iw1706 for 5V 2A design

Smart Source Engineering Ltd.

Your Smart Power Solution Source iw1706solution for 5V/2A design

General Design Specification :

1.AC Input Range 90-264Vac

2.DC Output 5V, 2000mA

3.Max Ripple 100mVP_P

4.Standby power <0.15W

5.Meet Energy star 2.0 standard

Technology & Service

SSE

3.Circuit Board Photograph

iw1706

原样机上的E-cap ,其ESR 过大(15.88R ),造成EMI 500K 之前超标

改为K o s h i

n 的E -c a p , 其E

S R =7.78R , 500K 之前的E M

I 余量非常大改为10A 45V

改为1000uF 6.3V 固态电容

改为4.7R 2W 线绕电阻

增加RC 此电路

增加470pF 100V 电容并联于D3

增加2.2nF 400V Y-cap

2pcs 3.3R 1206并联

改为21K+ 3.6K 分压

更改如下:

SSE

5. Regulation, Ripple and Efficiency Measurement

* Note: Output voltage is measured at end of PCB

P IN V OUT I OUT P OUT ηOCP Average

EPA2.0(W)(V)(A)(W)(%)(A)

η (%)

η(%)

0.18 5.1003.41 5.120.500 2.5675.076.61 5.13 1.000 5.1377.619.84 5.15 1.5007.7378.5113.16 5.17 2.00010.3478.560.22 5.130003.48 5.130.500 2.5773.716.69 5.14 1.000 5.1476.839.92 5.15 1.5007.7377.8713.20 5.17 2.00010.3478.300.25 5.130003.53 5.120.500 2.5672.526.76 5.13 1.000 5.1375.8910.00 5.15 1.5007.7377.2513.27 5.17 2.000

10.34

77.91

V IN (V AC )

180

2.2377.4

73.37

76.7

75.9

230

2.23264

2.23

SSE

5V 2A Transformer Design

MATERIALS:

1.Core : EFD20(Ferrite Material TDK PC40 or equivalent)

2.Bobbin : 5+5 pins, EFD20 Horizontal

3.Magnet Wires : Type 2-UEW

4.Second wires: Triple insulated wire

5.

Layer Insulation Tape :3M1298 or equivalent.

SCHEMATIC

A

5Ts

ELECTRICAL SPECIFICATIONS:

1.Primary Inductance (Lp) =1.2mH ±7%@10KHz

2.

Electrical Strength = 3KV, 50/60Hz,1Min(pins1~10)

FINISHED :

1.

Varnish the complete assembly

Secondary

2UEW 0.27mmx1 44Ts –Pri (Clockwise)

Primary

1

3(S)

4

B

288Ts

9(F)2UEW 0.27mmx1 44Ts –Pri (Clockwise)

Bottom Top

10Ts

Triple Insulated Wire0.35mmx4 5Ts –sec (Anti-clockwise)

7(S)

Bias

Core is connected to Pin4

1(F)5

Forward

10Ts

2UEW 0.27mmx1 14Ts –Bias (Clockwise)2UEW 0.27mmx3 14Ts –Bias (Clockwise)

4(S)5(S)5(F)

8. V CE Waveform

SSE

Test Condition:

V IN=264Vac, I OUT=2A

Result:

V CE_MAX=604V

Appendix –Simple Specification for used transistor (BTT13005)

