质粒DNA测定实验报告

质粒DNA测定实验报告
质粒DNA测定实验报告

生物化学实验报告

姓名:

学号:

专业年级:

组别:

生物化学与分子生物学实验教学中心

实验名称质粒DNA的提取、定量与酶切鉴定

实验日期2014-12-11 实验地点第4实验室

合作者指导老师

评分教师签名批改日期

一、实验目的

1.掌握PCR基因扩增的原理和操作方法

2.掌握碱裂解法提取质粒的方法

3.了解紫外吸收法检测DNA浓度与纯度的原理、方法

4.学习水平式琼脂糖凝胶电泳操作

二、实验原理

(一)、第一部分聚合酶链式反应

1.PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以DNA为模板,特定引物为延伸起点,通过变性、退火、延伸等步骤,在体外复制DNA 的过程。

1)加热使模板DNA,在高温下90℃-95变性,双链解链;

2)降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃

左右),与模板DNA互补退火形成部分双链;

3)溶液反应温度升至中温72℃,在Taq酶作用下,以dNTP为原料,引物为

复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链。(二)、第二部分质粒DNA提取与定量

1.质粒(Plasmid)

1)独立于细菌染色体外,能独立自主复制的闭合环状DNA分子;

2)存在于细菌,放线菌,真菌以及一些动植物细胞中,在细菌细胞中最多。

2.碱裂解法、

1)基于染色体DNA与质粒DNA的变性与复性的差异;

2)高碱性条件下,染色体DNA和质粒DNA变性;

3)当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶

液中,染色体DNA不能复性而形成缠连的网状结构,通过离心形成沉沉淀

去除。

3.离心层析柱

1)硅基质膜在高盐、低pH值状态下选择性地结合溶液中的质粒DNA,不吸

附蛋白质、多糖等物质;

2)通过去蛋白液和漂洗液将杂质和其它细菌成分去除;

3)低盐,高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱。

4.紫外光吸收法

1)物质在光的照射下会产生对光的吸收效应;

2)而且物质对光的吸收是具有选择性的;

3)各种不同的物质都具有其各自的吸收光谱。

4)因此不同波长的单色光通过溶液时其光的能量就会被不同程度的吸收,光能

量被吸收的程度和物质的浓度有一定的比例关系。

(三)、第三部分酶切鉴定

1.限制性内切酶

1)限制性内切酶(restriction endonuclease)是DNA操作过程中所使用的基本

工具;

2)特异性地结合于一段被称为限制酶识别序列的特殊DNA序列之内或其附近

的特异位点上,并在此切割双链DNA;

3)分子克隆中常用的为II类限制酶,其识别位点长度为4、5或6个核苷酸的

反向重复序列。

(四)、第四部分琼脂糖凝胶电泳

1. 天然琼脂

1)天然琼脂(Agar)是一种多聚糖,主要由琼脂糖(Agarose ,约占80%)及

琼脂胶(Agaropectin)组成;

2)琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷;

3)琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电

场作用下能产生较强的电渗现象,加之硫酸根可与某些蛋白质作用而影响电

泳速度及分离效果。琼脂糖透明无紫外吸收,因此,目前多用琼脂糖为电泳

支持物进行平板电泳。

2.基本原理

1)琼脂糖是一种天然聚合长链状分子,可以形成具有刚性的滤孔,凝胶孔径的

大小决定于琼脂糖的浓度;

2)DNA分子在碱性环境中带负电荷,在外加电场作用下向正极泳动;

3)DNA分子在琼脂糖凝胶中泳动时,有电荷效应与分子筛效应。不同的DNA,

分子量大小及构型不同,电泳时的泳动率就不同,从而分出不同的区带(迁移

速度与分子量的对数值成反比关系)。

三、材料与方法:

(一)实验材料

1.试剂

1)菌液:大肠杆菌DH5a菌株(含靶基因CHD5片段的pMD19-T)

2)引物:正向:5’ GTA AAA CGA CGG CCA GT 3’

反向: 5’ CAG GAA ACA GCT ATG AC 3’

