实验二 带通信道模拟及眼图实验

实验二 带通信道模拟及眼图实验
实验二 带通信道模拟及眼图实验

实验二带通信道模拟及眼图实验

一、实验目的

1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;

2、掌握眼图观测的方法并记录研究。

二、实验器材

1、主控&信号源、9号、13号、17号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

PSK 调制信号

带通

滤波

信道输入

白噪声观测

信道

输出加升余弦滤波的带通信道模拟

白噪声

产生

噪声

幅度

调节

升余弦

滤波

带通信道模拟框图

2、实验原理框图

带通信道是将直接调制的PSK信号和经过升余弦滤波后调制的PSK信号送入带通信道,比较两种状况的眼图。然后,改变带通信道的带宽重复观测。

四、实验步骤

概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.

1、关电,按表格所示进行连线。

源端口目的端口连线说明信号源:PN15 模块9:TH1(基带信号) 调制信号输入

信号源:256KHz 模块9:TH14(载波1) 载波1输入

信号源:256KHz 模块9:TH3(载波2) 载波2输入

信号源:CLK

模块9:TH2(差分编码时

钟)

调制时钟输入

模块9:TH4(调制输出) 模块17:TH1(信道输入)

调制输出经过信道模拟

模块17:TH2(信道输出)

模块13:TH2(载波同步输

入)

载波同步模块信号

输入

模块13:TH1(SIN)

模块9:TH10(相干载波输

入)

用于解调的载波

模块17:TH2(信道输出) 模块9:TH7(解调输入) 送入解调单元

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【信道模拟及眼图观测实验】→【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告

1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

带通信道是将直接调制的PSK信号和经过升余弦滤波后调制的PSK信号送入带通信道,比较两种状况的眼图。然后,改变带通信道的带宽重复观测。

该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,

了解和分析信道输出原因.

实验报告2dpsk

二进制差分相位键控(2DPSK )的调制 1、实验目的 (1)了解2DPSK 系统的电路组成、工作原理和特点; (2)分别从时域、频域视角观测2DPSK 系统中的基带信号、载波及已调信号; (3)熟悉系统中信号功率谱的特点。 2、实验内容 以PN 码作为系统输入信号,码速率Rb =20kbit/s 。 (1)采用键控法实现2DPSK 的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2DPSK 等信号的波形。 (2)获取主要信号的功率谱密度。 3、实验原理 2DPSK 方式是用前后相邻码元的载波相对相位变化来表示数字信息。假设前后相邻码元的载波相位差为,可定义一种数字信息与 之间的关系为 则一组二进制数字信息与其对应的2DPSK 信号的载波相位关系如下表所示 数字信息与 之间的关系也可以定义为 2DPSK 信号调制过程波形如图1所示。 0,01φπ??=? ?表示数字信息“”,表示数字信息“” ()()1 1 0 1 0 0 1 10 2DPSK 0 0 0 0 0 00 0 0 0 ππππππ ππππ二进制数字信息:信号相位:或0,10φπ??=? ?表示数字信息“” ,表示数字信息“” 1 0 0 1 0 1 1 0

2 图12DPSK信号调制过程波形 从上图可以看出,2DPSK信号的实现方法可以采用:首先对二进制数字基带 信号进行差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。2DPSK信号调制器原 理图如图2所示。 开关电路 图2 2DPSK信号调制器原理图 其中码变换即差分编码器如图3所示。在差分编码器中:{an}为二进制绝对码序列,{dn}为差分编码序列。D触发器用于将序列延迟一个码元间隔,在SystemView中此延迟环节一般可不采用D触发器,而是采用操作库中的“延迟图符块”。 图3差分编码器 4、系统组成、图符块参数设置及仿真结果

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

(精选)眼图观察测量实验

实验12 眼图观察测量实验 一、实验目的 1.学会观察眼图及其分析方法,调整传输滤波器特性。 二、实验仪器 1. 眼图观察电路(底板右下侧) 2. 时钟与基带数据发生模块,位号:G 3. 噪声模块,位号E 4. 100M双踪示波器1台 三、实验原理 在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。 我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。为了便于评价实际系统的性能,常用观察眼图进行分析。 眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。 什么是眼图? 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。 在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。 图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证