PK scan Vin:230v 50Hz Live ; Resistive full load ,output “-”is floating

PK scan

Vin:230v 50Hz Live Neutral ; Resistive full load ,output “-”is floating

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

电流与电压电阻的关系教案

第十七章欧姆定律 第1节探究电流与电压、电阻的关系 一、目标确定的依据 1、课程标准相关要求 使学生会同时使用电压表和电流表测量一段导体两端的电压和其中的电流,通过实 验认识电流、电压和电阻的关系。 2、教材分析 电流跟电压、电阻的关系实际上就是欧姆定律,它是电学中的基本定律,是进一步 学习电学知识和分析电路的基础,是本章的重点。要求学生和教师共同探究活动得出,从而更进一步体验科学探究的方法。这一节综合性较强,从知识上讲,要用到电路中的电流、电压和电阻的概念;从技能上讲,要用到电流表、电压表和滑动变阻器等,学生要通过实验得出欧姆定律,主要培养实验的设计、数据的记录以及表格数据和图像的分析能力。 3、学情分析 本节课“探究电流跟电压、电阻的关系”是一个完整的科学探究过程,是在前面“电流”“电压”“电阻”等知识学及电流与电压、电阻的定性关系的基础上,引出“探究电流与电压、电阻会不会有定量关系”的问题。让学生体会科学探究的方法。 二、教学目标 1.通过实验探究电流、电压和电阻的关系。 2.会用滑动变阻器改变部分电路两端的电压或使电阻两端电压不变。 3.会说出滑动变阻器在各个实验中的作用。 三、教学重难点 教学重点:电路中电流与电压的关系、电流与电阻的关系。 教学难点:运用控制变量的方法进行实验,并分析得出结论。 四、教学过程 教师活动学生活动设计意图 引入新各种用电器的电流大小不同:那么电流大小与哪些 因素有关? 手电筒中使用新电池或旧电池,灯泡的亮度不同, 学生通过实例 进行思考。 引导学生从 具体实例分 析猜想,电

课通过灯的电流与灯两端电压有关吗? 在家庭电路中使用不同的灯泡,亮度不同,那么通 过灯的电流与灯丝电阻有关吗? 在电路中的电流与电压、电阻有什么关系呢?流与电压电阻有关。 猜 想与假设若电阻一定,电流与电压存在什么关系? 若电压一定,电流与电阻存在什么关系? 学生回答: 若电阻一定, 电压越大,电 流越大; 若电压一定, 电阻越大,电 流越小。 由实例出 发,使学生 能比较顺利 得出有效的 猜想。 设计实验若研究电路中电流与电压的关系,或电流与电阻的 关系,需要哪些实验器材? 【设计实验】 测电阻两端电压,选择什么器材?如何改变电阻两 端电压?怎么操作? 测通过电阻的电流,选择什么器材? 实验过程中的不变量是什么,如何控制其不变? 滑动变阻器在实验中都起到什么作用? 实验电路图 实物图 1、选择实验器 材。 【需要器材】 电阻、电源、 滑动变阻器、 开关、电流表、 电压表、导线。 2、画电路图。 3、实验表格的 设计 进一步引导 学生了解实 验过程中所 需要用的器 材及测量工 具。 V R' R A S

电流与电压、电阻的关系练习题

电流与电压、电阻的关系 一、单选题(共10道,每道10分) 1.某同学在探究“电流与电压的关系”时,根据收集的数据画出如下图象,下列结论与图象相符的是( ) A.电阻一定时,电流与电压成正比 B.电阻一定时,电压与电流成正比 C.电压一定时,电流与电阻成反比 D.电压一定时,电阻与电流成反比 2.某同学在探究“电流跟电压、电阻的关系”时,根据收集到的数据画出了如图所示的一个图象。下列结论与图象相符的是( ) A.电阻一定时,电流随着电压的增大而增大 B.电阻一定时,电压随着电流的增大而增大 C.电压一定时,电流随着电阻的增大而减小 D.电压一定时,电阻随着电流的增大而减小 3.一段导体两端的电压是 4.0V时,导体中的电流是 1.0A,如果将其两端的电压减小 到2.0V,导体中的电流变为( ) A.2.0A B.0.25A C.3.0A D.0.50A 4.某导体中的电流与它两端电压的关系如图所示,下列分析正确的是( ) A.当导体两端的电压为0时,电阻为0 B.该导体的电阻随电压的增大而减小 C.当导体两端的电压为0时,电流为0 D.当导体两端的电压为2V时,电流为0.6A

