DSC法测定环氧树脂固化反应温度和反应热

DSC法测定环氧树脂固化反应温度和反应热
DSC法测定环氧树脂固化反应温度和反应热

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

不饱和聚酯树脂的固化机理 引言 不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。所以,我们有对UPR的固化进行较深入探讨的必要。(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。 2.与不饱和聚酯树脂固化有关的概念和定义 固化的定义 液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。这个过程称为UPR的固化。 固化剂 不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。 饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。显然,在这样高的温度下使树脂固化是不实用的。因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。 这里所说的“催化剂”与传统意义上的“催化剂”是不同的。在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。 说到过氧化物我们要有必要了解的两个概念是活性氧含量和临界温度。其中“活性氧”或“活性氧含量”是一个与固化剂有密切关系并常常被误会的概念。 活性氧含量:活性氧含量简单来说就是过氧化物中氧和过氧化物分子总量的百分比。 从这个概念本身来说,一个具有较低的分子量的过氧化物的活性氧含量可能相对较高。但这并不意味着活性氧含量高的过氧化物比活性氧含量低的过氧化物具有更多或更快的活性。(因为我们很多应用厂家是用活性氧含量作为考核固化剂的一个指标)事实上,活性氧含量仅仅是作为一个恒量任何一个特定的过氧化物的浓度和纯度的一个尺度。人们发现许多具有较高的活性氧含量的过氧化物并不适合用于固化树脂,因为它们在标准的固化温度下会很快地分解或“耗尽”,也就是它分解游离基的速度过快。由于游离基总是有一种彼此间相互结合的强烈倾向,当游离基产生的速度比它们被不饱和双键利用的速度快时,它们会重新组合或者终止聚合链,从而产生低分子量的聚合物而导致不完全固化的结果。(典型的例子就是过氧化氢)。

环氧树脂胶配制方法

环氧树脂胶配方参考 金属与塑料制品粘接用胶黏剂 HYJ-6环氧胶黏剂 配方 组分用量/g 组分用量/g E-51环氧树脂100 气相法白炭黑2~5 邻苯二甲酸二丁酯15 四乙烯五胺13 氧化铝粉25 制备及固化将配方中前4种组分调制均匀,粘接前加入四乙烯五胺,混合均匀后,即得用于 粘接。粘接后,稍加压力,室温固化2~3d,或70℃固化24h。 用途本胶用于金属与玻璃钢的粘接。 J-37胶 配方 E-44环氧树脂100 间苯二胺15 邻苯二胺15 制备及固化按比例配制,低温保存。固化为80℃时6h。 用途本胶用于粘接金属、玻璃钢等材料。 HYJ-29胶 配方

组分用量/g 组分用量/g E-51环氧树脂100 气相法白炭黑2~5 液体羧基丁腈橡胶16 2-乙基-4-甲基咪唑8 三氧化三铝粉25 制备及固化依次称量,混合均匀。固化:70℃下3h。 用途用于粘接金属和玻璃钢。 KH-511胶 配方 组分用量/g 组分用量/g E-51环氧树脂100 间苯二胺11 液体丁腈橡胶-40 18~20 2-乙基-4-甲基咪唑4 制备及固化依次称量,混合均匀。在0.01MPa压力、120℃下固化3h。用途用于各种金属、玻璃钢、陶瓷、热固性塑料等的粘接,强度较高,中等温度固化,使用 工艺简便,可在-60~+150℃下长期使用。 KH-512胶 配方 组分用量/g 组分用量/g E-51环氧树脂100 647酸酐80 液体丁腈20 2-乙基-4-甲基咪唑2 制备及固化依次称量,混合均匀。固化:120℃下3~4h。 用途用于铝与玻璃钢、金属与硬质塑料等粘接。该胶粘接性能好,

在-60~150℃下使用。 SW-2胶 配方 组分用量/g 组分用量/g A、E-51环氧树脂2.0 苯酚-甲醛-四乙烯五胺0.9 聚醚N330 0.4 C、偶联剂KH-550 石英粉0.6 A:B:C=3:1:0.1 DMP-30 0.1 制备及固化按用量分别配制A、B、C三组分,混合均匀即可。适用期:20℃,10g量,10min 。固化:接触压力,常温下2~4h。 用途本胶为常温快速固化胶,在-60~+60℃下使用,用于铝、钢、铜等金属材料及玻璃钢等 的粘接。 粉末环氧黏合剂 配方 组分用量/g 组分用量/g E-42环氧树脂100 铁粉100 双氰胺7 制备及固化先将双氰胺和铁粉混合均匀,再加到低熔点E-42环氧树脂中,制成粉状(或棒 状)环氧黏合剂。