正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。 为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。 由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量; (4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。实验室理想状态下的眼图如图12-3 所示。 衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2Δ U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图的开启度应为100%。

实验五眼图

实验五眼图 一、实验目的: 1、理解受限信道上的数据传输率; 2、观察眼图,分析不同参数设置对眼图的影响。 二、实验原理 当一个信号通过一个受限的信道时,它的波形将发生变化。如图5-1所示,当数据传输率提高时,波形的失真也增大,甚至使得数据不能传输。 图5-1 受限信道中的波形的前后变化 眼图通常用于实时观察一个数字数据序列,它能够表达出很多有关传输质量的信息,而做这些仅一个常用的示波器和一位时钟序列就可以了。通过观察眼图,可以测量出传输的质量及接收到的数据中发生错误的可能性。其原理图如图5-2所示: 图5-2 眼图产生的原理 一个典型的眼图通常是用来显示传输在一个受限信道上的二进制序列,而这个受限的信道是忽略了噪音的。如图5-3所示: 图5-3眼图

三、实验设备 1、主机TIMS-301F 2、TIMS基本插入模块 (1)TIMS-153序列产生器(Sequence generator) (2)TIMS-148音频振荡器(Audio Oscillator) (3)TIMS-153 可调低通滤波器(Tuneable LPF) 3、计算机 4、PICO虚拟设备 四、实验步骤: 1、将TIMS系统中的音频振荡器(Audio Oscillator)、序列产生器(Sequence generator)、可调低通滤波器(Tuneable LPF)三个模块按图5-4连接。 2、PICO软件的设置:打开PICO软件,设置眼图参数。在“Settings”菜单中选择“Options”选项,如下图所示: 在弹出的窗口菜单中,在“Scope options”里的“Data to display”项选择“Accumulate”。如下图所示:

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

基带信眼图实验m精编b仿真

基带信眼图实验m精编 b仿真 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

数字基带信号的眼图实验——m a t l a b 仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期, 则经过基带传输系统后的输出码元为()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足:

()0,s s T T H πωωω? ≤?=? ?? ,其他 (3-3) 图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此 在得不到严格定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ???? ?? ? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜 的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos() ()14s s s s t T t T h t t t T T παππα= - (3-6)

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信 实验名称:实验5 眼图观测实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验内容 1、观测数字光纤传输系统中的眼图张开和闭合效果。 2、记录眼图波形参数,分析系统传输性能。 三、实验器材 1.主控&信号源模块 2.25号光收发模块 3.示波器 四、实验原理 1、实验原理框图

眼图测试实验系统框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道; 通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 ●被测系统的眼图观测方法 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。 眼图测试方法框图 ●眼图的形成示意图

一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 八种状态示意图 眼图合成示意图如下所示: 眼图合成示意图 一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。 ●眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

实验6.数字基带信号的眼图实验

实验六 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足: ()0,s s T T H πωωω? ≤ ?=? ?? ,其他 (3-3)

图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα= - (3-6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最 高频率利用率。换言之,若输入码元速率' 1/s s R T >,则该基带传输系统输出码元会产生码

实验2 眼图观察测量实验

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期 实验2 眼图观察测量实验 一、实验目的 学会观察眼图及其分析方法,调整传输滤波器特性。 二、实验仪器 1. 眼图观察电路 2.时钟与基带数据发生模块,位号:G 3.PSK调制模块,位号A 4.噪声模块,位号B 5.PSK解调模块,位号C 6.复接/解复接、同步技术模块,位号:I 7.20M双踪示波器1台 三、实验原理 在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。 在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。 图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1 或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。 眼图 图2-1 无失真及有失真时的波形及眼图 (a)无码间串扰时波形;无码间串扰眼图 (b)有码间串扰时波形;有码间串扰眼图