5.张华同学在“探究通过导体的电流与其两端电压的关系”时,将记录的实验数据通过整理作 出了如图所示的图象,根据图象,下列说法不正确的是( ) A.当在导体乙的两端加上1V的电压时,通过导体乙的电流为0.1A B.将甲、乙两导体并联后接到电压为3V的电源上时,干路中的电流为0.9A C.通过导体甲的电流与其两端的电压成正比 D.导体甲的电阻大于导体乙的电阻 6.在研究电流跟电压及电流跟电阻的关系实验中,电路中的滑动变阻器两次的作用是( ) A.均使电阻R两端的电压成倍数变化 B.均使电阻R两端的电压保持不变 C.前次使电阻R两端电压成倍数变化,后次使电阻R两端的电压保持不变 D.前次使电阻R两端电压保持不变,后次使电阻R两端电压成倍数变化 7.在做“探究电流与电阻的关系”实验中,小翔连接了如图所示的电路。他先在电路的A、B 间接入10Ω的电阻,移动变阻器的滑片,读出电压表与电流表的示数;记录数据后,改用 15Ω电阻替换10Ω电阻,闭合开关,接下来他的实验操作应该是( ) A.观察电压表,向右移动滑片,读取电流数据 B.观察电流表,向右移动滑片,读取电压数据 C.观察电压表,向左移动滑片,读取电流数据 D.观察电流表,向左移动滑片,读取电压数据 8.在探究“电压一定时,电流与电阻关系”的实验中,电路如图所示,电源的电压 恒为6V。先在A、B间接入5Ω的定值电阻R,移动滑片P,使电压表示数为2V,读出电流表示数。接着取下5Ω的电阻分别换上10Ω、15Ω的定值电阻,移动滑片,使电压表示数仍 为2V。但小华在实验中,当换上15Ω的定值电阻时,无任怎样移动滑片,电压表示数始终 大于2V。对此现象,下列分析正确的是( )

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

峰值电流控制优缺点

开关电源峰值电流模式控制PWM的优缺点 近年来电流模式控制面临着改善性能后的电压模式控制的挑战,因为这种改善性能的电压模式控制加有输入电压前馈功能,并有完善的多重电流保护等功能,在控制功能上已具备大部分电流模式控制的优点,而在实现上难度不大,技术较为成熟。 由输出电压VOUT 与基准信号VREF的差值经过运放(E/A)放大得到的误差电压信号 VE 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜波比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号 VΣ比较,然后得到PWM脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。 电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。而平均电感电流大小才是唯一决定输出电压大小的因素。电感电流下斜波斜率的至少一半以上斜率加在实际检测电流的上斜波上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。因而合成波形信号VΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号。当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。 当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流内环。电流内环是瞬时快速的,是按照逐个脉冲工作的。 功率级是由电流内环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流内环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC 储能电路。峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。以下是开关电源峰值电流模式控制PWM的优缺点: 峰值电流模式控制PWM的优点是: ①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快; ②控制环易于设计; ③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美; ④简单自动的磁通平衡功能; ⑤瞬时峰值电流限流功能,内在固有的逐个脉冲限流功能; ⑥自动均流并联功能。 峰值电流模式控制PWM的缺点是: ①占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差。 ②闭环响应不如平均电流模式控制理想。 ③容易发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性。因而需要斜坡补偿。 ④对噪声敏感,抗噪声性差。因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜波通常较小,电流信号上的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡。 ⑤电路拓扑受限制。