3)2×Premix Taq:Taq酶:5U/μl

4×dNTP: 各10mmol/L

10×缓冲液(buffer): 500mmol/L KCl,100mmol/L Tris-HCl

4)灭菌去离子水

5)含pMD19-T质粒的大肠杆菌DH5α

6)LB培养基(液体、固体)

7)AXYGEN试剂盒质粒提取试剂盒(爱思进,中国)

a)溶液P1(S1)

b)溶液P2 (S2)

c)溶液P3(S3)

d)去蛋白液PE(W1)

e)漂洗液WB(W2)

f)洗脱液EB(Eluent)

8)DNA Marker

9)电泳缓冲液

2.仪器与器材

1)PCR仪(BioRad MJ mini)

2)台式离心机

3)微量加样枪

4)灭菌的薄壁离心管

5)凝胶电泳系统

6)凝胶成像系统

7)恒温培养箱

8)恒温摇床

9)超净工作台

10)台式离心机

11)高压灭菌锅(二)方法与步骤

4.要根据质粒的大小、大肠杆菌菌株、裂解后用于纯化的技术和实验要求选择碱裂

解法方法来提取质粒DNA 。

5.在提取质粒DNA 时,菌液一定悬浮均匀,不能有结块。

6.在质粒DNA 提取的实验中,加入溶液S2时,时间不

能太久,动作要温柔,轻轻颠倒几次。

7.在质粒DNA 提取实验中,复性时间不能太长。

8.在质粒DNA 提取实验中,将上清液转移到吸附柱时,

需小心谨慎,避免有蛋白质掺和进去,需用微量加样枪

100ul 或200ul 分几次取。 9.执比色皿时,应该拿着比

色皿的粗糙面,不能触碰光滑面。空白对照比色测定和样品比色测定应该在同一比色皿中检测。

四、结果与讨论:

1.实验记录

测量次数质粒DNA浓度 (μg/ml) Ratio值(A260/A280)

1 95.4 1.77

2 95.5 1.78

3 97.1 1.79 平均值 95. 7

1.78

2.

结果与计算

相关实验图片:

3.

分析与讨论 1)

图片分析

a) 在图片三中,其他三类DNA 与Maker 相比较,可知质粒DNA 的分子大小

在2000bp~3000bp ,酶切反应的质粒DNA 片段分子大小在3000bp 左右,PCR 的DNA 分子大小在450bp 。

b)预期PCR产物大小约400~500bp,基本符合。

2)原因分析

a)PCR颜色较浅,有可能与点样前操作失误相关。

4.复习与思考

1)碱法提质粒中溶液Ⅰ、Ⅱ、Ⅲ的作用?

溶液Ⅰ:葡萄糖悬浮细胞,EDTA鳌合金属离子使DNase失活。

溶液Ⅱ:细胞壁肽聚糖在碱性下水解,核酸和蛋白质变性。

溶液Ⅲ:酸性条件下质粒DNA复性,变性蛋白-SDS+线性DNA沉淀,Na+可中和DNA。

2)结合实验情况,如何提高限制性酶切的反应效率?

a)酶量的选择任何时候2种酶的总量不能超过反应体系的1/10体积,而且

最大反应体系最好不要小于20 ul;

b)减少能抑制酶反应的主要污染DNA的某些物质,如酚、氯仿、乙醇等;

c)合适离子强度,主要是反应缓冲液中的离子强度,如NaCl和Mg2+,可以

激发酶切反应;

d)一般应尽量减小反应体系,且酶切反应中甘油浓度应低于5%;

e)保温时间与温度。

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告 实验内容描述: 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 实验原理: 1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。 2.主要用到以下理论知识: 1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度; 2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据; 3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为: SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2 其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。 4)焦点统计 5)ArcScan自动矢量化 流程图

