CMB power spectrum estimation and map reconstruction with the Expectation - Maximization al

CMB power spectrum estimation and map reconstruction with the Expectation - Maximization al
CMB power spectrum estimation and map reconstruction with the Expectation - Maximization al

a r X i v :a s t r o -p h /0302094v 3 2 J u l 2003

Mon.Not.R.Astron.Soc.000,1–10(0000)Printed 2February 2008

(MN L A T E X style ?le v1.4)

CMB power spectrum estimation and map reconstruction

with the Expectation -Maximization algorithm

E.Mart′?nez-Gonz′a lez 1,J.M Diego 2,P.Vielva

1,3

and J.Silk 2.

1Instituto

de F′?sica de Cantabria,Consejo Superior de Investigaciones Cient′??cas-Universidad de Cantabria,Avda.Los Castros s/n,39005Santander,Spain

2Astrophysics Dept.NAPL,Keble Road,Oxford OX13RH,UK 3Departamento de F′?sica Moderna.Universidad de Cantabria,Avda.Los Castros s/n,39005Santander,Spain

2February 2008

ABSTRACT

We apply the iterative Expectation-Maximization algorithm (EM)to estimate the

power spectrum of the CMB from multifrequency microwave maps.In addition,we are also able to provide a reconstruction of the CMB map.By assuming that the combined emission of the foregrounds plus the instrumental noise is Gaussian distributed in Fourier space,we have simpli?ed the EM procedure ?nding an analytical expression for the maximization step.By using the simpli?ed expression the CPU time can be greatly reduced.We test the stability of our power spectrum estimator with realistic simulations of Planck data,including point sources and allowing for spatial variation of the frequency dependence of the Galactic emissions.Without prior information about any of the components,our new estimator can recover the CMB power spectrum up to scales l ≈1500with less than 10%error.This result is signi?cantly improved if the brightest point sources are removed before applying our estimator.In this way,the CMB power spectrum can be recovered up to l ≈1700with 10%error and up to l ≈2100with 50%error.This result is very close to the one that would be obtained in the ideal case of only CMB plus white noise,for which all our assumptions are satis?ed.Moreover,the EM algorithm also provides an straightforward mechanism to reconstruct the CMB map.The recovered cosmological signal shows a high degree of correlation (r =0.98)with the input map and low residuals.Key words:cosmic microwave background,methods:statistical

1INTRODUCTION

Undergoing CMB experiments like BOOMERanG (Netter-?eld et al.2002,Rulh et al.2002),MAXIMA (Hanany et al.2000),DASI (Halverson et al.2002),VSA (Grainge et al.2002),CBI (Mason et al.2002),ACBAR (Kuo et al.2002),Archeops (Benoit et al.2002)and MAP as well as future ones (Planck)will reveal with unprecedented quality the primordial matter ?uctuations responsible for the CMB.Very recently the ?rst detection of the E-mode polarization in the CMB has been claimed (DASI,Kovac et al.2002),which independently supports the structure formation mod-els via gravitational instability.Thanks to these experimen-tal results the fundamental cosmological parameters can be determined with good accuracy.

These experiments will measure also the emission com-ing from our own Galaxy at mm frequencies as well as the emission due to other galaxies in the same wavebands.On the other hand,galaxy clusters will distort the CMB radi-ation with an intensity which is proportional to the total

mass of the cluster times its temperature.All these compo-nents will generate a confusion limit which,together with the intrinsic detector noise,will make very di?cult to dis-entangle which percentage of the observed emission is due to the CMB or to the other components.Several component separation methods have been proposed so far in the litera-ture:multifrequency Wiener ?lter (MWF,Tegmark and Efs-tathiou 1996,Bouchet and Gispert 1999),maximum entropy methods (MEM,Hobson et al.1998,Vielva et al.2001b;ex-tended to the sphere in Stolyarov et al.2002,Barreiro et al.2003),independent component analysis (ICA,Baccigalupi et al.2000,Maino et al.2002),blind Bayes (Snoussi et al.2001).

Although there are some similarities and di?erences between the previous methods,all of them share a common aspect:they try to separate all the components simultaneously.For this purpose,these methods usually need to assume some a priori information about the components.Thus,if the di?er-

c

0000RAS

2 E.Mart′?nez-Gonz′a lez et al.

ent components have di?erent frequency dependencies,then, by examining the data at di?erent frequencies it is possible to distinguish(at a certain level)the di?erent components. Or,if we know the correlation function of the components (or their power spectrum)and each one is signi?cantly dif-ferent from each other,then,it is also possible to distinguish (again at a certain level)the components since their modes will behave di?erently in the Fourier space.If one knows both,the frequency dependence and the power spectrum, then the component separation improves dramatically since now it is possible to combine the information in the di?erent channels by correlating the Fourier modes with a correlation given essentially by the frequency dependence of each com-ponent and its power spectrum.This approach has proved to be very useful if the frequency dependence and power spectrum of the components are known.

It is interesting to explore what kind of information can be obtained when no prior information is assumed about none of the components.In some cases we simply do not know the priors(as it happens in the case of the free-free emission or the spinning dust).On the other hand,if we assume some-thing about the components which is not accurate but an approach,then we are intrinsically introducing some bias in our?nal result.If,after the component separation,we end up with a biased estimate on,at least,one of the compo-nents,this will have an e?ect on some(if not all)of the other components which must absorb that bias in order to obey the constraint that the sum of all the components must be equal to the original data.This very last point is one of the risks of the simultaneous component separation meth-ods.

Another assumption usually made is that the components are,one from each other,statistically independent.This as-sumption is not true for several of the components(like the Galactic ones).This assumption can be a source of system-atic errors.Other typical assumption is that the probabil-ity distribution function(pdf)of the individual components is a Gaussian.This is false for components like the point sources,the Sunyaev-Zeldovich(SZ)and the Galactic emis-sions where the true pdf has a bell-shape with a long tail towards positive values(negative for the SZ for frequencies below217GHz).This assumtion will be somewhat relaxed in this work by assuming that the combined foreground emission plus instrumental noise is Gaussian distributed in Fourier space,instead of assuming it for each individual com-ponent.We will study the e?ect of this assumption at dif-ferent scales.At those scales where the assumption is less justi?ed solutions will be proposed to reduce the e?ect.

In a recent paper(Delabrouille et al.2002)the authors have used the Expectation-Maximization(EM)algorithm to minimize a spectral matching criterion.They consider the problem of component separation with four components, CMB,SZ e?ect,dust and instrumental noise.In that work, the authors have shown that this is an interesting alternative to estimate jointly the frequency dependence and spatial power spectra of the components.This method allows to introduce certain degrees of freedom or free parameters in the problem.These free parameters can be determined after iterating an expectation-maximization process.

In the work presented here,we will explore this direc-tion but in a much more simpli?ed manner focusing only on the estimation of the power spectrum and the map re-construction of the CMB but including more components than in the previous work and doing no assumptions at all about the power spectrum or frequency dependence of any of the components.In addition to the di?use foregrounds, we also will study the e?ect of point sources which were not considered in the previous work.

The approach presented in this paper can be extended to determine jointly the CMB and the SZ components.The physics of these two emissions is well known,in particu-lar their frequency dependence.Therefore,no prior assump-tions about their frequency behaviour is required.In addi-tion,these two components–together with the point sources one–are the most important signals from the cosmological point of view.Several works have already been presented to determine the SZ(Herranz et al.2001b,c;Diego et al. 2002)and the point sources emissions(Tegmark&Oliveira-Costa1998;Cay′o n et al.2000;Sanz et al.2001;Vielva et al. 2001,2003;Chiang et al.2002;Hobson&McLachlan2002) from microwave images.Our aim for the future will be to de-velop a method based on the EM algorithm combined with a point source detection technique,to recover simultaneously the three cosmological emissions.

The paper is organized as follows.In Section2,we sum-marize the key ideas behind the EM algorithm.In Section3 we apply the EM algorithm to the problem of determining an estimator of the CMB power spectrum.The main results are shown in Section4.These results are compared with the ones which would be obtained in the ideal case when only CMB and white noise are considered.Finally,the conclu-sions are given in Section5.

2THE EXPECTATION-MAXIMIZATION ALGORITHM

In this section we will present an alternative method which will be useful to get a robust estimate of the power spec-trum of the CMB.We will also present a single iterative ex-pression for the new estimator of the CMB power spectrum. This estimator can be used directly with multifrequency mi-crowave data to give a fast,accurate and robust estimate of the power spectrum of the CMB.

EM is an algorithm useful when there is a many-to-one map-ping.That is,several variables are combined together to give one observed quantity.This is exactly our problem where the complete data are just the di?erent components(Galactics, extragalactics,CMB and noise)and the observed quantity is just the projection of all of them in one of the channels(data on the receiver).EM allows to introduce degrees of freedom (or free parameters)in the pdf of the complete data and then look for the best parameters by maximising the ex-pected value of that pdf given the observations.

The advantage of this algorithm in our problem is obvious. Since part of the information about the components is un-known,we can parametrise this unknown information as free parameters in the pdf of the complete data.Then,the max-imization process will give us the best set of free parameters given the data.

The EM algorithm(Dempster et al.1977)provides an iterative procedure for computing maximum likelihood esti-mates(MLEs)in situations where the observed data vector, d,is viewed as being incomplete.d is an observable func-

c 0000RAS,MNRAS000,1–10

CMB power spectrum with EM3

tion of the so-called complete data x(see e.g.McLachlan and Krishnan1997).Let’s denote by f i(d|p)the pdf’s of the incomplete data d and by f(x|p)the pdf of x.The vec-tor p=(p1,....,p N)will contain the N unknown parame-ters.The complete-data log likelihood function that could be formed for p if x were fully observable is given by

log L(p)=log f(x|p).(1) Instead of observing x,we observe d,with many-to-one map-ping from x to d(i.e d=d(x)).It follows that

f i(d|p)= X d f(x|p)dx(2)

where X d is the sub-space of x de?ned by d=d(x).