电阻与电流和电压的关系

电流与电压和电阻的关系 一、教材及学情分析 电流跟电压、电阻的关系实际上就是欧姆定律,它是电学中的基本定律,是进一步学习电学知识和分析电路的基础,是本章的重点。要求学生通过探究活动得出,从而更进一步体验科学探究的方法。这一节综合性较强,从知识上讲,要用到电路、电流、电压和电阻的概念;从技能上讲,要用到电流表、电压表和滑动变阻器等。学生要通过自己的实验得出欧姆定律,最关键的是实验方法。学生对实验方法的掌握既是重点也是难点,这个实验难度比较大,主要在实验的设计、数据的记录以及数据的分析方面,学生出现错误的可能性也比较大,所以实验的评估和交流也比较重要。 二、教学目标 1.知识与技能 ①使学生会同时使用电压表和电流表测量一段导体两端的电压和其中的电流。 ②通过实验认识电流、电压和电阻的关系。 ③会观察、收集实验中的数据并对数据进行分析。 2.过程与方法 ①根据已有的知识猜测未知的知识。 ②经历观察、实验以及探究等学习活动的过程并掌握实验的思路、方法;培养学生的实验能力、分析、归纳实验结论的能力;培养学生

能够掌握把一个多因素的问题转变为多个单因素问题的研究方法。 ③能对自己的实验结果进行评估,找到成功和失败的原因。3.情感、态度与价值观 ①让学生用联系的观点看待周围的事物并能设计实验方案证实自己的猜测。 ②培养学生大胆猜想,小心求证,形成严谨的科学精神。 三、教学准备: 演示用具:调光台灯、实验电路、实验表格、图像坐标纸、课堂巩固联系等多媒体课件。 学生用具:干电池(2节)、学生电源、2、5V和3V的小灯泡、开关、导线、定值电阻(5Ω、10Ω、20Ω)、滑动变阻器、电压表和电流表。 四、教学设计思路 本节课的内容有两个方面:一是探究电流跟电压的关系,二是探究电流跟电阻的关系。其基本思路是:首先以生活中的现象为基础,提出问题,激发学生的学习兴趣和学习欲望。再让学生自己通过实验,分析观察,大胆猜想,培养学生科学猜想的学习方法,然后学生根据自己的猜想分析实验方法和所需的实验器材,设计出实验电路并进行实验,通过实验数据和图像的分析得出电流跟电压和电阻的关系。五、教学重点难点: 电流、电压和电阻的关系;会观察、收集实验中的数据并对数据进行分析

差分输出、电流模式DAC的参数和测量方法(精)

差分输出、电流模式DAC的参数和测量 方法 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 本文中,将以MAX5891 作为测量和规格说明的特例。但所介绍的参数和测量方法可以用于其他的差分输出、电流模式DAC。 线性参数说明 定义数据转换器线性精度主要有两个参数:积分(INL)和差分(DNL)非线性。INL 是输出传输函数和理想直线之间的偏差;DNL是转换器输出步长相对于理想步长的误差。 可以采用两种方法之一对INL进行定义:(1)端点INL或(2)最佳拟合INL。端点INL是采用DAC传输函数端点测得的实际值计算转换器的线性度;最佳拟合INL则是计算传输函数的斜率获得INL的峰值。 图1a. 端点积分非线性误差 图1b. 最佳拟合积分非线性误差 图1a和图1b以图形的形式显示了两种测试方法与给定传输函数之间的关系。注意,两种情况中,DAC传输函数曲线的数值和形状都一样。还要注意,图1a 的端点线性度有较大的正INL,而没有负误差。 采用图1b所示的最佳拟合方法,将部分正误差转移到直线的负侧,以降低报告的最大INL。注意,线性度误差总量和直线计算结果相同。 DNL定义理解起来要难一些,确定最低有效位(LSB)的权值会影响DNL。DAC中需要考虑DNL没有小于-1 LSB的编码。小于这一电平的DNL误差表明器件是非