通信工程实验教学中心通信系统原理实验报告 在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。本实验主要是完成PSK 解调输出基带信号的眼图观测实验。 (a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2 实验室理想状态下的眼图 四、各测量点和可调元件作用底板右边“眼图观察电路” W06:接收滤波器特性调整电位器。 P16:眼图观察信号输入点。 P17:接收滤波器输出升余弦波形测试点(眼图观察测量点)。 五、实验步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ PSK调制模块” 、“噪声模块”、“PSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.BPSK信号线连接: 用专用导线将4P01、37P01;37P02、3P01;3P02、38P01;38P02、P16连接(底板右边“眼图观察电路”)。 注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。 4.跳线开关设置: “PSK调制模块”跳线开关37K02的1-2、3-4相连。“时钟与基带数据发生模块”的拨码器4SW02:设置为“00001“,4P01产生32Kb/s的 15位m序列输出。 5.无噪声眼图波形观察: (1)噪声模块调节:调节3W01,将3TP01噪声电平调为0; (2)调节3W02,调整3P02信号幅度为4V。 (3)调整好PSK调制解调电路状态,即37P01与38P02波形一致(可以反相),若不一致,可调整38W01电位器。 (4)调整接收滤波器H r(w) (这里可视为整个信道传输滤波器H(w) )的特性,使之构成一个等效的理想低通滤波器。

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

基带信号眼图实验——matlab仿真

数字基带信号的眼图实验——matlab 仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则容; 2、复习《数字通信原理》第七章7.2节——数字基带信型容; 3、认真阅读本实验容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为 ()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ+∞-∞=? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=?? ,为其他整数 (3-2) 频域应满足:

()0,s s T T H πωωω?≤?=??? ,其他 (3-3) 图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππππ ωωωωω??????+=-+++=≤ ? ? ???????∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤???????-?=≤≤???+>??? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα=- (3-6)

FSK调制及解调实验报告

一、实验目的 1、掌握用键控法产生FSK信号的方法。 2、掌握FSK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 FSK调制及解调实验原理框图 2、实验框图说明 基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。 四、实验步骤 实验项目一 FSK调制 概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。将9号模块的S1拨为0000。调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。

3、此时系统初始状态为:PN序列输出频率32KH。 4、实验操作及波形观测。 (1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。 (2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。 实验项目二 FSK解调 概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK解调输出),验证FSK解调原理。 3、以信号源的CLK为触发,测9号模块LPF-FSK,观测眼图。 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; (1)调制电路工作原理:输入的基带信号由转换开关转接后分成两路,一路控制256KHz 的载频,另一路经倒相去控制?168KHz的载频。当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=256KHz,当基带信号为"0"时,模拟开关1关闭,模拟开关2开通。此时输出f2=168KHz,于是可在输出端得到已调的FSK信号。?电路中的两路载频(f1,f2)由内时钟信号发生器产生,经过开关送入。两路载频分别经射随、选频滤波、射随、再送至模拟开关。? (2)解调电路的工作原理:已调信号经过过零检测识别出信号中载波频率是否发生变化。经限幅、微分、整流后形成与频率变化相对应的尖脉冲序列,再经过脉冲展宽把这些尖脉冲变换成较宽的矩形脉冲以增大其直流分量,然后经过低通滤波器取出直流分量完成频率——幅度变换。? 2、分析FSK调制解调原理。 频移键控是利用载波的频率变化来传递数字信息。在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。故2FSK可以看成是两个不同载频的2ASK信号的叠加。解调原理是将2FSK信号分解为上下两路2ASK信号分别进行调解然后进行判决得到恢 复出的原始信号。???