The EM algorithm approaches the problem of solving the incomplete-data likelihood,log L(p)=log f i(d|p),indirectly by proceeding iteratively in terms of the complete-data log likelihood function,logL(p).As it is unobservable,it is re-placed by its conditional expectation given d,using the cur-rent?t for p.More speci?cally,the EM algorithm consists of two steps:Expectation(E-step)and Maximization(M-step).On the j+1iteration,these steps are as follows:

?E-step:Calculate the quantity Q(p|p j),de?ned as Q(p|p j)=E{log L(p)|d,p j}.

?M-step:Choose p j+1to be the value that maximises Q(p|p j);that is,Q(p j+1|p j)=max[Q(p|p j)].

That is,in the?rst step we compute the expected value of the log of the complete pdf given the data and an estimate of the parameters(p j).In the second step we look for the values of the parameters which maximise the previous ex-pected value.At this step,we have to maximise with respect to each one of the parameters(p j(i)).This can be done by just setting the?rst derivative of Q(p;p j)with respect to that parameter to0and solving for p j(i).

This is an iterative process which can be started with an arbitrary choice for the parameters in the?rst step,p o.The EM algorithm assure us that at every step the likelihood L(p)is increased.The method will converge to the optimal set of parameters,p,in a number of steps which will depend on the nature of the problem and on the initial election for the?rst iteration,p o.

In this paper,we will consider a simple case where we allow the covariance in Fourier space of the CMB signal(or power spectrum)to be a free parameter.

We will apply the EM algorithm in order to determine that free parameter(the power spectrum of the signal).This case can be extended to include more free parameters in the anal-ysis as it is shown in Delabrouille et al.(2002).

3EM APPLIED TO CMB EXPERIMENTS

If we know the frequency dependence of one of the compo-nents,then we can express the signal at a given frequency as:

S(n,ν)=A(n,ν)? f(ν)s(n) (3)where s(n)is the spatial pattern of the signal we want to estimate,f(ν)is the frequency dependence of the signal(in-cluding the band-with),and A(n,ν)?accounts for the con-volution with the antenna beam of the experiment and its frequency response.

The data at di?erent frequencies,d(ν),can be expressed as a sum of the signal plus some other contributions.

d(n,ν)=S(n,ν)+ξ(n,ν).(4)

The residualξ(n,ν)includes all the other components,i.e. Galactic and extragalactic components convolved with the corresponding beam plus the corresponding instrumental noise.Due to the antenna and frequency convolution in A(n,ν)?,it is easier to work in Fourier space where this con-volution is just a product of the Fourier modes which are un-correlated provided the?eld is homogeneous and isotropic. Therefore,the previous equation should be rather expressed in Fourier space as:

dν(k)=Aν(k)fνs(k)+ξν(k).(5)

If the experiment has m di?erent channels,then we have an observation for each channel.That is,we have the vector of observations d=(d1,d2,...,d m)for each Fourier mode k. And we can write:

d=R s+ξ(6)

where,R is the response vector containing m elements.Each element of R is just the product of the antenna and the frequency response of the instrument times the frequency dependence of the signal,

Rν=Aνfν.(7)

In the case in which the signal is the CMB then fν=1?ν. From eqn.6we can express the residual as

ξ=d?R s.(8)

The basic starting point when applying EM is to de?ne the pdf of the complete data.In our case the complete data are all the components plus the multifrequency observations d.We will focus on the problem in which the complete data can be divided in just two elements.The two elements are the CMB signal we want to estimate s and the observed data d(or equivatently the residualξ,noise plus rest of compo-nents;see below).By doing this,the nature of our problem reduces drastically since we only have to make assumptions about two elements.

Furthermore,the residual and the signal can be considered as independent.In terms of the probability,the pdf of the complete data is:

f(x|p)=P(s,d|p)=P(s,ξ|p)=P(s|p A)P(ξ|p B)(9)

where p= p A p B with p A and p B unknown parameter sets for the pdf’s of s andξ.The second equality follows from the transformation(s,d)→(s,ξ)whose Jacobian is equal to one(see equation5).It is important to note that, in oppossition to other methods,our assumption about in-dependence of the elements(s andξ)is well justi?ed.No relation is expected between the CMB and the other fore-grounds(except maybe the SZ e?ect which could be weakly related to the CMB through the ISW e?ect).

c 0000RAS,MNRAS000,1–10

4 E.Mart′?nez-Gonz′a lez et al.

Once we have established that the two elements are in-dependent,we need a clue about the speci?c form of the individual probabilities,P(s|p A)and P(ξ|p B).If the CMB is close to a Gaussian variable(and we know it is),then the pdf of the CMB in Fourier space can be approached by:

P(s|p A)≡P(s)∝P(k)?1exp(?

s2

P(d)

(13)

where P(d)can be obtained just by marginalising P(s,d) over s:

P(d)= P(s,d)ds(14) and P(s,d)can be obtained through the chain rule:

P(s,d)=P(s,ξ)J s,ξ

P(k)

)exp(?ξC?1ξ?)(17)

where the term,P(k),accounts for our free parameter in P(s|p A)(see equation10)and the second term was taken from equation(11).We remark that the covariance matrix C also depends on the free parameter P(k),as it will be discussed below.

Now it is easy to compute the terms,P(d),P(s|d),and ?nally Q(P(k)|P(k)j):

P(d)∝

exp ?d C?1d?+(d C?1R?)2/F1

F1 2

(19)

where,

F1=R C?1R?+P(k)?1.(20) Finally the expected value of the log of the complete pdf (equation12)is:

Q(P(k)|P(k)j)=?log(P(k))?

1

F1

(22) <|s|2>=

1

F1 .(23) Equation(22)is nothing more than multifrequency Wiener ?lter computed with the CMB power spectrum at iteration j.This is an expected result since Gaussianity for the sig-nal and residuals have been assumed.Similarly,the signal variance at each k<|s|2>is also computed with P(k)j at iteration j.At this point it is important to note that in eq.(22)the dependence on P(k)appears explicitly in the ?rst term and also in the fourth one through the function F1.Moreover,since we do not know the residuals the P(k) dependence is also present in the other terms through the residual covariance matrix,

Cνμ=Pνμ

ξ

(k)=Pνμ

d

(k)?RνRμP(k)(24)

where Pνμ

ξ

(k)and Pνμ

d

(k)are the residual and data cross-power spectra after convolution with the corresponding an-tenna response whereas P(k)is the unconvolved CMB power spectrum to be determined.

In the maximisation step,the value of P(k)j+1that maximises Q(P(k)|P(k)j)should be found.Finding the maximum is not a trivial task given the complicated depen-dence on P(k).In order to facilitate the?nding we consider the residual covariance matrix,Cνμ,constant in the M-step

c 0000RAS,MNRAS000,1–10

CMB power spectrum with EM5 (but changing with P(k)in the E-step).With this simpli-

?cation,we can easily?nd the analitical solution for the

maximum by di?erentiating Q(P(k)|P(k)j)with respect to

P(k)and equating to zero.We?nd the not so surprising result:

P(k)j+1=<|s|2>.(25) The previous equation is the main result of EM.<|s|2> is given by equation(23)computed with the value of P(k) at iteration j.By iterating equation(25),which only de-pends on the data,the response vector and the CMB power spectrum obtained in the previous iteration,we can get an estimate of the power spectrum of the underlying signal. The?nal step after the EM estimation of the signal power spectrum at each k,is to recover the CMB map by applying eqn.22,the multifrequency Wiener?lter derived within the EM framework.

Finally,this method can be easily extended to deter-mine jointly the CMB and the SZ emissions,since they are almost uncorrelated and the frequency dependence of the SZ is also very well known.In addition,the method can be implemented with more realistic(non-Gaussian)pdfs to model the signal distributions as well as the residuals.We will study these extensions of the method in a future work. 4RESULTS

In this section,we present the results that have been ob-tained for the CMB power spectrum determination.Firstly, we brie?y describe the simulated data that have been used in this work,accounting for the most important contribu-tions to the microwave sky.Then,we present our CMB power spectrum estimation.An improvement at small scales is achived by using a very useful tool for subtracting the brightest point sources:the Mexican Hat Wavelet.

Finally,we applied our estimator to an ideal data set, where the Gaussian assumption for the residuals is satis?ed. This exercise is highly interesting,since it shows the robust-ness of our estimator:the results achieved in this idealistic case are only slightly better than the ones obtained in the reslistic situation.

4.1Simulated data

To show the power of our approach we will apply our esti-mator(eqn.25)to realistic simulations.They consider the expected levels of the instrumental white noise and reso-lution characteristics of the10Planck mission channels at 30,44,70,100(Low and High Frequency Instrument,LFI and HFI),143,217,353,545ad857GHz(see Table1). In addition,we use state of the art simulations of the dif-ferent galactic and extragalactic components,together with the pure CMB signal.

Within the?rst ones,we have taken into account the synchrotron,free-free,spinning and thermal dust contribu-tions.The?rst one has been simulated using the all-sky pat-tern provided by Giardino et al.(2002)including both,tem-perature and spectral index templates.The free-free emis-sion is very poorly known.Recent experiments focusing on the H-αdetection,like Southern H-αSky Survey(SHASSA, Reynolds&Ha?ner,2000)and the Wisconsin H-αMapper

857 5.0 1.522211.10

353 5.0 1.547.95

1438.0 1.510.66

100(LFI)10.0 3.014.32

4423.0 6.0 6.79

Table1.Experimental constrains at the10Planck channels.The antenna FWHM is given in column2for the di?erent frequencies (a Gaussian pattern is assumed in the HFI and LFI channels). Characteristic pixel sizes are shown in column3.The fourth col-umn contains information about the instrumental noise level,in ?T/T per pixel.

project(WHAM,Gaustad et al.2001),will produce all-sky surveys that could be used as free-free templates.However, since these data are not available at the present time,we have used the correlation between dust and free-free emis-sions proposed by Bouchet et al.(1996)as spatial template, and a power law,Iν∝ν?0.16,to describe the frequency dependence.We have also included the spinning dust emis-sion–proposed by Draine&Lazarian(1998)as a possible explanation for the anomalous Galactic emission found by CMB experiments like COBE(Kogut1999)or Saskatoon (Oliveira-Costa et al.1997).Very recently,a tentative con-?rmation of that emission has been claimed(Finkbeiner et al.2002).The simulation of that emission has been carried out using the frequency dependence proposed by Draine& Lazarian(1998)?and using the thermal dust component as an spatial template,since both dust emissions are strongly correlated through the neutral hydrogen column density (N H).Finally,thermal dust emission has been also simu-lated,using the best model proposed by Finkbeiner et al. (1999)to?t the FIRAS,IRAS and DIRBE data,consisting of two grey-bodies with mean temperatures of16.2K and 9.4K and emissivities2.70and1.67,respectively.