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

熔点的测定预习实验报告

河北北方学院2010级工业分析与检验一班邢妍萍 熔点的测定预习实验报告 一、实验目的及要求 1.了解熔点测定的意义和应用。 2.掌握熔点测定的操作方法。 3.了解温度计校正的方法。 二、实验原理 晶体化合物的固液两态在大气压力下成平衡时的温度称为该化合物的熔 点。利用测定熔点,可以估计出有机化合物的纯度。如果在一定的温度和压力下,将某物质的固液两相置于同一容器中,将可能发生三种情况:固相迅速转化为液相;液相迅速转化为固相;固相液相同时并存,它所对应的温度TM即为该物质的熔点。 三、实验装置 温度计、b形管(Thiele管)、熔点毛细管、酒精灯、开口橡皮塞、乳胶管、玻璃棒、烧杯、表面皿 四、实验步骤 1.制备熔点管内径为1mm、长为60~70mm、一端封闭的毛细管作为熔点管 2.样品的填装取干燥、研细的待测物样品放在表面皿上,将毛细管开口一端插入样品中,即有少量样品挤入熔点管中。然后取一支长玻璃管,垂直于桌面上,由玻璃管上口将毛细管开口向上放入玻璃管中,使其自由落下,将管中样品夯实。重复操作使所装样品约有 2~3mm 高时为止。 3、仪器安装向 B 管中加入浓硫酸作为加热介质,直到支管上沿。在温度计上 附着一支装好样品的毛细管,毛细管中样品与温度计水银球处于同一水平。 将温度计带毛细管小心悬于B 管中,使温度计水银球位置在B 管的直管中部。 4、测定在 B 管弯曲部位加热。接近熔点时,减慢加热速度,每分钟升 1℃左 右,接近熔点温度时,每分钟约 0.2℃。观察、记录样品中形成第一滴液体时的温度(初熔温度)和样品完全变成澄清液体时的温度(终熔温度)。熔点测定应有至少两次平行测定的数据,每一次都必须用新的毛细管另装样品测定,而且必须等待浓硫酸冷却到低于此样品熔点 20~30℃时,才能进行下一次测定 5、未知样品,可用较快的加热速度先粗测一次,在很短的时间里测出大概的熔点。实际测定时,测定两次,加热到粗测熔点以下 10~15℃,必须缓慢加热,使温度慢慢上升,这样才可测得准确熔点

果胶提取实验报告1

桔皮中果胶提取技术的试验分析 【摘要】酸浸提法提取果胶具有快速、简便、易于控制、提取率较高等特点,用盐酸浸提、乙醇沉淀法进行了从桔皮中提取果胶的工艺试验。用单因素试验进行工艺参数的优化,其适合的工艺条件是:液料质量比为20;浸提液pH值为2;浸提温度为90℃。 关键词:桔皮果胶提取工艺工艺参 引言:果胶是一种亲水性植物胶,属于多糖类物质,广泛存在于高等植物的根、茎、叶、果的细胞壁中。通常人们所说的果胶系指原果胶、果胶和果胶酸的总称,是一种高分子聚合物,分子量介于20 000-400 000之间。其基本结构是D一吡喃半乳糖醛酸,以1,4甙链连接成的长链,其中部分半乳糖醛酸被甲醇酯化 [1]。 胶凝剂、增稠剂、稳定剂和乳化剂,随着功能性多糖的开发研究,果胶作为水溶性膳食纤维,越来越受到重视。应用必定会越来越广泛[2-4]。我国是柑桔的主要产地,柑桔皮中果胶含量可达10%~30%。从桔皮中提取果胶不仅有极大的工业价值,而且对综合开发、利用柑桔资源,提高原材料利用率,减少环境污染,有重要的实际意义[2,4,6]。果胶的提取一般有酸提取法、离子交换法、微生物法和微波加热处理法等方法[5-9],由于酸提取法具有快速、简便且提取率高的优点,国内外大多采用此法。果胶分离沉淀主要有乙醇沉淀法和盐析法。国内主要采用乙醇沉淀法,而国外多用盐析法或不经沉淀直接喷雾干燥。针对我国情况而言,对乙醇沉淀法已有大量研究,而本实验也是在总结