UV胶水作业指导书

UV胶水作业指导书 UV胶是绿色环保经济化工产品, 不含任何有机溶剂, 百分之百固含量胶水.对人体不会产生任何致毒致癌致病变性危害.UV胶的主要成分是丙烯酸酯系列的低聚物和部分丙烯酸酯系列的单体,丙烯酸酯单体有一定的挥发性对皮肤有一定的刺激性,在初次接触时,如果保护不当的情况下直接接触或长期暴露高浓度环境下,会导致皮肤过敏,如眼睛红肿,身上起疹子,痒等现象.但当适应一段时间后就不会再引起过敏,皮肤起疹子等现象.因此在操作使用过程中为了避免此类现象的发生,一定要严格注意下面的事项: 1.保持良好的通风环境 2.操作人员务必戴穿上防护服,眼镜,口罩,手套或指套等

3.注意勤洗手,勤更换衣物手套等 4.胶水一旦接触到皮肤或身体其它任何部位,立刻用大量清水冲 洗,再用肥皂水冲洗干净. 5.对于身体抵抗力较差的操作人员,在初次接触使用胶水时,请口 服抗过敏药物,如扑尔敏、非那根、息斯敏、开瑞坦等(一般药店均有售)两个星期左右. 6.对于已经引起过敏的操作人员,在过敏初期,切忌用手去抓,以 防感染其它身体部位.首先吃点抗过敏药或者打抗过敏针,一般过敏现象很快就会消失.请勿恐慌. 7.对于过敏肤质或者抵抗力特别差的人建议更换工作岗位,不要 操作使用UV胶水. 广东然生化工技术服务部由于UV固化材料存在的主要问题是皮肤接触(不是摄入也不是吸入),所以,应该制定相应的操作规程,尽量减少或者消除皮肤接触。比如穿戴上具有保护性的衣服、手套、眼镜,如果有必要的话,还要戴上能够遮住整个头部的面罩。此外,防护霜和清洗液也很有效,但是,应该只结合手套使用。如果了皮肤接触到了UV材料,要用肥皂和水清洗接触部位,不要用溶剂。这些规定不为别的什么,都只是为了达到良好的生产卫生保健,而且,不论使用的是什么化学物质,都应该严格按照操作规程来执行。

在印刷生产车间,有三种方式会接触到化学品,即摄取、吸入和皮肤接触。通常而言,UV 光固化油墨、UV涂布材料和UV粘合剂中含有的食毒性物质非常少,当然我们建议不要摄取这些物质进入口中。但是,不好的健康习惯会导致这些物质意想不到地进入口中。例如,吃饭之前没有洗手或没有把手洗干净,手碰了食物和饮料之后,会导致少量的毒性物质进入口中。遵循下面的健康习惯,能够很容易地避免这个问题,即无论是碰了UV光固化油墨,还是传统的油墨,一定要谨慎地避免化学物质进入口中。

半固化片的固化反应机理及常用固化剂概述

半固化片的固化反应机理及常用固化剂概述 2009-8-6 15:14:10 资料来源:PCBcity 作者: 杨金爽 摘要:多层压合是多层电路板制作中一个必不可少的环节。多层压合是指将已完成图形制作的内层芯板和外层铜箔,通过半固化片在高温高压下发生聚合反应生成固体聚合物,从而使两者粘结在一起。半固化片中所含固化剂的种类将决定半固化片——环氧树脂发生固化反应的历程以及生成的固体聚合物的性能。本文介绍了几种常见的固化剂以及在这种固化剂作用下的固化反应机理。 关键词:固化反应;固化剂 1 引言 目前普遍使用的半固化片中所采用的树脂成分主要为环氧树脂。环氧树脂是泛指分子中有两个或两个以上环氧基团的有机高分子化合物,其环氧基团可以位于分子链的末端、中间或呈环状结构。正是由于活泼环氧基团的存在,才可使环氧树脂与固化剂在一定的条件下发生固化反应,生成立体网状结构的产物,从而显现出各种优良的性能。固化剂在环氧树脂的应用中是必不可少的,有些固化剂不同于催化剂,它在固化反应中既起到催化作用,又与树脂相互交联生成交联聚合物。因此固化剂在某种程度上对固化反应起着决定性作用,它决定了固化反应历程和所生成的交联聚合物的性质。半固化片中所添加的固化剂都是潜伏型固化剂,即在室温条件下可与环氧树脂较长期稳定地存在,而在高温高压或者光照等特殊条件下才具有反应活性,使环氧树脂固化。本文对于常用的潜伏型固化剂进行介绍,并以最常见的环氧树脂类型——二酚基丙烷型环氧树脂(简称双酚A 型环氧树脂)为例,介绍了添加不同固化剂时,所发生固化反应的机理。 2 固化剂的种类 2.1 按照官能团分类 (1)胺类