The simulated extragalactic foregrounds are the ther-mal Sunyaev-Zel’dovich e?ect(SZ)and radio and infrared point sources.The SZ was performed following the Diego et al.(2001)model for a?atΛCDM Universe with?m=0.3 and?Λ=0.7.The point sources correspond to the To?olatti et al.(1998)model for the same Universe,including radio ?at-spectrum and infrared sources.We refer to that paper for details.

Finally,the CMB signal was simulated using the C l’s provided by the CMBF AST code(Seljak&Zaldarriaga, 1996)for the same cosmological model and assuming Gaus-?Data provided by the authors.

c 0000RAS,MNRAS000,1–10

6 E.Mart′?nez-Gonz′a lez et al.

Figure1.Realistic simulations of the data,covering a12.8o×12.8o patch,expected from the10Planck channels.The RMS amplitude (at353GHz and in?T/T thermodinamic temperature units)is4.26×10?5for the CMB,5.16×10?6for the PS emission,3.93×10?6 for the SZ contribution,5.82×10?5for the thermal dust,3.23×10?7for the free-free radiation,1.46×10?6for the synchrotron emission and it is almost negligible in the case of the spinning dust(see text).

c 0000RAS,MNRAS000,1–10

CMB power spectrum with EM

7

x10

?11

Figure 2.Recovered power spectrum by our estimator.The solid line is the true power spectrum and the dotted and dashed lines represent the recovered power spectrum obtained by our estima-tor directly from the data and the one recovered after previous subtraction of the brightest point sources,respectively.P(k)is in ?T/T units.Notice that the multipole l is related to the wave number k through l ≈28k

.

Figure 3.Relative error in %of the recovered power spectrum by our estimator (dash-dotted line).For comparison we have plotted the errors obtained by our estimator in the ideal situation when only CMB and instrumental white noise are present in the data (see text).

sian ?uctuations.We would like to remark that synchrotron,thermal dust and the point source emissions have been sim-ulated using a frequency dependence which varies with the sky position.The simulated maps covering a patch of the sky of 12.8o ×12.8o ,as seen by the 10Planck channels,are shown in ?gure 1.4.2

A simple choice for the correlation matrix

In order to estimate the power spectrum of the CMB through eqn.(25)we still have to iterate a relatively com-plex expression containing a cocient of polynomials of order twice the number of channels and involving many terms.To further simplify the convergence of that equation we

will

Figure 4.Relative error in %of the recovered power spectrum by our estimator after the brightest point sources have been removed in all the channels (dash-dotted line).For comparison in the solid line we have plotted the errors obtained by our estimator in the ideal situation when only CMB and instrumental white noise are present in the data (see text).

only consider the diagonal terms of the covariance matrix,

making zero the other non-diagonal elements.This assump-tion does not take into account the correlations among the residuals at di?erent channels due to the Galactic compo-nents and compact sources.The former are re?ected at the low k -modes and their e?ect can be reduced by performing a simple Galactic subtraction as the one proposed by Diego et al.(2002).The later have their impact at intermediate (e.g.radio sources observed in the lowest resolution chan-nels)and large k -modes (e.g.infrared sources).However,as it will be shown below,once the brightest point sources are subtracted from the maps,the contribution of the remanent point sources is low enough to make their e?ect signi?cantly smaller.

In ?gure 2we present our results for the 10Planck chan-nels using the data obtained from the combination of the simulated components as described above (?gure 1).The comparison of the recovered spectrum with the true one shows a good agreement until k values larger than the one corresponding to the best antenna channels and the results start to be dominated by the deconvolved noise.

In order to better appreciate the di?erences,we show in ?gure 3the relative error,(P r (k )?P t (k ))/P t (k )%,where P r (k )is the estimator of equation 25.

In both large and relatively small scale range (small and relatively large k )our estimator ?nds a reasonably good estimation of the true power spectrum.The error is small (less than 10%)up to scales k ≈55(which corresponds to l ≈1500).The e?ect of only considering the diagonal terms of the residual covariance matrix is small (see also the comparison with the ideal case below).This fact proves the applicability of our assumption for the microwave data since our method is not very sensitive to the cross-correlations of the di?erent channels.

At very small scales (k >45or l >1300)the signal is below the noise level and the error bars grow quickly.Our estimator shows a clear bias toward higher values (we recover more power than the true one).This implies that

c

0000RAS,MNRAS 000,1–10

8 E.Mart′?nez-Gonz′a lez et al.

some of our assumptions are wrong at these small scales.The Gaussianity assumption is a good approximation in Fourier space at large k-modes(because of the dilution in many modes of the clear non-Gaussian features appearing in the real space).However,the uncorrelation assumption among frequency channels is a source of bias at these scales,since the bright point sources are strongly correlated.We have checked this point by removing the brightest point sources (but leaving the galaxy clusters and the weak point sources in the residual).We have used the Mexican Hat Wavelet (MHW)technique proposed by Vielva et al.(2001a)for re-moving point sources above the?uxes determined by the so-called50%error criterion used in that paper.These?uxes correspond to those detection limits above which the max-imum percentage of spurious detection is5%,being a de-tection spurious if the error in the amplitude estimation is larger than50%.After the subtraction,we applied our esti-mator to these new point-source-free maps.The?nal result is shown in?gure4.The e?ect of removing the brightest point sources is evident now.This result clearly shows how the bias can be corrected by removing the compact sources. The relative error does not change signi?cantly after remov-ing the point sources but the estimator is able to go up to scales k=60(l≈1700)with relative error<10%.The error is smaller than50%below k=75(l≈2100).

4.3Comparing with an ideal situation

It is interesting to answer whether or not the above results are close to the most optimistic case where all our assump-tions are right(Gaussianity and C diagonal).We will check this point in the simple(but unrealistic)case where our data consist only of CMB signal plus the corresponding instru-mental noise for each channel.In this simple case,our as-sumption of Gaussianity is right since both CMB and noise are Gaussian.The correlation matrix of the residual,C,will be exactly diagonal with the elements being the power spec-trum of the data minus the CMB power spectrum convolved with the antenna corresponding to each channel.

In?gures3and4we show the performance of the EM estimator in this ideal case(CMB plus noise)after combin-ing the10Planck channels.The result is surprisingly very similar to the one obtained in the realistic case where the brightest point sources have been subtracted(?gure4).This test shows how the EM estimator is extremely robust and can give results very close to the most optimal one.

4.4Map reconstruction

Using the expression given in equation22and the estimated power spectrum P r(k),we are able to recover the CMB map. As it was pointed out in Section3,due to the Gaussian-ity assumptions,equation22is nothing more than multifre-quency Wiener?lter(MWF).Hence,our map reconstruc-tion is a MWF focused on the CMB recovery.Let us re-mark that this approach di?ers from the traditional MWF already used in the microwave sky recovery(e.g.,Tegmark &Efstathiou1996,Bouchet&Gispert1999and Hobson et al1998).These works were focused on the all components separation,whereas our approach is devoted to reconstruct just the CMB signal.Even more,whereas the traditional approaches require previous knowledge of the power spec-tra(not only the CMB one,but also the power spectra of the foregrounds),the CMB power spectrum is a result of the blind EM method.This and the non requirement of any prior knowledge about the frequency dependence of the com-ponents,are the strongest points of the blind methods.In ?gure5we present the CMB map reconstruction(left)to-gether with the input one(right).Both maps have been con-volved with the best Planck resolution(FWHM=5’).The correlation between the input and recovered CMB maps is very good r=0.98(?gure6),whereas the slope of the best straightline?t is0.97.The residual CMB is dominated by the Galactic dust emission,since it is the most important foreground at low k-modes.Hence,by performing a simple dust subtraction as the one proposed by Diego et al.(2002)–which basically consists in using the857GHz channels as a dust template to be subtracted from the others channels–a signi?cant improvement in the CMB map reconstruction is achieved,being the RMS of the residual map lower than 15%.

5CONCLUSION

We have presented an e?cient estimator(eqn.25)of the CMB power spectrum.Our estimator is based on the EM algorithm and does not make use of any prior information whatsoever about any of the components.This renders sat-isfactory results,since we are able to recover the power spec-trum up to l≈1500with less than10%error.This limit can be improved if we remove the brightest compact sources,for instance applying the MHW technique poposed by Vielva et al.(2001a).After point source removal the estimator can recover the power spectrum up to l≈1700with less than 10%error and up to l≈2100with less than50%error.