电流与电压电阻的关系教案

第十七章欧姆定律 第 1 节探究电流与电压、电阻的关系 一、目标确定的依据 1、课程标准相关要求使学生会同时使用电压表和电流表测量一段导体两端的电压和其中的电流,通过实验认识电流、电压和电阻的关系。 2、教材分析电流跟电压、电阻的关系实际上就是欧姆定律,它是电学中的基本定律,是进一步学习电学知识和分析电路的基础,是本章的重点。要求学生和教师共同探究活动得出,从而更进一步体验科学探究的方法。这一节综合性较强,从知识上讲,要用到电路中的电流、电压和电阻的概念;从技能上讲,要用到电流表、电压表和滑动变阻器等,学生要通过实验得出欧姆定律,主要培养实验的设计、数据的记录以及表格数据和图像的分析能力。 3、学情分析 本节课“探究电流跟电压、电阻的关系” 是一个完整的科学探究过程,是在前面“电流”“电压”“电阻”等知识学及电流与电压、电阻的定性关系的基础上,引出“探究电流与电压、电阻会不会有定量关系”的问题。让学生体会科学探究的方法。 二、教学目标 1.通过实验探究电流、电压和电阻的关系。2.会用滑动变阻器改变部分电路两端的电压或使电阻两端电压不变。 3.会说出滑动变阻器在各个实验中的作用。 三、教学重难点 教学重点:电路中电流与电压的关系、电流与电阻的关系。教学难点:运用控制变量的方法进行实验,并分析得出结论。 四、教学过程

表格设计】 1.电流表、电压表调节到零刻度,按电路图连接电 路,调节滑动变阻器的滑片至阻值最大端; 2.闭合开关,调节滑动变阻器至适当位置,将 电压 表示数 U ,电流表示数 I 记录到表格中; 3.分别调节滑动变阻器在不同位置,仿照步骤 2 再 做 5 次实验,分别记录电压表示数 U ,电流表示数 巡视指导】 重点指导: 2.实验电路连接完要检查电路连接无误,然后 用开 关试触,没有问题后再闭合开关。 4.实验时间不宜过长,最好做完一次实验要断 开开 关一次,避免电阻的温度升高,阻值发生 变化。 电阻一定,研究电流与电压的定量关系。 U/V I/A 1.学生的分工协作是否合理。 3.实验的有序性,如:电压表示数从小到大。 5.针对学生在不同的问题中出现的错误进行纠1、连接实物。 1、培养学生 连接电路前电 根据实验目 流表和电压表 的选择实 验 的调节。连接 器材设计 实 电路过程中开 验的能 力。 关要断开。闭 2、进行规 范 合开关前调节 实验操作 的 滑动变阻器的 训练。 滑片至阻值最 3、使学生 学 大端。 会实验表格 2、根据实验要 的设计。 求设计实验记 4、规范实 验 录表格。 操作、正确 3、按实验步骤 读取及记 录 进行实验,进 数据。 行实验测量、 5、渗透科 学 记录实验数 研究方法 据。 ——控制变 4、根据实验过 量的方 法。 程中采集的数 6、培养学 生 据描点作图。 科学严谨 的 5、分析实验数 态度,形成 进行实 R=10Ω不 实验步