别人成果的基础上进行对比以及提取工艺条件的优化。 1材料与方法 1.1 材料 桔皮采用成熟新鲜、无病虫果害的晚熟蜜桔,人工取皮,在40℃下干燥,粉碎至1~3 mm,待用。 盐酸、乙醇、氢氧化钠、无水氯化钙、冰醋酸和甲基红,均为化学纯。1.2 果胶提取方法 果胶提取工艺为:原料→洗涤→失活→干燥→粉碎→酸提取→过滤→浓缩→冷却→乙醇沉淀→离心分离→干燥→称量→粉碎→果胶。 剔除腐烂变质、发黑的桔皮,用清水洗净后,放入烧杯中,加水,加热至90 ℃保温5~10 min,使酶失活,捞出桔皮,将桔皮在40 ℃下干燥,切碎。将20 g原料加入用HC1预先配制的、具有一定pH值和温度的酸溶液中,维持所需的温度达到一定的提取时间,并不断搅拌。趁热用布氏漏斗过滤得果胶提取液。将滤液用旋转蒸发仪在60-70 ℃下浓缩至原体积的1/3时为止。果胶浸提液冷却至常温后加入1倍体积的95 乙醇,搅拌、静置2 h,使果胶沉淀析出。用布氏漏斗过滤得粗果胶。在60-70 ℃干燥,粉碎即得果胶粉。随后进行提取物中果胶含量的测定和提取率的计算。 1.3 试验方法 单因素试验,分别研究不同液料质量比对果胶提取率的影响(浸 提液pH值3、温度80℃、浸提时间45 min);不同浸提液pH值对果胶提取率的影响(浸提液温度80℃、液料质量比10、浸提时间45 min);不

基因工程实验报告

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程:

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer 4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

DNA提取及PCR扩增实验报告.doc

PCR扩增及DNA琼脂糖凝胶电泳 刘琳1131428 环境科学 一、实验目的 1.学习并掌握PCR扩增的基本原理与实验技术。 2.对扩增后的DNA进行琼脂糖凝胶电泳试验,并分析相应结果。 二、实验原理 1. PCR扩增 多聚酶链反应(PCR)技术的原理类似于DNA的天然复制过程。在微量离心管中加入适量缓冲液,加入微量模板DNA、四种脱氧核苷酸(dNTP)、耐热T aq聚合酶及两个合成DNA的引物,而后加热使模板DNA在高温下(94℃)变性,双链解链,这是所谓变性阶段。降低溶液温度,使合成引物在低温(55℃)与模板DNA互补退火形成部分双链,这是所谓退火阶段。溶液反应温度升至中温(72℃),在Tap酶作用下,用四种dNTP为原料,引物为复制起点,模板DNA的一条双链在解链和退火之后延伸为两条双链,这是延伸阶段。如此反复,在同一反应体系中可重复高温变性、低温退火和DNA合成这一循环,使产物DNA重复合成,并在重复过程中,前一循环的产物DNA可作为后一循环的模板DNA而参与DNA的合成,使产物DNA的量按指数方式扩增。经过30~40个循环,DNA扩增即可完成。 2. DNA琼脂糖凝胶电泳实验 DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。该电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。 三、实验材料 仪器:PCR扩增仪、0.2ul薄壁管、1.5ml离心管、移液枪、枪头、微波炉、电泳仪、水平电泳槽、制胶版、紫外透射仪。 试剂:TapDNA聚合酶、dNTP、buffer、两种引物、16S全长DNA样本、无菌ddH2O、模板DNA 、TBE、琼脂糖、EB、显色剂。 四、实验步骤 1. PCR扩增 本次试验选择细菌16S rDNA V3区片段进行扩增。 1.1 根据计算,首先取1.5ml离心管按照 2.5ul 10×Buffer 、1 ul dNTP、0.5 ul 341GC、 0.5 ul 534、0.125 ul Taq、19.375u ddH2O的比例配置足量的PCR反应体系。 1.2 分别向9个薄壁管中分别加入24 ul的反应体系,并分别添加8种不同的模版,并于第9个薄壁管中加入无菌ddH2O作为阴性对照。 1.3 将薄壁管放入PCR扩增仪中,按照预定程序进行PCR扩增。其中循环过程需要达到30~40次。程序如下: 预变性:94℃3min 循环:94℃变性30s 55℃退火30s 72℃延伸30s 末次延伸:72℃5min