Our results are very close to the optimal case when all our assumptions are satis?ed(only CMB and instrumen-tal noise are included in the simulations),as can be seen in?gure4.There are several CMB power spectrum estima-tions in the literature,given for di?erent component separa-tion techniques,like Bayesian methods(MEM:Hobson et al. 1998and Stolyarov et al.2002;and MWF:Tegmark&Efs-tathiou1996and Bouchet&Gispert1999)and blind source separation algorithms(ICA and FastICA:Baccigalupi et al.2000and Maino et al.2002;and Multi-Detector Multi-Component analysis:Delabrouille et al.2002).This work provides a CMB power spectrum that is comparable to or even better than the previous ones,being more robust than those,since previous knowledge about the underlying com-ponents is not requiered(contrary to the Bayesian meth-ods)and simulations used in previous works are signi?cantly more idealised than the ones used in this work(e.g.,lack of spatial variation of the frequency dependence for sev-eral components;absence of some of the components,like point sources or some Galactic foregrounds).On the other hand,our simulations account for the previous limitations including all the major microwave emissions and allowing for spatial variation of the frequency dependence.Finally,our method is able to reconstruct the CMB map using the esti-mated power spectrum and the MWF given in equation22. Let us remark that the MWF is obtained when the Gaus-sianity hypothesis is assumed,whereas the EM algorithm

c 0000RAS,MNRAS000,1–10

CMB power spectrum with EM

9

Figure 5.Left:CMB map reconstruction by our method (equation 22)using the recovered power spectrum obtained after previous subtraction of the brightest point sources.Right:Input CMB map.Both maps have been convolved with a Gaussian beam of FWHM =5

Figure 6.Correlation between the input and recovered CMB maps.The best strightline ?t is also plotted.

provides a more general procedure for component separa-tion.That hypothesis will be explored in a future work by including more realistic distributions for the di?erent com-ponents.In addition,we are working on a jointly deter-mination of the cosmological signals (CMB,SZ and point sources)using the EM algorithm and a point source de-tection tool.Finally,an extension of this algorithm to the sphere is straightforward and will be studied soon.

ACKNOWLEDGEMENTS

We thank J.Delabrouille for a critical reading of a pre-vious version of the manuscript which resulted in a sub-stantial improvement.We thank L.To?olatti for provid-ing us with the point source simulation,and B.T.Draine and https://www.360docs.net/doc/1f11298835.html,zarian for providing us with the emissivity pre-dicted by their spinning dust model.We appreciate in-teresting discussions with J.L.Sanz,R.B.Barreiro,D.Herranz and V.Stolyarov.We thank the RTN of the EU project HPRN-CT-2000-00124for partial ?nantial sup-port.EMG and PV acknowledge partial ?nancial support from the Spanish MCYT projects ESP2001-4542-PE and ESP2002-04141-C03-01.This research has been supported by a Marie Curie Fellowship of the European Community programme Improving the Human Research Potential and Socio-Economic knowledge under contract number HPMF-CT-2000-00967.PV acknowledges support from a fellowship of Universidad de Cantabria.

REFERENCES

Baccigalupi,C.,Bedini,L.,Burigana,C.,De Zotti,G.,Farusi,

A.,Maino,D.,Maris,M.,Perrota,F.,Salerno,E.,To?olatti,L.,Tonazzini,A.,2000,MNRAS,318,769

Barreiro,R.B.,Hobson,M.P.,Banday,A.J.,Lasenby,A.N.,Stol-yarov,V.,Vielva,P.,G′o rski,K.M.,2003,MNRAS,submitted Benoit,A.et al.,2002,A&A in press,astro-ph/0210306

Bouchet,F.R.,Gispert,R.&Puget,J.L.,1996in Drew,E.,

ed.,Proc.AIP Conf.384,The mm/sub-mm foregorunds and future CMB space missions.AIP Press,New York,p.255Bouchet,F.R.&Gispert R.,1999,NewA,4,443Cay′o n,L.,Sanz,J.L.,Barreiro,R.B.,Mart ′?nez-Gonz′a lez,E.,

Vielva,P.,To?olatti,L.,Silk,J.,Diego,J.M.&Arg¨u eso,F.,2000,MNRAS,315,757.

Chiang,L.Y.,Jogensen,H.E.,Naselsky,I.P.,Naselsky,P.D.,

Novikov,I.D.&Christensen,P.R.,2002,MNRAS,335,1054Delabrouille J.,Cardoso J.F.,Patanchon G.2002MNRAS sub-mitted.Preprint astro-ph/0211504.

Dempster,A.P.,Laird,N.M.,Rubin,D.B.,1977,Journal of the

Royal Statistical Society B,39,1.Diego,J.M.,Mart ′?nez-Gonz′a lez,E.,Sanz,J.L.,Cay′o n,L.&

Silk,J.,2001,MNRAS,325,1533.

Draine,B.T.&Lazarian,A.,1998,ApJ,494,L19.

Finkbeiner,D.P.,Davis,M.&Schlegel,D.J.,1999,ApJ,524,

867

c

0000RAS,MNRAS 000,1–10

10 E.Mart′?nez-Gonz′a lez et al.

Finkbeiner,D.P.,Schlegel,D.J.,Frank,C.&Heiles,C.,2002,

ApJ,566,898

Gaustad,J.E.,McCullough,P.R.,Rosing,W.&Van Buren,D.,

2001,PASP,113,1326

Grainge,K.et al.,2002,MNRAS submitted,astro-ph/0212495

Halverson,W.,et al.,2002,ApJ,568,38

Hanany,S.,et al.2000,ApJ,545,L1

Herranz,D.,Gallegos,J.E.,Sanz,J.L.&Mart′?nez-Gonz′a lez,

E.,2002a,MNRAS,334,533

Herranz,D.,Sanz,J.L.,Barreiro,R.B.&Mart′?nez-Gonz′a lez,

E.,2002b,ApJ,580,610

Herranz,D.,Sanz,J.L.,Hobson,M.P.,Barreiro,R.B.,Diego,J.

M.,Mart′?nez-Gonz′a lez,E.&Lasenby,A.N.,2002c,MNRAS,

336,1057

Hobson M.P.,Jones A.W.,Lasenby A.N.,Bouchet F.R.,1998,

MNRAS,300,1.

Hobson,M.P.,&McLachlan, C.,2002,MNRAS,submitted,

astro-ph/0204457

Kovac,J.,Leitch,E.M.,Pryke,C.,Carlstrom,J.E.,Halverson,

N.W.&Holzapfel,W.L.,2002,astro-ph/0209478

Kogut,A.,1999,ASP Conf.Ser.181:Microwave Foregrounds,

p.91.

Kuo,C.L.et al.,2002,astro-ph/0212289

Maino,D.,Farusi,A.,Baccigalupi,C.,Perrotta,F.,Banday,A.

J.,Bendini,L.,Burigana,C.,De Zotti,G.,G′o rski,K.M.&

Salerno,E.,2002,MNRAS,334,1,53

Mason,B.S.et al.,2002,ApJ,submitted,astro-ph/0205384.

McLachlan,G.&Krishnan,T.,1997,The EM Algorithm and Ex-

tensions.Wiley series in Probability and Statistics

Netter?eld,C.B.,et al.,2002,ApJ,571,604

de Oliveira-Costa,A.,Kogut,A.,Devlin,M.J.,Netter?eld,C.

B.,Page,L.A.&Wollack,E.J.,1997,ApJL,482,L17.

Reynolds,R.J.&Ha?ner,L.M.,2000,ASP Conference Series,

IAU Symposium#201,in press

Rulh,J.E.el al.,2002,astro-ph/0212229

Sanz,J.L.,Herranz,D.&Mart′?nez-Gonz′a lez,E.,2001,ApJ,552,

484

Snoussi,H.,Patanchon,G.,Mac′?as-P′e rez,J.F.,Mohammad-

Djafari,A.&Delabrouille,J.,2002,Proceedings of the MAX-

ENT2001international workshop,vol.568,388

Seljak,U.&Zaldarriaga,M.,1996,ApJ,469,437.

Stolyarov,V.,Hobson M.P.,Ashdwon,M.A.J.&Lasenby A.

N.,2002,MNRAS,336,97

Tegmark,M.,Efstathiou,G.,1996,MNRAS,281,1297

Tegmark,M.,de Oliveira-Costa,A.,1998,MNRAS,500,83

To?olatti,L.,Arg¨u eso,F.,De Zoti,G.,Mazzei,P.,Franceschini,

A.,Danese,L.&Burigana,C.,1998,MNRAS,297,117.

Vielva P.,Mart′?nez-Gonz′a lez E.,Cay′o n L.,Diego J.M.,Sanz

J.L.,To?olatti L.,2001a,MNRAS,326,181.

Vielva P.,Barreiro R.B.,Hobson M.P.,Mart′?nez-Gonz′a lez E.,

Lasenby A.N.,Sanz J.L.,To?olatti L.,2001b,MNRAS ac-

cepted.astro-ph/0105387

This paper has been produced using the Royal Astronomical

Society/Blackwell Science L A T E X style?le.

c 0000RAS,MNRAS000,1–10

地质图用色标准岩石地层用色对比表

岩石地层用色对比表 地层色标号R G B C M Y K 地形线22518512504010030第四纪60125525521700150第四纪60225525517800300第四纪60325525515300400第四纪60425525517800300第四纪60525525517800300第四纪60625525515300400第四纪60725525515300400第四纪6082552552550000第四纪6092552552550000第四纪6102552552550000第四纪6112552552550000第四纪61225525512800500第四纪61325525512800500第四纪61425525510200600第四纪61525525510200600第四纪61625525512800500第四纪61725525512800500第四纪61825525510200600第四纪61925525510200600第四纪62025525512800500第四纪6212552557600700第四纪6222552552600900第四纪6232552498903650(*)第四纪6242552493803850(*)第四纪6252552491303950(*)第四纪62625525510200600第四纪62725525510200600第四纪6282552557600700第四纪6292552557600700第四纪6302552555100800第四纪6312552557600700第四纪6322552557600700第四纪6332552555100800第四纪6342552555100800第四纪6352552552600900第四纪6362552557600700第四纪6372552557600700第四纪6382552555100800第四纪6392552555100800

kiko4系最火的哪个口红颜色最好看

kiko4系最火的哪个口红颜色最好看 对于很多中国女孩来说,KIKO虽然听起来很陌生,但是在国外却是非常火爆的一个彩妆品牌,KIKO口红分为许多个系列,那么kiko4系哪个颜色最好看呢?kiko口红4系最火的颜色是什么色号?下面是由整理的kiko口红4系列试色,以供大家参考。 kiko4系哪个颜色最好看kiko黑管口红4系列试色:N407 这支是非常好看的豆沙色,和BRICK-O-LA很像,但这支更加偏粉色调一些,上嘴更少女、温柔,属于提气色的一只。 kiko黑管口红4系列试色:N411 这支单看膏体会以为深唇色肯定是hold不住的,但上嘴之后效果还是挺好看的。虽然比膏体少了几分少女感,但是深西柚色会更加适合暖黄皮哦~ kiko黑管口红4系列试色:N414 膏体是明显的橘调红,但上嘴之后却更像宝石红,显肤白!提气色!作为平价的一只正红色口红,为什么不收呢? kiko黑管口红4系列试色:N423 打开唇膏的时候有点被吓到,以为是荧光玫红色,但上嘴还不错,抿掉一层是哑光玫,暖黄皮也可以用哦~ kiko黑管口红4系列试色:N435 这支和MAC子弹头diva很像,都是深色非小清新。可能这支