胺类固化剂包括脂肪族胺类和芳香族二胺类。其中脂肪族胺类中最常用的是乙二胺、己二胺、二乙烯三胺、三乙烯四胺等,通常为了降低其固化活性,提高贮存运输的稳定性,可以将其进行化学改性,与有机酮类化合物进行亲核加成反应,生成酮亚胺类物质。 经过改性制得的芳香族二胺固化剂具有优良的性能,毒性低、吸水率低,从而使其贮存更加方便,而Tg 高则使板材的尺寸更加稳定。二氨基二苯砜(DDS )是目前研究最成熟的芳香族固化剂,由于具有强吸电子的砜基,所以它具有比间苯二胺、二氨基二苯甲烷(DAM )更低的反应活性,从而贮存期提高。当与BF3 混用时,可生成络合物,在常温下相当稳定,但是当达到某一温度时则可迅速固化。一般来说,脂肪族固化剂比芳香族固化剂的固化速度快。 (2)双氰胺 双氰胺与环氧树脂混合可长时间稳定存在,这是双氰胺被经常用作主固化剂的重要原因之一。但是由于其单独作为固化剂时,固化温度很高,且反应活性低,所以通常加入另一种促进剂,如苄基二甲胺(BDMA )来提高反应活性。这种方法的前提为不降低双氰胺在室温下的贮存周期,不影响其性能。另一种降低固化温度提高反应活性的办法为对双氰胺进行化学改性,引入胺类物质制成双氰胺衍生物。这种衍生物具有贮存周期长,固化温度低于双氰胺且固化速度快的特点。 (3)酸酐类 与胺类固化剂相似,酸酐类固化剂也包括芳香族和脂环族两类。其中脂环族的代表为六氢邻苯二甲酸酐(HHPA),其固化温度较高,而且酸酐键容易水解使其耐蚀性较差,所以通常加入促进剂来降低固化温度,常用的促进剂为胺类物质及其络合物。 (4)路易斯酸 将BF3、AlCl3、ZnCl2、PF5 等路易斯酸与胺类络合,形成路易斯酸-胺络合物,可作为环氧树脂的固化剂,可使树脂固化温度适中,且固化速度快,常作为胺类和酸酐类固化剂的促进剂而引入。此类固化剂最常用的为BF3-胺络合物。 (5)咪唑类 咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑等咪唑类固化剂,具有很高的活性,在中温下即可使环氧树脂迅速固化,与环氧树脂混合贮存时间短,所以要对其进行化学改性。可以将咪唑环上1 位仲胺基氮原子上的活泼氢进行改性,

