中,下框中的A、B、C、D、E分别接主机的输出点Y1、Y2、Y3、Y4、Y5;SD接主 机的输入点X0。上框中发光二极管的点亮与熄灭用以模拟步进电机五个绕组的导电状态。四、编制梯形图并写出程序,实验梯形图参考图6 实验参考程序 步序指令器件号说明步序指令器件号说明 0 LD X000 输入 3 K20 1 ANI M0 4 LD T0 2 OUT T0 延时2秒 5 OUT M0 步序指令器件号说明步序指令器件号说明 6 LD X000 34 OR M106 7 OUT T2 延时3秒35 OR M107 8 K30 36 OR M111 9 ANI T2 37 OR M112 10 OUT M10 38 OR M113 11 LD M10 39 OR M204 12 OR M2 40 OR M205 13 OUT M100 41 OR M206 14 LD M115 42 OR M209

15 OUT M200 43 OUT Y001 A相电机运转 16 LD M209 44 LD M102 17 OUT T1 延时2秒45 OR M107 18 K20 46 OR M108 19 ANI T1 47 OR M112 20 OUT M2 48 OR M113 21 LD M0 移位输入49 OR M114 22 FNC 35 左移位50 OR M115 23 M100 数据输入51 OR M206 24 M101 移位52 OR M207 25 K15 移位段数:15 53 OUT Y002 B相电机运转 26 K1 1位移位54 LD M103 27 LD M0 移位输入55 OR M108 28 FNC 35 左移位56 OR M109 29 M200 数据输入57 OR M113 30 M201 移位58 OR M114 31 K9 移位段数:9 59 OR M115 32 K1 1位移位60 OR M201 33 LD M101 61 OR M202 步序指令器件号说明步序指令器件号说明 62 OR M206 76 OR M209 63 OR M207 77 OUT Y004 D相电机运转 64 OR M208 78 LD M05 65 OUT Y003 C相电机运转79 OR M110 66 LD M104 80 OR M111 67 OR M109 81 OR M202 68 OR M110 82 OR M203 69 OR M115 83 OR M204 70 OR M201 84 OR M205 71 OR M202 85 OR M208 72 OR M203 86 OR M209 73 OR M204 87 OUT Y005 E相电机运转 74 OR M207 88 END 程序结束 75 OR M208 五、练习题: 1、试编制三相步进电机单三拍反转的PLC控制程序。 2、试编制三相步进电机三相六拍正转的PLC控制程序。 3、试编制三相步进电机双三相正转的PLC控制程序。 4、试编制五相十拍运行方式的PLC控制程序。

五相步进马达的接线

五相步进马达的接线

让我来告诉你吧,先来看一下你的10根线,它应该有10种不同的颜色: 10线五相应该是 A相:兰--红 B相:白--黄 C相:棕--紫 D相:黑--灰 E相:橙--绿 你用万用表测量一下是不是如此先,如果是这样的话就对了。 然后要怎么改你应该知道了吧。 我的问题解决了,告诉大家方法啊,先分相成五组,然后用指针式万用表电压档找出五相的同名端,具体就是旋转电机每相都正偏的就是同名端,然后分清采用星型接法还是五边形接法如果星型接法,将五条同名端并到一起短接,然后就是相序的排列了,这个很难啊,如果你有时间一定能试出来,最好找到同品牌产品的说明书,我的电机一共搞了两天才好用,引用了一篇文章 判断步进电机的相序及首尾端 妙判断 步进电机的应用越来越普遍。在使用过程中,电机的相序主要靠引出线的颜色、长度来区分。若找不到说明书

或标记不清,则步进电机的接线将十分麻烦。笔者通过对步进电机工作原理的分析、得出步进电机相序及首尾端的判别方法。下面以五相步进电机为例(要准备一节9伏电池和一个万用表)。 1. 用万用表电阻挡找出步进电机的五相绕组:Al—A2、B1-B2、C1-C2、 D1-D2、El-E2,如附图所示。” 2,把万用表拨到直流微安挡。将万用表的表笔接到其中一相,如B相上,红表笔接B1,黑表笔接B2。 3.将电池分别接步进电机其余四相,在接通瞬间记下万用表指针摆动幅度。如果指针反转,则要调换电池极性。在四次接通的瞬间,指针有两次摆动幅度最大,说明这两次电池所接的是万用表所接B相旁边的两相,即A 相和C相。 4.将万用表接A相或C相中的一相,如接C相。用上述方法可找出C相旁边的两相:B相和D相。依此类推,可按顺序找出A、B、C,D、E五相相序。 5. 如附图所示,电池接A相,万用表接B相,在电池接通的瞬间,万用表指针正转(如指针反转,应调换电池极性),则电池正极所接的Al端和万用表红表笔所接的B1端为首端。依此方法,可以确定其余三相的首端C1,D1、E1。(肖正光)

相关文档
最新文档