不适合日常使用,但绝对!绝对显白,适合秋冬季节~ kiko黑管口红4系列试色:N436 这个颜色是比较猎奇的一个颜色,冷棕色,真吃土色,涂着玩还是挺有意思的。 kiko黑管口红4系列试色:N432 这支的颜色像是秋日挥挥洒洒飘落的红枫叶,秋冬日涂实在是太应景啦!虽然不衬肤色也不显白,但是无所谓啊,颜色好看就好咯~ kiko黑管口红4系列试色:N431 巧克力棕色,应该是该系列里最为惊艳的颜色,顺滑好涂,但缺点就在不日常,即使咬唇也不日常。

数据结构实验指导书(2016.03.11)

《数据结构》实验指导书 郑州轻工业学院 2016.02.20

目录 前言 (3) 实验01 顺序表的基本操作 (7) 实验02 单链表的基本操作 (19) 实验03 栈的基本操作 (32) 实验04 队列的基本操作 (35) 实验05 二叉树的基本操作 (38) 实验06 哈夫曼编码 (40) 实验07 图的两种存储和遍历 (42) 实验08 最小生成树、拓扑排序和最短路径 (46) 实验09 二叉排序树的基本操作 (48) 实验10 哈希表的生成 (50) 实验11 常用的内部排序算法 (52) 附:实验报告模板 .......... 错误!未定义书签。

前言 《数据结构》是计算机相关专业的一门核心基础课程,是编译原理、操作系统、数据库系统及其它系统程序和大型应用程序开发的重要基础,也是很多高校考研专业课之一。它主要介绍线性结构、树型结构、图状结构三种逻辑结构的特点和在计算机内的存储方法,并在此基础上介绍一些典型算法及其时、空效率分析。这门课程的主要任务是研究数据的逻辑关系以及这种逻辑关系在计算机中的表示、存储和运算,培养学生能够设计有效表达和简化算法的数据结构,从而提高其程序设计能力。通过学习,要求学生能够掌握各种数据结构的特点、存储表示和典型算法的设计思想及程序实现,能够根据实际问题选取合适的数据表达和存储方案,设计出简洁、高效、实用的算法,为后续课程的学习及软件开发打下良好的基础。另外本课程的学习过程也是进行复杂程序设计的训练过程,通过算法设计和上机实践的训练,能够培养学生的数据抽象能力和程序设计能力。学习这门课程,习题和实验是两个关键环节。学生理解算法,上机实验是最佳的途径之一。因此,实验环节的好坏是学生能否学好《数据结构》的关键。为了更好地配合学生实验,特编写实验指导书。 一、实验目的 本课程实验主要是为了原理和应用的结合,通过实验一方面使学生更好的理解数据结构的概念

色系大全 色彩大全 色卡大全 色彩名称 色彩图片.

色系大全色彩大全色卡大全色彩名称色彩图片 ████粉红,即浅红色。别称:妃色杨妃色湘妃色妃红色 ████妃色妃红色:古同“绯”,粉红色。杨妃色湘妃色粉红皆同义。 ████品红:比大红浅的红色 ████桃红,桃花的颜色,比粉红略鲜润的颜色。 ████海棠红,淡紫红色、较桃红色深一些,是非常妩媚娇艳的颜色。 ████石榴红:石榴花的颜色,高色度和纯度的红色。 ████樱桃色:鲜红色 ████银红:银朱和粉红色颜料配成的颜色。多用来形容有光泽的各种红色,尤指有光泽浅红。████大红:正红色,三原色中的红,传统的中国红,又称绛色 ████绛紫:紫中略带红的颜色 ████绯红:艳丽的深红 ████胭脂:1,女子装扮时用的胭脂的颜色。2,国画暗红色颜料 ████朱红:朱砂的颜色,比大红活泼,也称铅朱朱色丹色 ████丹:丹砂的鲜艳红色 ████彤:赤色 ████茜色:茜草染的色彩,呈深红色 ████火红:火焰的红色,赤色 ████赫赤:深红,火红。泛指赤色、火红色。 ████嫣红:鲜艳的红色 ████洋红:色橘红 ████炎:引申为红色。 ████赤:本义火的颜色,即红色 ████绾:绛色;浅绛色。 ████枣红:即深红 ████檀:浅红色,浅绛色。 ████殷红:发黑的红色。 ████酡红:像饮酒后脸上泛现的红色,泛指脸红

████酡颜:饮酒脸红的样子。亦泛指脸红色 ████鹅黄:淡黄色 ████鸭黄:小鸭毛的黄色 ████樱草色:淡黄色 ████杏黄:成熟杏子的黄色 ████杏红:成熟杏子偏红色的一种颜色 ████橘黄:柑橘的黄色。 ████橙黄:同上。 ████橘红:柑橘皮所呈现的红色。 ████姜黄:中药名。别名黄姜。为姜科植物姜黄的根茎。又指人脸色不正,呈黄白色 ████缃色:浅黄色。 ████橙色:界于红色和黄色之间的混合色。 ████茶色:一种比栗色稍红的棕橙色至浅棕色 ████驼色:一种比咔叽色稍红而微淡、比肉桂色黄而稍淡和比核桃棕色黄而暗的浅黄棕色 ████昏黄:形容天色、灯光等呈幽暗的黄色 ████栗色:栗壳的颜色。即紫黑色 ████棕色:棕毛的颜色,即褐色。1,在红色和黄色之间的任何一种颜色2,适中的暗淡和适度的浅黑。████棕绿:绿中泛棕色的一种颜色。 ████棕黑:深棕色。 ████棕红:红褐色。 ████棕黄:浅褐色。 ████赭:赤红如赭土的颜料,古人用以饰面 ████赭色:红色、赤红色。 ████琥珀: ████褐色:黄黑色 ████枯黄:干枯焦黄 ████黄栌:一种落叶灌木,花黄绿色,叶子秋天变成红色。木材黄色可做染料。 ████秋色:1,中常橄榄棕色,它比一般橄榄棕色稍暗,且稍稍绿些。2,古以秋为金,其色白,故代指白色。 ████秋香色:浅橄榄色浅黄绿色。 ████嫩绿:像刚长出的嫩叶的浅绿色 ████柳黄:像柳树芽那样的浅黄色 ████柳绿:柳叶的青绿色 ████竹青:竹子的绿色 ████葱黄:黄绿色,嫩黄色

遥感地质图式图例标准

中国地质调查局地质调查技术标准 DD20** 遥感地质图图式图例 (讨论稿) 2016-**-**发布 2016-**-**实施 中国地质调查局发布

目录 前言 (1) 引言 (2) 1 范围 (1) 2 规范性引用文件 (1) 3 一般规定 (1) 3.1 符号的分类 (1) 3.2符号的尺寸 (1) 3.3符号的方向和配置 (1) 3.4符号使用方法与要求 (2) 3.5 图例的编制原则 (2) 3.6 图例的拓展原则 (3) 4 图例 (3) 4.1 主要内容 (3) 4.2 区域地质与矿产资源遥感调查图例 (3) (1)第四系堆积物图例(按照物质成分及成因分类 (4) (2)构造图例 (6) (3)遥感蚀变异常图例 (7) (4)高光谱矿物填图图例 (9) (5)成矿预测区图例 (16) 4.3 基础地质环境与地质灾害遥感监测图例 (17) (1)基础地质环境遥感图例(线状) (17) (2)基础地质环境遥感图例(面状) (20) (3)地质灾害遥感监测图例(点状) (27) (4)地质灾害遥感监测图例(线状) (32) (5)地质灾害遥感监测图例(面状) (34)

4.4 矿山开发现状与矿山地质环境遥感监测图例 (36) (1)矿山资源规划图例 (36) (2)矿产开发现状遥感调查图例 (38) (3)矿山环境地质问题遥感监测图例(矿山占地变化图例) (38) (4)矿山地质环境问题图例(矿山开发占地) (39) (5)矿山地质环境评价图例(环境污染) (39) (6)矿山地质环境问题(固体废弃物部分)点图例 (40) 4.5遥感影像图图例 (41) 5图件整饰 (41) 5.1 图件整饰内容 (41) 5.2 图件分幅方法 (42) 5.3专题整饰要素配置 (42) 附录A(规范性附录) (43) 附录B(资料性附录) (44) 附录C(资料性附录) (55) 附录D(资料性附录) (61) 参考文献 (65)

数据结构课后习题

第一章 3.(1)A(2)C(3)D 5.计算下列程序中x=x+1的语句频度 for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x=x+1; 【解答】x=x+1的语句频度为: T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/6 6.编写算法,求一元多项式p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。算法的输入和输出采用下列方法 (1)通过参数表中的参数显式传递 (2)通过全局变量隐式传递。讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。 【解答】 (1)通过参数表中的参数显式传递 优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。 缺点:形参须与实参对应,且返回值数量有限。 (2)通过全局变量隐式传递 优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗 缺点:函数通用性降低,移植性差 算法如下:通过全局变量隐式传递参数 PolyValue() { int i,n; float x,a[],p; printf(“\nn=”); scanf(“%f”,&n); printf(“\nx=”); scanf(“%f”,&x); for(i=0;i