环氧树脂固化剂的概况

环氧树脂固化剂的概况 双酚A环氧树脂的结构稳定,能够加热到200℃不发生变化,其他环氧树脂具有无限使用期,通过固化剂使环氧树脂实现交联反应,由于固化过程中不放出H2O或其他低分子化合物,环氧树脂固化物避免了某些缩聚型高分子在热固化过程中所产生的气泡和界面上的多孔性缺陷。环氧树脂固化物性能在很大程度上取决于固化剂,其种类繁多。 一、环氧树脂固化剂分类 1. 按化学结构分为碱性和酸性两类 1.1碱性固化剂:脂肪二胺、多胺、芳香族多胺、双氰双胺、咪唑类、改性胺类。 1.2酸性固化剂:有机酸酐、三氟化硼及络合物。 2. 按固化机理分为加成型和催化型 2.1加成型固化剂:脂肪胺类、芳香族、脂肪环类、改性胺类、酸酐类、低分子聚酰胺和潜伏性胺。 2.2催化型固化剂:三级胺类和咪唑类。 二、环氧树脂固化剂的发展 我国1998年环氧树脂产量为万吨, 固化剂需求量约为2万吨, 实际的固化剂产量仅为万吨, 生产厂家分布在沿海城市, 如天津、上海、江苏和浙江等地。例如:脂肪多胺:常州石化厂650吨/年 间苯二胺:上海柒化八厂80吨/年 T—31改性胺:江苏昆山助剂厂60吨/年 低分子聚酰胺:天津延安化工厂200吨/年 590#改性胺和593#改性胺:上海树脂厂17吨/年 793#改性胺:天津合材所6吨/年 SK—302改性胺:江阴颐山电子化工材料厂5吨/年 另外:B—系列固化剂,N—苄基二甲胺,DMP—30,801#改性胺,HD—236改性胺,GY—051缩胺,CHT—251改性胺,105#缩胺,810#水下固化剂,NF—841固化剂,703#改性胺等。

三、胺类固化剂 1.胺类固化机理 1.1一级胺固化机理 若按氮原子上取代基(R)数目可分为一级胺、二级胺和三级胺;若按N数目可分为单胺、双胺和多胺;按结构可分为脂肪胺、脂环胺和芳香胺。 一级胺对环氧树脂固化作用按亲核加成机理进行,每一个活泼氢可以打开一个环氧基团,使之交联固化。芳香胺与脂环胺的固化机理与一级胺相似(伯胺、仲胺和叔胺) ①与环氧基反应生成二级胺 ②与另一环氧基反应生成三级胺 ③生成的羟基与环氧树脂反应 1.2固化促进机理: 在固化体系中加入含给质子基团的化合物如苯酚,就会促进胺类固化,这可能是一个双分子反应机理,即给质子体羟基上的固发氢首先与环氧基上的氧形成氢键,是环氧基进一步极化,有利于胺类的N对环氧基Cδ+的亲核进攻,同时完成氢原子的加成。 促进剂对环氧树脂和二乙烯二胺固化体系的凝胶化影响,例如乙二醇、甘油和苯酚使凝胶化时间缩短7min,12min和13min。 2. 脂肪胺(脂环胺)固化剂 在室温很快固化环氧树脂,固化反应为放热反应。热量能进一步促使环氧树脂与固化剂反应,其使用期较短。胺类固化剂与空气中的CO2反应生成不能与环氧基起反应的碳酸铵盐而引起气泡的发生。 脂肪胺对皮肤有一定刺激作用,其蒸汽毒性很强。 脂肪胺和脂环胺固化剂

环氧树脂固化剂

环氧树脂固化剂

固化剂 1.脂肪族多元胺 1.1 乙二胺(EDA) 由1,2-二氯乙烷(EDC)和氨反应制备。还可由一乙醇胺(MEA)和氨反应制备乙二胺。 对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。 1.2 二亚乙基三胺(DETA) 在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。 二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。在其化学计算量的当量点附近有最大的交联密度。而实际用量为化学计算量的75%即可,有助于减少固化放热。 以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。 二亚乙基三胺的变性物: 二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。固化放热温度随羟乙基化程度提高而降低。且改善了固化剂对树脂的溶解性,降低

了固化剂的挥发性和毒性。但其吸湿性变强。 二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。 二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。 二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。 二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。由于反应生成物的分子结构里含有酚羟基、氨基、仲胺基使得该类固化剂固化速度快,可在低温、潮湿或水下固化。 二亚乙基三胺与有机酸、有机酸酯的反应加成物 二亚乙基三胺与桐油、丙烯酸酯、水杨酸甲酯、癸二酸、二元羧酸酯、环氧油酸乙酯、环氧树脂、二酮丙烯酰胺的加成物。 三亚乙基四胺和四亚乙基五胺及其变性物,二者的蒸汽压比二亚