基因工程实验报告

基因工程实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程: 片段胶 小麦幼苗小麦总RNA RT-PCR扩增小麦pGEX-4T-1 表达载体 表达菌株 目的蛋白 目的蛋白 Western

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

实验四 熔点的测定

实验十一熔点测定 一、实验目的 1.了解熔点测定的意义和作用 2.掌握熔点测定的操作技术 二、实验原理 将晶体物质加热到一定的温度,就可以从固态转化为液态,此时的温度就称为该化合物的熔点。如果给熔点下一个严格的定义,应该为固液两态在大气压力下达到平衡时的温度。固体物质从初熔至全熔时的温度范围称为熔点范围(熔程),纯粹的晶体物质熔程很窄,一般为0.5 ~1.0℃,可以看成有固定的熔点。若有少量杂质存在时,有机物的熔点降低、熔程加长。因此通过测定熔点,可初步判断该化合物的纯度。也可以将两种物质混合后,看其熔点是否下降,以判断两种熔点相近的物质是否同一物质。 三、实验用品 提勒管(Thiele tube)温度计(150℃,精度0.1℃) 毛细管(内径1mm,长约8 cm,一端熔封) 开口软木塞玻璃管(长40~50cm,直径8~12mm) 浴液(液体石蜡或浓硫酸)苯甲酸样品和尿素样品 四、实验操作 (一)样品的填装 分别取少量经过干燥并研细的苯甲酸样品或尿素样品 (0.1~0.2克)堆在洁净干燥的表面皿上,将毛细管开口端向下插入样品堆中,有少量样品被挤入毛细管的开口端。再取硬质玻璃管直立于实验台面上,将挤入样品的毛细管开口端向上放入玻璃管中,任其自然落下,如此重复数次,使样品紧密地填充在毛细管底部约2~3mm。如样品易升华或受潮,则应将开口端熔封。每种样品装3~ 4根备用。 (二)仪器装置 将提勒管固定在铁架台上,倒入液体石蜡或浓硫酸做为浴液。将装好样品的毛细管用橡皮圈固定于温度计的下端,使毛细管底端位于温度计水银球的中间

(见实验图11-1),然后将此带有毛细管的温度计通过开口软木塞插入提勒管内,使温度计的水银球位于两支管的中间 (注意勿使橡皮圈触及浴液,以免浴液被污染变黑)。 图11-1 熔点测定装置 (三)熔点的测定 1.粗测上述准备工作完成后,在充足的光线下进行操作,用小火徐徐加热提勒管支管底部(见实验图12-1),控制加热速度在每分钟升温2~3℃,观察并记录样品开始熔化的温度,即为粗测熔点,作为精测的参考。 2.精测待浴液温度下降至100℃左右时,将温度计取出,换上第二根毛细管,用小火加热(操作如前)。当温度升高至离粗测熔点约10~15℃时,须改用极小火加热,使温度上升约每分钟1~2℃。仔细观察毛细管中样品变化的情况。样品在受热的过程中,将依次出现“发毛”、“收缩”、“软化”、“出汗”(出现液滴)、“崩溃”等现象。“发毛”、“收缩”、“软化”以及形成软质柱状物而无液化现象时,都不是初熔,如果这种现象持续时间长,说明样品纯度较差,含杂质多。当出现“出汗”(即出现液滴)现象时才是初熔,记录此时的温度。当固体全部消失,样品变成清亮液体时,即为全熔温度。由初熔至全熔时的温度范围即为样品的熔点。 3.用同样的方法测定另外2个毛细管中样品的熔点,取平均值。

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

基因工程大实验报告

基因工程综合实验报告 A型产气荚膜梭菌α毒素基因克隆及表达 班级生物工程081班 姓名盖雪 学号08771029 指导教师高凤山 实验时间2011.10.10-10.14 成绩