地质勘查规范

地质规范目录 国家标准 1.岩石分类和命名方案火成岩岩石分类和命名方案(GB/T17412.1-1998) 2.岩石分类和命名方案沉积岩岩石分类和命名方案(GB/T17412.2-1998) 3.岩石分类和命名方案变质岩岩石分类和命名方案(GB/T17412.3-1998) 4.地质图用色标准(1∶500000~1∶1000000)(GB6390-1986) 5.区域地质图图例(1∶50000)(GB958) 6.国土基础信息数据分类与代码 (GB/T13923-2006) 行业标准 1.1∶250000地质图地理地图编绘规范(DZ/T0191-1997) 2.1∶200000地质图地理底图编绘规范及图式(DZ/T0160-1995) 3.1∶50000区域地质图地理底图编绘规则(DZ/T0157-1995) 4.地质图用色标准及用色原则(1∶500000)(DZ/T0179-1997) 5.区域地质及矿区地质图清绘规程(DZ/T0156-1995) 6.区域地质调查总则(1∶50000)(DZ/T0001-1991) 7 1∶250000区域地质调查技术要求(DZ/T0246-2006) 8.1∶1000000海洋区域地质调查规范(DZ/T0247-2006) 9.区域地质调查中遥感技术规定(DZ/T0151-1995) 10.1∶50000海区地貌编图规范(DZ/T0235-2006) 11.1∶50000海区第四纪地质图编图规范(DZ/T0236-2006) 12.浅覆盖区区域地质调查工作细则(1∶50000)(DZ/T0158-1995) 13.煤田地质填图规程(1∶50000、1∶25000、1∶10000、1∶5000)(DZ/T0175-1997)

根式函数值域定稿版

根式函数值域 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

探究含有根式的函数值域问题 含根式的函数的值域或者最值问题在高中数学的学习过程中时常遇到,因其解法灵活,又缺乏统一的规律,给我们造成了很大的困难,导致有些学生遇到根式就害怕。为此,本文系统总结此类函数值域的求解方法,供学生参考学习。 1.平方法 例1:求31++-=x x y 的值域 解:由题意知函数定义域为[]1,3-,两边同时平方得:322422+--+=x x y =4+()4212+- +x 利用图像可得[]8,42∈y ,又知?y 0[]22,2∈∴y 所以函数值域为[]22,2 析:平方法求值域适用于平方之后可以消去根式外面未知量的题型。把解析式转化为()x b a y ?+=2 的形式,先求y 2 的范围,再得出y 的范围即值域。 2.换元法 例2: 求值域1)12--=x x y 2)x x y 2 4-+= 解:(1)首先定义域为[)+∞,1,令()01≥-=t x t ,将原函数转化为 [)+∞∈,0t ,?? ????+∞∈∴,815y 析:当函数解析式由未知量的整数幂与根式构成,并且根式内外的未知量的次幂保持一致。可以考虑用代数换元的方法把原函数转化成二次函数,再进行值域求解。 (2)首先,函数定义域为[]2,2-∈x ,不妨设αsin 2=x ,令?? ????-∈2,2ππα

则原函数转化为:??? ? ?+=+=4sin 22cos 2sin 2παααy ?? ????-∈2,2ππα,∴??????-∈+43,44πππα 析:形如题目中的解析式,考虑用三角换元的方法,在定义域的前提下,巧妙地规定角的取值范围,避免绝对值的出现。 不管是代数换元还是三角换元,它的目的都是为了去根式,故需要根据题目灵活选择新元,并注意新元的范围。 3.数形结合法 例3:1)求()()8222+-+= x x y 的值域。 2)求1362222+-++-= x x y x x 的最小值。 解:(1)()()8222+-+=x x y 82++-=x x 其解析式的几何意义为数轴上的一动点x ,到两定点2与-8的距离之和,结合数轴不难得到[]+∞∈,10y (2)解析式可转化为()()41312 2+++=--x x y , 定义域为R ,进行适当的变形 ()()=+++--413122x x ()()()()2031012 222----+++x x , 由它的形式联想两点间的距离公式,分别表示点到点的距离与点的距离之和。 点()0,x P 到()1,1A 和()2,3B 的距离之和。即PB PA y +=,结合图形可知 13min =+'=PB A P y ,其中()1,1-'A 析:根据解析式特点,值域问题转化成距离问题,结合图形得出最值,进而求出了值域。 例4:1) 求x x y x 2312 +--+=的值域

平面设计常见的配色方案及色标最精典最全的色板

平面设计常见的配色方案及色标 粉红代表浪漫。粉红色是把数量不一的白色加在红色里面,造成一种明亮的红。象红色一样,粉红色会引起人的兴趣与快感,但是比较柔和、宁静的方式进行。 浪漫色彩设计,藉由使用粉红、淡紫和桃红(略带黄色的粉红色),会令人觉得柔和、典雅。和其它明亮的粉彩配合起来,红色会让想起梦幻般的6月天和满满一束夏日炎炎下娇柔的花朵。

流行——基本配色. 今天“流行”的,明天可能就“落伍”了。流行的配色设计看起来挺舒服的,但却有震撼他人目光的效果。 淡黄绿色(chartreuse)就是一个很好的例子,色彩醒目,适用于青春有活力且不寻常的事物上。 从棒球运动鞋到毛衣,这种鲜明的色彩在流行服饰里创造出无数成功的色彩组合。黄绿或淡黄绿色和它完美的补色——苯胺红(magenta)搭配起来,就是一种绝妙的对比色彩组合。

基本配色——平静 ----------------------------------------------------------------------------------- 在任何充满压力的环境里,只要搭配出一些灰蓝或淡蓝的明色色彩组合,就会制造出令人平和、恬静的效果。 中间是淡蓝的配色设计,会给人安心的感觉,因为它看起来诚实、直接。 带着明色的寒色可保持安宁、平和的感觉。补色和这些强调平静的色彩在明暗度方面一定要类似,这点很重要,因为要是色彩太鲜明,会制造出不必要的紧张。

基本配色——强烈 ----------------------------------------------------------------------------------------- 最有力的色彩组合是充满刺激的快感和支配的欲念,但总离不开红色;不管颜色是怎么组合,红色绝对是少不了的。 红色是最终力量来源——强烈、大胆、极端。力量的色彩组合象征人类最激烈的感情:爱、恨、情、仇,表现情感的充分发泄。 在广告和展示的时候,有力色彩组合是用来传达活力、醒目等强烈的讯息,并且总能吸引众人的目光。

【官方】地质矿产国家标准最新目录(2015)

【官方】地质矿产国家标准最新目录(2015) 我们每天的工作都穿行在行业内外,可是关于国家对本行业的标准,有几个人是真正清楚的呢?今天小桔带大家一起来看看。 区域地质调查国家标准目录1、中华人民共和国国家标准岩石分类和命名方案火成岩岩石分类和命名方案 (GB/T17412.1-1998) 2、中华人民共和国国家标准岩石分类和命名方案沉积岩岩石分类和命名方案(GB/T17412.2-1998) 3、中华人民共和国国家标准岩石分类和命名方案变质岩岩石分类和命名方案(GB/T17412.3-1998) 4、中华人民共和国国家标准地质图用色标准(1∶500000~、1∶1000000)(GB6390-1986) 5、中华人民共和国国家标准区域地质图图例(1∶50000)(GB 958) 固体矿产调查勘查国家标准目录1、中华人民共和国国家标准固体矿产地质勘查规范总则(GB/T 13908-2002) 2、中华人民共和国国家标准固体矿产资源/储量分类(GB/T 17766-1999) 3、中华人民共和国国家标准石油天然气资源/储量分类(GB/T 19492-2004)

4、中华人民共和国国家标准大洋金属结核矿产勘查规程(GB/T 17229-1998) 5、中华人民共和国国家标准固体矿产综合勘查规范(GB/T 25283-2010) 6、中华人民共和国国家标准天然矿泉水地质勘探规范(GB/T 13727-1992) 水文地质工程地质环境地质国家标准目录1、中华人民共和国国家标准水文地质术语(GB/T 14157-1993) 2、中华人民共和国国家标准工程地质术语(GB/T 14498-1993) 3、中华人民共和国国家标准岩溶地质术语(GB/T 12329-1990) 4、中华人民共和国国家标准综合水文地质图图例及色标(GB/T 14538-1993) 5、中华人民共和国国家标准综合工程地质图图例及色标(GB/T 12328-1990) 6、中华人民共和国国家标准矿区水文地质工程地质勘探规范(GB/T 12719-1991) 7、中华人民共和国国家标准区域水文地质工程地质环境地质综合勘查规范(1∶50000)(GB/T 14158-1993) 8、中华人民共和国国家标准地下水资源管理模型技术要求(GB/T 14497-1993)

选哪种彩妆套装比较好 推荐5款明星级好用的彩妆套装

选哪种彩妆套装比较好推荐5款明星级好用的彩妆套装 选哪种彩妆套装比较好?(推荐5款明星级好用的彩妆套装) 很多时候,你会不会有这样一个念头,如果能把我喜欢的彩妆单品云集在一个盒子里该多好,这样参加PARTY的我就不用左找又挖,却还是找不到想要的那个腮红、眼线、睫毛膏……今天小编要为你介绍的就是5款人气超高的彩妆套装,她们可是美容达人最追捧的彩妆品喔! NO.1LUNASOL周年套装 日月晶采周年套装 参考价格:680元 套装包含: LUNASOL SKIN MODELING EYES 日月晶采光透美肌眼影 Beige Beige LUNASOL COLORING CHEEKS