环氧树脂性能及工艺特性

环氧树脂性能及工艺特性 一、环氧树脂的粘接特点及基本原理 1、环氧树脂粘接的基本原理: 环氧树脂粘接是由两种力量产生的,一是机械粘附力。即当粘接剂处于液态时,渗入到洁净的被粘接表面的孔隙中,待粘接剂固化后便形成了一种机械结合的锚固力;二是化学粘合力,因为环氧树脂分子结构中含有脂肪族羟基醚基及其中极为活泼的环氧基。 由于羟基和醚基的极性,使得环氧树脂分子和相邻表面之间产生电磁吸力,而且环氧基与含有活泼氢的金属表面起反应而生成化学勾健,既在胶层间产生了分子之间结合。这种结合被称为化学粘合力,一般认为环氧树脂粘合力主要是由于化学粘合力起作用。 2、环氧树脂粘接的特点: 2.1 可粘接各种材料,对金属与金属、金属与非金属、非金属与非金属之间均有较强的粘合能力。 2.2 有较高的粘接强度及其他的物理性能(表1) 2.3 粘结工艺简单,容易掌握,经济效果好。如有一台100m长裂纹的拖拉机发动机机体,仅用几元钱即可修复,且两天之内既可装车使用。修复一根输油管只需几角钱。 2.4胶合缝处具有不漏气、不漏油、不漏水和耐化学药品腐蚀等优良特性。 2.5粘结表面可进行机械加工。 2.6粘结过程中,不需要对工件进行高温度处理,因此,对零件金相组织无影响。 2.7收缩性较小,其收缩率为1—2%;如填加适当填料其收缩率可达到 0.1-0.2%,环氧树脂的耐温性较好,可在150-200℃温度范围内长期工作,其耐寒性可达-50℃—55℃。 2.8粘结表面较脆、耐冲性性能较差,粘结固化后无毒。 表1 环氧树脂固化后的物理性能 项目数据 抗拉强度(kg/cm2)650-850(有的配方可达1200) 抗弯强度 (kg/cm2) 900-1200 抗压强度 (kg/cm2) 1100-1300 抗冲强度(kg?cm/ cm2) 10-20 耐热性(℃马丁法) 105-130 击穿电压(千伏/毫米、室温)35

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

环氧树脂的固化

实验五 环氧树脂的固化 化工系 毕啸天 2010011811 一、实验目的 1.了解高分子化学反应的基本原理及特点 2.了解环氧树脂的制备及固化反应的原理、特点 二、实验原理 热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。其通式如下: CH 2 CH CH 2 O C CH 3 CH 3 OCH 2CHCH 2 OH n C CH 3CH 3 OCH 2 CH CH 2 O 环氧树脂通常用下面几个参数表征: 1.树脂粘度 2.环氧当量或环氧值 3.平均分子量和分子量分布 4.熔点或软化点 环氧值是表征环氧树脂质量的重要指标。它表示每100g 环氧树脂中含环氧基的摩尔数。我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。 环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。 环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。此外固化物性能还受固化反应程度的影响。采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。 未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。环氧树脂与固化剂的反应,除了一般的脂肪胺和部分脂环胺类固化剂可以在常温固化外,其它大部分脂环族胺和芳香胺类以及全部的酸酐类固化剂都需要在较高的温度下经过较长的时间才能发生固化交联反应。为了降低固化温度,使用促进剂是必要的,适用于胺类和酸酐类固化环氧树脂的促进剂可分为亲核型、亲电型和金属羧酸(或乙酰丙酮)盐三类。环氧树脂的固化反应是通过环氧基的开环反应完成的,末端基为环氧基的树脂可以和多种含活泼氢的化合物反应。活泼氢对环氧化合物的作用先是在环氧基的 氧原子上引起质子的亲电附加,生成H 3O +离子,此反应非常迅速,在此H 3O + 离子的作用下进行亲核进攻,使环氧基开环。含有活泼氢的化合物有醇、酚、羧酸、硫醇、酰胺、脲类和异氰酸酯等,上述反应并不需要消除小分子就能使链增长或交联,因此环氧树脂比其它类型