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

实验四 眼图

实验四 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MA TLAB 语言编程。 二、实验器材 计算机,MATLAB 软件 三、实验原理 1、基带传输特性 基带系统的分析模型如图1所示,要获得良好的基带传输系统,就应该 图1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=?? , 为其他整数 (2) 频域应满足: ()0,s s T T H πωωω?≤?=? ?? ,其他 (3)

图2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤ ?? ?+>? ?? (5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos() ()14s s s s t T t T h t t t T T παππα= - (6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。换言之,若输入码元速率' 1/s s R T >,则该基带传输系统输出码元会产生

眼图观测实验

实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。实验目的 1、观测眼图。 2、测量沿途的判决电平、噪声容限。 实验模块 1、通信原理0 号模块一块 2、通信原理11 号模块一块 3、示波器 一台实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。.

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 )在抽样时刻,阴影区的垂直宽度表示最大信号失真量。4. 5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决; 6)横轴对应判决门限电平。实验步骤 I、观测眼图:1、按如下方式连线:

通信原理实验报告眼图

部分响应系统 一、实验目的 1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。 二、实验原理 1.部分响应系统 为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。理想低通传输特性可以有最高的频带利用率 2=s η,但拖尾的波动比较大,衰减也比较慢。若能改善这种情况,并保留系统 的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。这是有实际意义的,特别是在高速大容量传输系统中。部分响应传输系统就具有这样的特点。 部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。由于这种组合并不影响系统的传输带宽,因此频带利用率高。 第一类部分响应系统是在相邻的两个码元间引入码间干扰。由于理想低通系统的传递函数为 其冲激响应为s s T t T t t h //sin )(ππ= ,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的 冲激响应,那么它的系统带宽肯定限制在??? ? ? ?-s s T T 21,21,也就是说,系统的频带利用率为2bit/Hz 。 接着来看系统的冲激响应函数)(t g : s s s s s s s T t T t T t T T t c T t c T t h t h t g /11 sin )(sin sin )()()(-= ?? ????-+=-+=ππππ s T f 21 ||< 其他 ???=0 )(s T f H

实验2眼图观察测量实验

班级通信1403 学号 2 姓名裴振启指导教师邵军花日期 实验2 眼图观察测量实验 一、实验目的 学会观察眼图及其分析方法,调整传输滤波器特性。 二、实验仪器 1. 眼图观察电路 2.时钟与基带数据发生模块,位号:G 3.PSK调制模块,位号A 4.噪声模块,位号B 5.PSK解调模块,位号C 6.复接/解复接、同步技术模块,位号:I 7.20M双踪示波器1台 三、实验原理 在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。 在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。 图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1 或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。 眼图 图2-1 无失真及有失真时的波形及眼图 (a)无码间串扰时波形;无码间串扰眼图 (b)有码间串扰时波形;有码间串扰眼图

通信工程实验教学中心通信系统原理实验报告 在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。本实验主要是完成PSK 解调输出基带信号的眼图观测实验。 (a) 二进制系统 (b) 随机数据 输入后的二进制系统图2-2 实验室理想状态下的眼图 四、各测量点和可调元件作用底板右边“眼图观察电路” W06:接收滤波器特性调整电位器。 P16:眼图观察信号输入点。 P17:接收滤波器输出升余弦波形测试点(眼图观察测量点)。 五、实验步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ PSK调制模块” 、“噪声模块”、“PSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.BPSK信号线连接: 用专用导线将4P01、37P01;37P02、3P01;3P02、38P01;38P02、P16连接(底板右 边“眼图观察电路”)。 注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关 闭电源,查找异常原因。 4.跳线开关设置: “PSK调制模块”跳线开关37K02的1-2、3-4相连。“时钟与基带数据发生模块”的拨码器4SW02:设置为“00001“,4P01产生32Kb/s的 15位m序列输出。 5.无噪声眼图波形观察: (1)噪声模块调节:调节3W01,将3TP01噪声电平调为0; (2)调节3W02,调整3P02信号幅度为4V。 (3)调整好PSK调制解调电路状态,即37P01与38P02波形一致(可以反相),若不一致,可调整38W01电位器。 (4)调整接收滤波器H r(w) (这里可视为整个信道传输滤波器H(w) )的特性,使之构成一个等效的理想低通滤波器。

相关文档
最新文档