日月晶采秋红颊彩 01 Reddish Beige LUNASOL FULL GLAMOUR GLOSS N 日月晶采魅泽唇彩 EX08 Beige Coral LUNASOL NOBLE SHADE LINER 日月晶采秋邃眼线液 EX01 Deep Brown HIGH STYLIZED MASCARA EL 日月晶采魅焕睫毛膏(加长型) 01 Black ORIGINAL POUCH(化妆包) 集萃LUNASOL日月晶采彩妆珍品,最大限度彰显肌肤的天然之美,完美打造“净化妆容”的限定套装。以永恒的经典“光透美肌眼影”的“Beige Beige 米褐色”为中心,绝妙的色彩与质感尽呈,缔造精致高雅妆容。精心愉悦的每一步妆法,自信随之而生,米色系自然妆容的限定套装,带您亲感LUNASOL日月晶采“净化妆容”的精髓。 打造技巧:一个宝盒完成一个妆容。在基础的底妆之后使用颊彩,眼部可使用眼影+眼线液的组合,之后刷上睫毛膏。整个妆容的点睛之笔就在最后的唇彩,轻点之后倍感光采。 推荐理由:完美演绎米色系妆容之魅的经典眼影。巧妙搭配的精选4色渐层色彩,粉质纤细通透,轻柔叠加,立体感油然而生,最大限度焕发肌肤自然之美。不同质感的3种色彩自由组合,畅意打造理想妆容的腮红。滋润微粒子粉末自然融于肌肤,赋予肌肤自然红润与活力般亮泽。 水嫩触感的唇彩带您感受净化世界。斜面式刷头设计可任意勾画唇廓。限量色彩配以金、红色珍珠微粒,柔和渗透肌肤的自然红润之上更添高雅华贵。配合纤细眼刷畅意描绘理想眼线的液体眼线笔。深褐色中加入大量金色珍珠光粒的限量色彩,融于肌肤的同时紧致双眸。演绎纤长美睫的睫毛膏。长短2种纤维使睫毛根部浓密丰盈,前端妩媚纤长。细微处也易于涂抹的纤巧设计。不易晕染,温水即可卸妆。

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

最值得入手的7款彩妆盒

无论是集眉眼于一体的烟熏眼影,兼具腮红、侧影、高光功能的修容粉,还是百搭的多色唇彩,只要拥有一盒全能彩妆盒,你就能轻松上妆,打造百变造型。各大品牌的彩妆盒,一向是众多彩妆达人血拼时的必败品。有的小巧多能,有的奢华精巧,在这2011年末之际,特别为你整理了7款最值得入手的彩妆盒,快把她们写进你的Shopping List里吧! 迪奥 2011年新Voyage彩妆盒DIOR/迪奥(微博) 2011年新Voyage彩妆盒 2011款的Dior Voyage彩妆盒补足了2010年版本没有腮红以及遮瑕的遗憾。可以说整个面部妆容需要的单品都包含在内了!彩妆盒中包括最流行的颜色,精选了Dior 彩妆的最受欢迎色调。化妆盒分上下两层,下层则可拉出。盒内附有一面镜,方便轻巧,是出外携带的首选。 套装内容套装内包括:

凝脂高效智能保湿粉饼 SPF25 #020 遮瑕膏(浅米色)1.1g 腮红 #950 2g 六色眼影 1.1g 银管不防水睫毛膏#090 black 4ml 迷你眼线笔 #090 black 唇彩 #183 1.1g 唇膏 #069 1g 迷你唇线笔 #513 唇刷× 1 眼影刷×1 腮红刷× 1 Lancome兰蔻绝对完美彩妆盒Lancome兰蔻(微博)绝对完美彩妆盒 颂扬玫瑰的永恒女性魅力与优雅象征。来沉醉于兰蔻最完美的彩妆献礼,水露玫瑰花瓣的色调,为活跃的您随时随地营造完美妆容。 套装内包括:

*6色眼影 *腮红刷,眼影刷,眼线笔,唇彩刷各1支 *唇膏(口红)各1g (354#, 06#, 230#) *兰蔻VIRTUOSE旋翘睫毛膏小样2ML(黑色)1支 *迷你唇线笔玫瑰色1支 *迷你眼线笔黑色1支 *粉饼3.5g COMPACT POWDER #01 *腮红 POWDER BLUSHER #02 2011雅诗兰黛金砖彩妆盒-流金奢华莹粹亮 彩18色眼影 2011雅诗兰黛(微博)金砖彩妆盒-流金奢华莹粹亮彩18色眼影 金色璀璨的外盒里面包裹着18块不同颜色的眼影,粉质细腻,上妆容易,多变妆效、流行色系、打造魅力纷呈的眼部妆容。 打开奢华的外表,一眼就能看到18种时尚高雅的颜色,精纯的超微粒粉末质地薄如轻纱,抹上后不着痕迹,其匀光粒子顿显眼部生动妆容,让你时时刻刻犹如清新可人,配合精致好用的高品质眼影刷,更能准确把握粉量、完美施于眼上。 YSL圣罗兰多用缤纷彩妆首饰盒 黑色丝绒袋子上饰有黑色绸缎蝴蝶结把手,五个百搭化妆颜色让你在白天和夜晚都拥有闪亮的魅惑。

PB常用函数

PB常用函数日期时间类函数 日期时间类函数的功能如下: Date:把日期转换为Date类型。 Time:把时间转换为Time类型。 Day:日期值。 Month:月值。 Year:年值。 DayName:星期几。 DayNumber:一周中的第几天。 DaysAfer:两个日期之间所差的天数。 SecondsAfer:两个时间之间所差的秒数。 Hour:小时。 Minute:分钟。 Second:秒。 Now:系统当前时间。 Today:系统日期和时间。 RelativeDate:指定日期前后的天数值。 RelativeTime:指定时间的前后时间值。 数值计算类函数 数值计算类函数主要的作用就是对数据进行计算,功能如下:Abs:返回数据的绝对值。 Max:求输入的最大值。 Min:求输入的最小值。 Ceiling:返回整数,小数会自动向上进位。 Int:返回整数,小数会自动向下退位。 Round:对数据进行四舍五入操作。 Truncate:删除掉小数点后若干位。 Cos:求余弦值。 Sin:求正弦值。 Tan:求正切值。 Exp:以e为底,输入值为次方的乘方值。 Sqrt:求平方根。 Fact:求阶乘。 Log:求自然对数。 LogTen:求以10为底的对数。 Mod:求余数。 Pi:求与PI的乘积。 Rand:返回1与输入值之间的一个伪随机数。 字符串类函数 字符串类函数的功能如下。 Fill:建立一个指定长度的字符串。 Lower:转换为小写字母。

Upper:转换为大写字母。 WordCap:首写字母大写,其他小写。 Space:由指定字符个数组成的空格字符串。 Left:从字符串左边开始指定字符串。 Right:从字符串右边开始指定字符串。 LeftTrim:删除字符串左边的空格。 RightTrim:删除字符串右边的空格。 Trim:删除左右两边的空格。 Len:返回字符串长度。 Match:判断是否有指定模式的字符。 Mid:取子字符串。 Replace:用指定字符替换另外一个字符串。 String:将数据转换为指定格式的字符串。 信息类函数 信息类函数可以获取数据窗口中的一些信息,函数的功能如下: CurrentRow:获取数据窗口的焦点的行数。 Page:获取当前记录的页数。 PageAcross:获取当前水平方向的页面。 PageCount:获取总页数。 RowHeight:获得记录的高度。 Describe:获取数据窗口对象的属性值。 IsRowModified:获取记录是否修改过,如果修改过返回True。 IsRowNew:获取是否新插入数据,如果插入返回True。 IsSelected:获取记录是否被选中,选中返True。 PageCountAcross:获取水平方向总页面。 RowCount:获取主缓冲区的总记录数。 统计类函数 统计类函数主要是用来对数据库中的数据进行统计操作,统计函数功能如下: Avg:计算字段的平均数,例如Avg(id)。 Max:计算字段的最大值,例如Max(id)。 Min:计算字段的最小值,例如Min(id)。 Median:计算字段的中间值。 Count:计算表或字段的记录数,例如Count(*)。 Frist:返回第一条记录。 Last:返回最后一条记录。 交叉表函数 只能在交叉列表风格的数据窗口中的细节区使用交叉表函数,交叉表的函数功能如下:CrosstabVag:计算字段数据的平均数。 CrosstabCount:计算字段数据的记录数。 CrosstabMax:计算字段数据的最大值。 CrosstabMin:计算字段数据的最小值。 数据类型转换与检查函数 数据类型转换与检查函数用于定义数据窗口的过滤条件、有效性检查和数据类型转换,数据类型转换与检查函数的功能如下:

(完整版)地质图制图手册

数字化制图要求 引用标准: 《1:5000,1:10000地形图图式》GB/T 5791-93 《1:500,1:1000,1:2000地形图图式》GB/T 7929-95 《1:50000区域地质图图例》GB 958-89 《铀矿地质勘查测量图件编绘规范》EJ/T 1120-2000 《地质图用色标准及用色原则》 总则 1、编绘图件时,必须熟悉本要求、有关规范及地质勘查技术要求。 2、图件要以准确的原始资料为基础,及时对原始资料进行综合整理工作,以保证资料的准确性。各种图件应突出主题,层次分明。 3、各种图件,必须做到及时、准确、齐全、清晰、统一。 4、图幅要求整洁,字体大小适当,颜色统一。 5、图件数字比例尺:选用宋体,高12mm,宽10mm (比例符号必须用半角)。 6、图件线条比例尺:选用宋体,高8mm,宽7mm;线段:X=20,Y=15,线型为90-0,线宽0.1mm,长度40mm。 7、图件坐标注记采用公里为单位,选用宋体,高5mm,宽4.5mm。 8、坐标线及高程线:黑色,线宽0.15mm,线型为1-0,X=Y=10,且必须用“键盘输入线”功能画线,尽量不用投影变换生成坐标。 9、图名要确切、简短,置于图框外顶部。用黑色,图名距图幅