电流模式与电压模式

电源变换器中电流模式和电压模式相互转化 adlsong 摘要摘要::本文先简单的介绍了电流模式和电压模式的工作原理和这两种工作模式它们各自的优缺点;然后探讨了理想的电压模式利用输出电容ESR 取样加入平均电流模式和通过输入电压前馈加入电流模式的工作过程。也讨论了电流模式在输出轻载或无负载时,在使用大的电感或在占比大于0.5加入斜坡补偿后,系统会从电流模式进入电压模式工作过程。 关键词关键词::电流模式,电压模式,转化,斜坡补偿 Mutual Variation between Current Mode and V oltage Mode in Power Supply Converter (AOS Semiconductor Co., Ltd., Shanghai 201203) Abstract: The operation principle and features of current mode and voltage mode are introduced in this paper. The converter at voltage mode will own good dynamic performances of current mode when current signal via ESR of output capacitance or input voltage forward feedback is imposed into control loop of voltage mode. The converter at current mode will go into cycle. Key words: 目前,电压模式和电流模式是开关电源系统中常用的两种控制类型。通常在讨论这两种工作模式的时候,所指的是理想的电压模式和电流模式。电流模式具有动态响应快、稳定性好和反馈环容易设计的优点,其原因在于电流取样信号参与反馈,抵消了由电感产生的双极点中的一个极点,从而形成单阶的系统;但正因为有了电流取样信号,系统容易受到电流噪声的干扰而误动作。电压模式由于没有电流取样信号参与反馈,系统也就不容易受到电流噪声的干扰。 然而,在实际的应用中,通常看似为电压模式的开关电源系统,即系统没有使用电流取样电阻检测电流信号,但也会采用其它的方式引入一定程度的电流反馈,从而提高系统动态响,如:利用输出电容ESR 取样加入平均电流模式,通过输入电压前馈加入电流模式。另一方面,看似为电流模式的开关电源系统,在输出轻载或无负载时,系统会从电流模式进入电压模式。在使用大的电感时,或在占比大于0.5加入斜坡补偿后,系统会从电流模式向电压模式过渡。本文将讨论这些问题,从而帮助工程师在遇到系统不稳定的时候从理论上分析,找到解决问题的办法。 1 电压模式的工作原理电压模式的工作原理 电压模式的控制系统如图1所示。反馈环路只有一个电压环,电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。电压误差放大器的同相端接到一个参考电压Vref,反馈电阻分压器连接到电压误差放大器反相端V FB ,反馈环节连接到V FB 和电压误差放大器的输出端V C 。输出电压微小的变化反映到V FB 管脚,V FB 管脚电压与参考电压的差值被电压误差放大器放大,然后输出,输出值为V C 。

电流电压电阻三者的关系

电流、电压、电阻三者的关系 学习目标要求: 1.知道研究电流跟电压、电阻关系的实验方法。 2.知道电流跟电压、电阻的关系。 3.能初步分析在相同的电压下,通过不同导体的电流强度不同的现象。 4.知道用实验研究欧姆定律的方法。 5.掌握欧姆定律的内容及公式。 6.能应用欧姆定律公式进行简单的计算。 7.理解伏安法测电阻的原理及方法。 知识要点: 1.正确理解电流跟电压、电阻的关系 在利用实验的方法研究物理规律时,往往采用“控制变量”的实验方法,即先保持一个物理量不变(如不变),研究其他两个物理量(如和)之间的关系,分别得出不同条件下的 实验结论。 通过实验归纳总结出的电流与电压的关系是:在电阻一定的情况下,导体中的电流跟导体两端的电压成正比。应该注意:(1)这里导体中的电流和导体两端的电压都是针对同一导体来说的;(2)不能反过来说,电阻一定时,电压与电流成正比;这里存在一定的因果关系,这里电压是原因,电流是结果,是因为导体两端加了电压,导体中才有电流,不是因为导体中通了电流才加了电压。 电流跟电阻的关系是:在电压一定时,导体中的电流跟导体的电阻成反比。在理解时要注意:(1)电流和电阻也是针对同一导体而言的;(2)不能说导体的电阻与通过它的电流成反比。因为电阻是导体本身的一种特性,即使导体中不通过电流,它的电阻也不会改变,更不会因导体中电流的增大或减小而使它的电阻发生改变。 2.正确理解欧姆定律的物理含义 应将欧姆定律结合实验来理解,在导体的电阻不变时,导体中的电流与导体两端的电压成正比,导体两端电压改变时,流过导体的电流随着改变;在电压不变时,导体中的电流与电阻成反比,即在同一电压下,接不同的电阻时,电流也不相同,当所接电阻越大时,通过的电流越小。 欧姆定律的实质是:通过导体的电流随导体两端的电压的改变而改变,也可随导体的电阻大小的改变而改变。但导体两端的电压不一定随电流或电阻的改变而改变,导体的电阻更不会随流 过导体的电流或导体两端的电压的改变而改变。因此,将公式变形为时,不能说电压与电流成正比,也不能说电压与电阻成正比。同样,将公式变形为时,绝不能说电阻 与电压成正比,与电流成反比。公式表明:导体两端的电压与通过它的电流的比值,等 于导体的电阻大小,但不能决定、也不能改变导体的电阻的大小。决定导体电阻大小的因素是导体的材料、长度、横截面积及温度,与其两端的电压及通过它的电流大小无关。 3.应用欧姆定律应注意的问题