环氧树脂的固化原理教学提纲

环氧树脂的固化原理

精品文档 环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间, 收集于网络,如有侵权请联系管理员删除

环氧树脂固化剂种类大全

一、脂肪多元胺型固化剂 环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。为适应各种应用领域的要求,应使用相应的固化剂。固化剂的种类很多,现介绍于下: 乙二胺 EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。 二乙烯三胺 DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度 0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。 三乙烯四胺 TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度 0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺 TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每100份标准树脂用11-15份性能同上。 多乙烯多胺 PEPA H2NC2H4(NHC2H4)nNH2 浅黄色液体每100份标准树脂用14-15份性能:毒性较小,挥发性低、适用期较长、价廉。 二丙烯三胺 DPTA H2N(CH2)3 NH(CH2)3NH2 分子量131 活泼氢当量26 浅黄色液体每100份标准树脂用12-15份性能同TETA。 二甲胺基丙胺 DMAPA (CH3)2N (CH2)3NH2 低粘度透明液体每100份标准树脂用4-7份毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。 二乙胺基丙胺 DEAPA (C2H5)2N (CH2)3NH2 分子量130 活泼氢当量65 低粘度透明液体每100份标准树脂用4-8份固化:60-70℃4小时。性能:适用期50克25℃4小时,

UV胶紫外光固化胶优缺点与操作事项

U V胶紫外光固化胶优缺点与操作事项 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

U V胶(紫外光固化胶)优缺点与操作事项 产品特点 UV胶适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,东莞天诺科技TN-231UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。 优点 环境/安全 ●无VOC挥发物,对环境空气无污染; ●胶粘剂成分在环保法规中限制或禁止的比较少; ●无溶剂,可燃性低 经济性 ●固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率 ●固化后即可进行检测以及搬运,节约空间 ●节省能源,例如生产1g光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂相比可节约能耗90% ●固化设备简单,仅需灯具或传送带,节约空间 ●单组分系统,无需混合,使用方便 相容性 ●对于温度,溶剂和潮湿敏感的材料可以使用 ●控制固化,等待时间可以调整,固化程度可以调整 ●可以重复施胶多次固化 ●紫外灯可以容易地安装在已有的生产线,不需较大改动 缺点 ●原料成本高,不含低成本的溶剂和填料,胶粘剂价格高 ●紫外光对某些塑料或半透明材料穿透力较弱,固化深度有限,可固化产品的几何形状受到限制,不透光的部位及紫外光照射不到的死角不易固化 ●一般的UV胶只能粘接透光材料,粘接不透光材料需要配合其他技术,例如光延迟(阳离子)固化,光热双固化,光-湿气双固化等。 操作原理 无影胶上胶过程无影胶又叫紫外线胶水,它必须是通过紫外线照射到胶液的前提下才能固化,也就是无影胶中的光敏剂与接触到紫外线会与单体相接合,理论上没有紫外线光源的照射下无影胶几乎永远不固化。 紫外线的来源有自然日光和人造光源两种。紫外线越强固化速度越快一般固化时间在10-60秒不等。对于自然日光而言,晴朗的天气阳光中的紫外线会比较强固化速度越快。但是,没有强烈阳光时只能用人造紫外线光源了。人工紫外