两边大于50mm,字大小根据实际而定。 10、图外框线与内框线间距为12mm,外框线宽为1.5mm,内框线宽为0.15mm。A3或更小的图件,可适当酌减少。坐标线及图框线应采用“数字输入”,不能使用鼠标画制。 11、地层等符号用黑体,高4.5mm,宽4.0mm,尽量直接输入,不用子图库中符号,花岗岩可用子图表示,且应垂直向上,不旋转。 12、主要构造应有编号,构造编号字体用黑体,高4.5mm,宽4.0mm,数字编号须用下标表示(如F800 )。 13、图例中应包括图内所给的各种符号及色调,地形图上的惯用符号可不列出,图例与图幅内容一致,尽可能使用最简明的技术语言。图例排列顺序一般先地层—地层界线—产状—构造—矿物、蚀变—工程—其它,最后为工作范围。同一类型图例应按时代顺序由新到老排列。 14、图例框长为12mm,高8mm,线宽为0.15mm。图例上下间距一般为12-16mm,等间距分布。 15、图例中“图例”黑体,高8mm,宽7mm。 16、图例描述的字体用宋体,高5mm,宽4.5mm(若写成两行文字,则高4mm,宽3.5mm)。当图例框中的文字和符合大于图例框时,可适当缩小。 17、责任表采用统一的格式,可直接调用,修改文字内容。图名与图头一致,图号用“该报告图件总数-该图件顺序号”(如8-5表示),责任表一般应放在图的右下角。

学彩妆画彩妆的十大基本步骤逐一解析

学彩妆|画彩妆的十大基本步骤逐一解析 今天,妮薇雅化妆学校的化妆老师要为大家讲述的是学彩妆|画彩妆的十大基本步骤,并为大家逐一解析各个步骤的画法。 1、彩妆开始前先确立脸型修饰及眉型:将眉型以外的杂毛,如两眉之间、眉峰下方,及眉峰过厚部份拔除。 眉型的标准位置-眉头应与眼头齐,超出部份应该去,眉峰应位于黑眼球直视时的外侧正上方,眉头至眉峰应齐宽,东方女子多眉头稀、眉峰厚,应将眉头加深、加厚,眉峰则修薄直到等宽,眉的长度为自鼻翼与眼眉的直线延长,宽度则自眉峰开始逐渐变窄到眉尾。 定眉型后,再观察唇部上方的汗毛是否太粗、颜色太深,许多汗毛较粗、颜色较深的女性在此部位即有此问题,如果不处理,不管如何上妆,总令人觉得太男性化,最好定期以刮刀剔去,也不须担心剔去后是否会变得更粗、更黑。 2、第二步骤是决定粉底的颜色: 先决定为有光泽或无光泽,油性肌肤应使用无光泽粉底,因油性肌肤已极易出油造成脱妆;干性肌肤应使用光泽粉底,但拍婚纱照时则须使用无光泽粉底以免拍照时反光。 挑选两、三种接近自己肤色的粉底,试擦于脸颊,以确定与自己的肤色最接近颜色,如已有上妆,最好于耳前方局部位置卸妆再试,颜色才会准确。 3、如何以粉底修饰脸型是一个很重要的技巧: 运用明、暗色呈现宽、窄效果的方法来修饰肤色,如过宽的两颊或颧骨都可以深肤色粉底来修饰。较窄的额头、扁平的颧骨或过短的下巴,都可以用白色或亮色的粉底来修饰,但与原粉底的接缝处要均匀、柔和,不要明显看出有2色的的差异,

为求均匀、柔和的粉底效果,最好以柔软海绵来擦匀粉底,效果更佳。 4、上粉: 在家上妆可以蜜粉上妆。如须较浓的效果,可以蜜粉均匀的揉擦再轻按于脸上,如此蜜粉及上粉的效果较持久且不易脱落。淡妆则以粉刷沾粉再自脸部上方至下方、油中到外的顺序刷上,最好使用有附过滤蜜网的蜜粉,可避免沾上过多的粉,使得脸上粉妆浓、淡、厚、薄不均匀。 粉的颜色也须选择最接近肤色,标准的粉底,粉色上完妆后,脸部的颜色应与颈部的肤色相同,才是最自然、正确的色调。如希望有较白肤效果,可以使用较肤色淡一号的粉底及蜜粉。但须在颈部及上衣领口露出部位都上同色调的粉底与蜜粉,以达脸、颈色调一致的效果。外出补妆时,先以吸油纸吸去分泌出的油脂,再上粉底,如此效果较好。色调也才与脸部其它位置相同,此时如携带多用途的水粉饼最为方便,可兼具粉底与蜜粉的功能。 5、腮红: 进入彩妆步骤,首先要选择色调、肤色漂亮者,上任何色系的彩妆效果都好,如白里透红的肤色。如为苍白的肤色,通常较适合上寒色系的彩妆。深肤色或黄色系肤色则较适合暖色系的彩妆,此一原理应用于服装上也极适合。 选出适合色系的腮红刷上眼睑,连接至颧骨、脸颊处,位置约于眼下两指及鼻翼两指的位置;由下往上刷,使用时每次的腮红量要少,可多刷几次直至效果完美,才不致颜色太浓、泰重、不自然。如为较丰润的脸颊可于上粉底时在颧骨下方淡淡上些深肤色的粉底,如此脸部看来较为立体。 6、画眉: 一般人不敢画眉多由于两边眉不易画得好且相同、对称。这里可以交给大家两个简单的方法:一为眉刷沾眉笔顺着眉型刷出来,一为使用眉色粉,以眉刷沾上眉粉刷出眉型,两种方式眉型都会很自然,即使是能熟练使用眉笔的人,也须以眉刷

关于地质图用色标准及用色原则的用法

关于地质图用色标准及用色原则的用法 前提:你要有正确的、与之对应的系统库 1、首先要看懂8.1表 这个表是确定花纹的颜色,最后一列的角度不用去管它,是印刷是用的。 横向的表头是颜色浓度,纵向表头是颜色类型,中间的编号是MAPGIS中色谱编号。 你若还是不大明白,不要紧,一会解释实际应用时会详细说。 花纹颜色MAPGIS编号 2、8.2表—8.8表 这是具体的颜色。 黑色的编号是顺序号,不用理他,蓝色的编号是MAPGIS中的颜色编号。 8.2—8.6表都是一个大块的格子和3个小块的格子组成。大格子中的颜色是由3个小格子中的颜色组合而成,在MAPGIS中使用时不必管它是怎么构成的。 单色的只需输入颜色编号(蓝色数字)就可以了。 花纹编号 花纹颜色,“/”前面的是颜色浓度,后面的是色 号,去8.1表中寻找对应的MAPGIS颜色编号 MAPGIS颜色编号 但带花纹的除了要输入底色的编号(同上),还要输入花纹编号、花纹大小和花纹颜色。 花纹编号:看小格子中的花纹,上部带括号的就是花纹编号。 花纹大小:看“8.9网纹”这一节,每个花纹都有规定的大小,高宽一样。 花纹颜色:看小格子中的花纹部分,下部,如果写成30/5的样子,其中5是色号,30是颜色浓度,去8.1表中看色号5和颜色浓度30%对应的MAPGIS色谱编号,可以看到是553,这

个553号就是这个花纹的颜色。

如果花纹的下部只有一个数字,这个数字就是色号,其颜色浓度为100%,同样在8.1表中找到颜色编号。 花纹大小,每种花纹都有指定的高宽 8.7表—8.8表,输入蓝色数字的颜色编号即可。 需要注意的是,花纹编号为32、34、36、38、40号的是漏空花纹,花纹颜色为9号色(即白色)。 (注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

2020最新流行口红颜色排行榜

2020最新流行口红颜色排行榜 自从听到湿又野在天猫开旗舰店的消息,宝宝就觉得自己钱包一紧!他们家虽然价格便宜,但真的没啥短板~哑光口红这质感绝了!其实用丝绒来形容更准确,不会特别dry,一看就很有钱! 这款跟倩碧的蜡笔小胖长得像双胞胎,但价格就美好多了!唇膏笔一般都硬过男朋友,湿又野却没有辜负它的名字~做成了软软润润的样子,涂出来颜色也很小清新,透明度很高?? 有些色号还有金闪闪呢,就像野莓布丁一样诱人!宝宝也好想啵一口呀~ Milani金管一共有2种质地,色号60以下是滋润,60以上是哑光。颜色浓郁,触感顺滑。这个是#74mattedarling,知性稳重的豆沙色,什么场合都可以用~(比大网红25号色要好买一点点啦) Essence是德国品牌,可食用级别!(仿佛口红都是拿来吃的一样…)润到不得了!!像鸡宝宝这种干唇星人,简直要给它一个大大大拥抱! 宝宝最喜欢的是#03daretowear,有点西瓜红的感觉,充满夏天的青春活力~ Jordana是Milani的姐妹品牌,鸡宝以前就扒过~Jordana的色号稍微没那么欧美重口味,软萌妹子还是能挑到自己的心头好,像珊瑚色、红色都非常非常美! (试色图:色号#PeachyNude) 仔细找找,还有不少大牌替代色!48号色跟MAC的PleaseMe就傻傻分不清楚~ 这款的唇膏形状搞了个特殊,顶部有点磨平。很好勾勒唇线,省下一支唇线笔的钱有没有!快干,不沾杯不掉色??!11号色

FraiseRemix跟兰蔻的340B撞脸,所以说唇膏其实真的不要买太贵 嘛~ GoldenRose是个土耳其彩妆品牌,名字好美~~口红的颜色极其 饱满,轻轻涂一笔就很显色了!每涂一层颜色都有微妙的改变,质地 像奶油一样柔滑细腻,宝宝已经被迷倒了??。 笔头很细!不用唇线笔都能画出超级好看的唇形,显色均匀,饱 满的哑光唇妆一画就有啧啧啧~ 不沾杯持久度高,吃饭喝水毫无感觉,从此阿玛尼小胖丁是路人~ Dior变色唇膏最强平替,分为粉管和银管,这是银管的试色图。懒人素颜必备,让你脸色一秒红润!滋润效果也棒棒哒~变色唇膏的 都不会太持久,随时补就好了~ K妹对他们家评价很高,从试色图也能看出来这种高级的质感~ 丝滑,不油腻,显色,填唇纹。涂一次惊艳一次,唯一的缺点可能 就是包装不太走心吧~

相关文档
最新文档