一、实验原理 二、主要试剂 DNA Ligation Kit Ver.2.0; Eco RI、Bam HI限制性内切酶;含15%甘油的 0.1mol/L CaCl2,20-30mL。无菌;0.1mol/L CaCl2 , 20-30mL ;50%甘油(无菌,保存菌种用,50mL)4×25mL LB液体培养基(现配现用),卡那霉素(Kan)100mg/mL配2mL(过滤),X-gal 二甲基甲酰胺配成20mg/mL 配2mL; IPTG 24mg/mL, 配2mL(需过滤);蛋白Marker; 0.5M EDTA,pH8.0; 溴化乙锭溶液(EB) (贮存浓度:10mg/mL,使用浓度0.5μg/mL)

三、仪器设备 紫外成像系统,高速冷冻离心机,恒温震荡培养箱,高压灭菌锅,冰箱,水浴锅,微波炉,电炉子,试管架,tube 架,试管,瓶塞,锥形瓶,胶板,电泳槽(包括琼脂糖凝胶和SDS-PAGE),电泳仪,培养皿,移液枪,枪头(各种规格),玻璃涂棒,记号笔,标签纸,卫生纸,水漂(水浴用),试纸,称量纸,一次性手套,酒精灯,火柴,药勺,搅拌子,量筒,烧杯,镊子,tip, tube(1.5mL, 2mL) 五、实验步骤 (一)准备工作 LB培养基配制;LB固体培养基配置;接菌(制备感受态用) 1)LB固体配制 配制固体培养基100mL 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4,121℃灭菌20min。 灭菌结束后,待温度降至80℃以下时,方能取出,在超净台上,当培养基凉至50-60℃时,迅速加入Kan 30μL(若氨苄,加100ul),摇匀,倒板(4个)。凝固后放入4℃冰箱。 2)LB液体配制 配制100mL液体LB培养基 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4。 然后分装,每管5mL,每人分装2管,一共12管;另外分装30mL LB与三角瓶中,余下的LB在原三角瓶中与试管等一起高压,121℃,20min。高压后,将剩余三角瓶中的LB分装至1.5mL tube中,每管800μL LB (共10个)。在时间允许的情况下,将高压后的LB试管加入卡那,每管1.5μL。 总结:需要灭菌的东西-液体培养基(试管、30mL三角瓶及剩余液体LB的三角瓶)-固体培养基、离心管(至少30个)、各种规格的枪头。 3)接菌 下午,接种BL21感受态于1管5mL培养基中,37℃震荡培养。 (二)感受态细胞制备、转化、重组菌接种 1)感受态细胞的制备 1.从大肠杆菌DE3平板上挑取一个单菌落接种于5mL LB液体培养基的试管

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T℃(此时应低于室温10℃左右),冰的溶解热由L表示,

颗粒自由沉淀实验报告

建筑与测绘工程学院 《水处理实验设计与技术》 实验报告

实验1 颗粒自由沉淀实验 颗粒自由沉淀实验是研究浓度较低时的单颗粒的沉淀规律。一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。 一、实验目的 加深对自由沉淀特点、基本概念及沉淀规律的理解。 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较低的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯托克斯)公式。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使内径D ≥100mm 以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率η与截留沉速u 0剩余颗粒重量百分率P 的关系如下: ()dP P u u P s ?+-=00 001η ( 1 ) 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1所示。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径组成相同,悬浮物浓度为C 0(mg/L ),此时去除率η=0。 实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为: i i t H u = ( 2 ) 此即为t i 时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样悬浮物浓度为C i ,而: 00 0011η=-=-=-i i i P C C C C C ( 3 ) 此时去除率η0,表示u ≥u i (d ≥d i )的颗粒除去率,而:

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

DNA重组技术实验报告

一、实验名称: 重组DNA技术 二、实验目的: 1.了解掌握DNA重组技术理论基础; 2.掌握质粒载体、外源DNA的准备、酶切、连接技术方法; 3.掌握连接产物的转化方法及操作; 4.掌握阳性重组体的的鉴定和筛选方法; 三、实验原理: 1.重组DNA技术 重组DNA技术是指在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型的技术。它主要包括以下几个步骤: ①目的基因的获取:主要有化学合成、PCR、基因组文库、cDNA文库构建等。cDNA文库是以mRNA为模板,利用反转录酶合成与mRNA互补的DNA,再复制成双链cDNA片段,与适当载体连接后转入受体菌,这些受体菌包含了所有cDNA信息,总称cDNA文库。常用于筛选编码蛋白质的结构基因。基因组DNA文库是利用限制性核酸内切酶将组织或细胞染色体DNA切割后,与适当载体连接后转入受体菌,这些受体菌包含了所有基因组DNA信息,因此称为基因组DNA文库。 ②基因载体的选择与构建:常用载体有质粒、噬菌体、病毒DNA等。分为克隆载体和表达载体。克隆载体:用于目的基因的克隆、扩增、序列分析和体外定点突变等。表达载体:用于在宿主细胞中表达外源目的基因,获得大量表达产物。选择好的载体与目的基因利用限制性内切酶切割成合适片段。

③目的基因与载体的拼接:通过粘性末端连接法(同源互补粘性末端连接、非同源互补粘性末端连接)、平端连接、人工接头连接、同聚物接尾、经部分补平的不匹配末端的连接等将目的基因与载体进行连接。 ④重组DNA分子导入受体细胞:将连接有目的DNA的载体导入宿主细胞,主要有以下几种方法:a、转化:将质粒或其它外源DNA导入宿主细胞(常用大肠杆菌),并使其获得新的表型的过程。b、转染:将外源DNA导入真核细胞的过程。c、感染:以λ噬菌体、柯斯质粒和病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。 ⑤重组体的筛选:可通过遗传标记如抗药性标志选择、营养缺陷型的互补筛选法及分子标记(PCR、分子杂交)等直接筛选或是根据免疫化学法、酶联免疫检测法等进行间接筛选。 ⑥无性繁殖转化子(含重组分子的受体细胞) ⑦目的基因的表达 2、质粒酶切及鉴定原理 限制性内切酶是一种工具酶,其特点是具有能够识别双链DNA分子上的特异核苷酸序列的能力,能在这个特异性核苷酸序列内,切断DNA双链,形成一定长度的DNA序列。根据限制性内切酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ三类,II型限制性内切酶只需要二价镁离子的激活,酶在其识别序列内切割双链DNA,产生的各种DNA片段具有相同的末端结构,而且大多数的II型酶可提供粘性未端,有利于片段再连接,限制性内切酶对环状质粒DNA产生的酶切片段数与切口数一致。因此,鉴定酶切后的片段在电泳凝胶的区带数,就可以推断切口的数目;从片段迁移率可判断酶切片段大小。用已知分子量的线状DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子大小。本实验采用的限制性内切酶是Bam HI 和Hind III。 对于DNA回收,回收的目的是为了纯化提取的质粒,以用于以后的分子杂交、重组质粒的构建、序列分析等。目前常用的回收技术有:柱纯化回收法、电洗脱法、低熔点琼脂糖凝胶法、DEAE滤膜插片法等,其中柱纯化回收法、电

物化实验报告_凝固点降低法测定摩尔质量

凝固点降低法测定摩尔质量 丛乐 2005011007 生51 实验日期:2007年10月13日星期六 提交报告日期:2007年10月27日星期六 助教老师:刘马林 1 引言 1.1实验目的 1. 用凝固点降低法测定萘的摩尔质量 2. 学会用步冷曲线对溶液凝固点进行校正 3. 通过本实验加深对稀溶液依数性的认识 1.2 实验原理 稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为: *×f f f f B T T T K b ?=-= 其中,f T ?为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为: 1000××B f f A m T K M m ?= 即 310B f f A m M K T m =? (*) 式中: f K ——溶剂的凝固点降低常数(单位为1 K kg mol -); M ——溶质的摩尔质量(单位为1 g mol -)。 如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ?,利用上式即可求出溶质的摩尔质量。 常用溶剂的f K 值见下表。 表1 常用溶剂的f K 值 kg mol 1.853 5.12 6.94 于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。相对恒定的温度即为凝固点。 对于溶液来说,除温度外还有溶液浓度的影响。当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。因此,凝固点不是一个恒定的值。如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。要精确测量,应测出步冷曲线,按下一页图1(b )所示方法,外推至f T 校正。

相关文档
最新文档