环氧树脂固化剂特点和反应机理

环氧树脂有机酸酐固化剂特点和反应机理 有机酸酐类固化剂,也属于加成聚合型固化剂。早在1936年,瑞士的Dr.pierre Castan 就开始用邻苯二甲酸酐固化的环氧树脂作假牙的材料。这一用法后来还在英国和美国申请了专利。酸酐类用作固化剂在1943年美国就有专利报导。 酸酐类固化剂用于大型浇铸等重电部门,至今仍是这类固化剂应用的主要方向。日本这类固化剂消费量每年在3 kt以上,约占环氧树脂固化剂全部用量的23%,仅次于有机多胺的用量。在我国,以邻苯二甲酸酐为固化剂的环氧树脂浇铸、以桐油酸酐为固化剂的环氧树脂电机绝缘,都有20多年的应用历史。近年来,随着电气、电子工业的发展,酸酐类固化剂在中、小型电器方面也获得广泛的应用,特别是弱电方面,也获得了充分重视,如集成电路的包封、电容器的包封等。在涂料方面,如粉末涂料,这类固化剂也受到重视。 酸酐类固化剂与多元胺类固化剂相比,有许多优点。从操作工艺性上看,主要有以下几点:一是挥发性小,毒性低,对皮肤的刺激性小;二是对环氧树脂的配合量大,与环氧树脂混熔后粘度低,可以加入较多的填料以改性,有利于降低成本;三是使用期长,操作方便。从固化物的性质上看,它主要特征有:一是由于固化反应较慢,收缩率较小;二是有较高的热变形温度,耐热性能优良,固化物色泽浅;三是机械、电性能优良。 但是,酸酐类固化剂所需的固化温度相对比较高,固化周期也比较长;不容易改性;在贮存时容易吸湿生成游离酸而造成不良影响(固化速度慢、固化物性能下降);固化产物的耐碱、耐溶剂性能相对要差一些,等等,则是这类固化剂的不足之处。 在已知的酸酐化合物中,多数正在被广泛用作环氧树脂固化剂,大约有20余种,可以分为单一型、混合型、共熔混合型。从化学结构上分,则可分为直链型、脂环型、芳香型、卤代酸酐型;如按官能团分类,又有单官能团型、两官能团型,两官能团以上的多官能团型无实用价值。和多胺类固化剂的情况相类似,官能团的数量也直接影响固化物的耐热性;另外,也可按游离酸的存在与否分类,因为游离酸的存在对固化反应起着促进作用。 这一类固化反应以有无促进剂的存在分成两种形式—— 一、在无促进剂存在时,首先环氧树脂中的羟基与酸酐反应,打开酸酐,然后进行加成聚合反应,其顺序如下:(1)羟基对酸酐反应,生成酯键和羧酸;(2)羧酸对环氧基加成,生成羟基;(3)生成的羟基与其他酐基继续反应。这个反应过程反复进行,生成体型聚合物。另外,在此种体系中,由于处于酸性状态,与上述反应平行进行的反应是别的环氧基与羟基的反应,生成醚键。从上述机理中可以看出,固化物中含有醚键和酯键两种结构,而且反应速度受环氧基浓度、羟基浓度的支配。 二、在促进剂存在的条件下,酸酐固化反应用路易斯碱促进。促进剂(一般采用叔胺)对酸酐的进攻引发反应开始,其主要反应有:(1)促进剂进攻酸酐,生成羧酸盐阴离子;(2)羧酸盐阴离子和环氧基反应,生成氧阴离子;(3)氧阴离子与别的酸酐进行反应,再次生成羧酸盐阴离子。这样,酸酐与环氧基交互反应,逐步进行加成聚合。在促进剂路易斯碱存在的条件下,生成的键全是酯键,未发现如同无促进剂存在时所生成的醚键。 在促进剂存在时,环氧树脂的固化速度也受体系内羟基浓度的支配。因此,添加促进剂对液态环氧树脂非常有效,120~150℃即能完成固化反应。但对于固态环氧树脂,则要充分注意适用期非常短的问题。在促进剂不存在时,从理论上讲,应当一个环氧基对一个酸酐,而实际上仅用化学理论量的80%~90%就足够了。在促进剂存在时,酸酐用量为化学理论量。

低粘度环氧树脂固化体系研究.

低粘度环氧树脂固化体系研究 段华军王钧杨小利 (武汉理工大学430070 摘要:将低粘度交联剂加入到酸酐固化的环氧树脂体系中,能有效降低树脂体系的粘度,得到室温下仅为0.08Pa?s的酸酐-环氧树脂体系。利用正交实验优选了树脂配方,获得了优异的力学及物理性能;通过DSC确定了树脂的固化工艺制度,并利用TG对该树脂的热稳定性进行了评价。该树脂体系适合于RTM工艺及湿法制造高性能复合材料。 关键词:环氧树脂酸酐低粘度RTM 环氧树脂是制备高性能复合材料重要的基体材料之一,能够赋予复合材料良好的力学性能和物理性能。随着复合材料行业的飞速发展,新的成型加工方法不断涌现,对所使用的树脂基体提出了较高的要求。如R TM(Resin Transfer Molding 工艺,由于R TM工艺是低压成型工艺,不仅要求树脂具有较高的力学性能和物理性能,而且树脂对纤维只有一步浸润过程,还要求树脂具有很低的粘度,以满足树脂对纤维的充分浸润及流动充模[1~3]。目前使用的环氧树脂由于粘度较高,限制了其在R TM成型工艺中的应用。针对这一问题,研究满足R TM工艺要求的低粘度、高性能环氧树脂体系不仅能拓宽R TM工艺的应用领域,同时能极大的提高复合材料的性能。本文通过自制的一类交联剂、改性酸酐与E244环氧树脂组成一个共混树脂体系,该树脂体系在保持环氧树脂优异性能的前提下,同时具有很低的粘度。利用差示扫描量热法(DSC对该共混体系的固化特性进行了研究,利用正交实验确定了较为合理的固化制度;同时测试了该共混树脂体系的粘度、温度对粘度的影响以及浇铸体的力学性能和物理性能;并利用TG对该树脂的热稳定性进行了评价。 1实验部分 1.1原材料及仪器设备

光固化基础知识简介

光固化胶粘剂基础 Tian xing jian Photo‐curing Adhesives 2012-04 辐射固化是指在光(紫外光UV、可见光Visible Light)或高能射线(电子束EB)的作用下,液态的组合物(树脂,单体,光引发剂等)发生交联聚合形成固态高分子的过程。光固化是辐射固化的一类。由于光固化大多使用紫外光(UV)为光源进行辐射固化,所以许多人把光固化胶粘剂称为UV 胶。UV 胶在玻璃水晶等透明材料粘接中经常使用,而且大多数胶水是透明的,固化后看不出痕迹,又被形象地叫作无影胶。 紫外光固化广泛地应用在涂料、油墨、胶粘剂、电子工业、微细加工和快速成型等领域。知识点:什么是UV? UV 是英文Ultraviolet Rays 的缩写,即紫外光线。紫外线(UV)是肉眼看不见的,是可见光以外的一段电磁辐射,波长在10~400nm 的范围.通常按其性质的不同又细为以下几 段: 真空紫外线Vacuum UV 10--200nm 短波紫外线UVC 200--280nm 中波紫外线UVB 280--315nm 长波紫外线UVA 315--400nm 可见光Visible light 400--760nm 紫外光固化利用的是200-400mm 这一波段,部分光引剂也可以在可见光下引发固化。 紫外线会损害皮肤和眼睛,UVA 会使皮肤变黑、松驰、皱纹;UVB 会产生 急性皮炎(即晒伤)等症,皮肤会变红、发痛,长期照射还容易导致皮肤癌变,因此在进行光固化作业时,应注意防护: ? 固化机应有适当屏敝装备,紫外光不易透出 ? 戴防紫外线眼镜、面罩,不要直视灯具 ? 适当的个人防护,穿长袖衣服、布工作手套 ? 注意环境通风,以防臭氧积聚 光固化胶粘剂优点 环境/安全: ? 无VOC 挥发物,对环境空气无污染; ? 胶粘剂成分在环保法规中限制或禁止的比较少; ? 无溶剂,可燃性低 经济性: ? 固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率,? 固化后即可进行检测以及搬运,节约空间 ? 室温固化,节省能源,例如生产1g 光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂

环氧树脂固化剂种类介绍

环氧树脂固化剂种类介绍 固化剂--- 脂肪多元胺 环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。为适应各种应用领域的要求,应使用相应的固化剂。固化剂的种类很多,现介绍于下: 乙二胺 EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽 毒性很强,操作时须十分注意。 二乙烯三胺 DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/c m2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度 0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固 化、毒性大、放热量大、适用期短。 三乙烯四胺 TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度 0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺 TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每10 0份标准树脂用11-15份性能同上。 多乙烯多胺 PEPA H2NC2H4(NHC2H4)nNH2 浅黄色液体每100份标准树脂用14-15份性 能:毒性较小,挥发性低、适用期较长、价廉。 二丙烯三胺 DPTA H2N(CH2)3 NH(CH2)3NH2 分子量131 活泼氢当量26 浅黄色液体每 100份标准树脂用12-15份性能同TETA。 二甲胺基丙胺 DMAPA (CH3)2N (CH2)3NH2 低粘度透明液体每100份标准树脂用4-7份毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。 二乙胺基丙胺 DEAPA (C2H5)2N (CH2)3NH2 分子量130 活泼氢当量65 低粘度透明液体每100份标准树脂用4-8份固化:60-70℃4小时。性能:适用期50克25℃4小时,热变形温78-94℃,抗压强度920-1050kg/cm2,抗拉强度480-640kg/cm2,冲击强度 0. 2尺-磅/寸洛氏硬度90-98。介电常数(50赫、23℃)3.75 功率因数(50赫、23℃)0.0 07 中温固化、低温性能好。

相关文档
最新文档