DC-DC切换式稳压器中产生PWM讯号的电压和电流模式控制

DC-DC切换式稳压器中产生PWM讯号的电压和电流模式控制 切换式DC-DC 电压转换器(稳压器)含有两个元件:控制器和功率级。功率级含有切换元件,能将输入电压转换成所需的输出。控制器会监控切换作业,调节输出电压。两者由回授回路连结,会将实际的输出电压与所需的输出进行比较,得到误差电压。 控制器是电源供应器保持稳定和精密的关键,几乎所有的设计都采用脉宽调变(PWM) 技术进行调节。产生PWM 讯号的方法主要有两种:电压模式控制和电流模式控制。电压模式控制技术较早发明,但具有缺点,例如回应负载变化缓慢和回路增益会随着输入电压改变等,因此激励工程师开发以电流为基础的替代方法。 目前工程师已经能选用多款采用这两种控制技术的电源模组。这些产品整合了技术,能克服之前产品的主要缺失。 本文将说明在切换式稳压器中产生PWM 讯号的电压和电流模式控制技术,并说明各项应用的最佳用途。 电压模式控制 设计人员若要打造电源供应器,可选择离散式元件(参阅TechZone 文章《DC/DC 稳压器:如何在离散式和模组化设计中选择》)、个别控制器和功率元件,或是在单晶片上整合两者的电源供应器模组。 但无论使用何种技术,调节功能都非常有可能会采用通常为固定频率的PWM 技术。(偏好采用恒定切换频率,因为可限制电源供应器产生的电磁干扰(EMI)。)在电压模式控制的稳压器中,PWM 讯号的产生系透过将控制电压(VC) 施加到比较器的其中一个输入,以及将时脉产生的固定频率锯齿形电压(Vramp 或PWM 斜波)施加到另一个输入(图1)。 Texas Instruments 的切换式稳压器PWM 产生器图片 图1:切换式稳压器的PWM 产生器。 PWM 讯号的工作周期与控制电压成比例,并可决定切换元件的导通时间百分比,进而决定输出电压。控制电压系由实际输出电压以及所需输出电压(或参考电压)之间的差异求

电源变换器中电流模式和电压模式相互转化

电源变换器中电流模式和电压模式相互转化 如何解决混合动力汽车功率模块中稳定性问题LED散热取得突破汽车与LED成功整合有望实现LexanDMX树脂发威LED灯开始进军小众市场LED国标颁布难阻恶性竞争倒闭敲响行业警钟五大趋势DSP在未来几年内的发展方向嵌入式时钟管理器在设计中困扰工程师几大问题工程师面对漏电保护开关时的两大原则开环推挽逆变器软开关如何实现摘要:本文先简单的介绍了电流模式和电压模式的工作原理和这两种工作模式它们各自的优缺点;然后探讨了理想的电压模式利用输出电容ESR 取样加入平均电流模式和通过输入电压前馈加入电流模式的工作过程。也讨论了电流模式在输出轻载或无负载时,在使用大的电感或在占比大于0.5 加入斜坡补偿后,系统会从电流模式进入电压模式工作过程。 ?关键词:电流模式,电压模式,转化,斜坡补偿 ?Mutual Variation between Current Mode and Voltage Mode in Power Supply Converter ?(AOS Semiconductor Co., Ltd., Shanghai 201203) ?Abstract: The operation principle and features of current mode and voltage mode are introduced in this paper. The converter at voltage mode will own good dynamic performances of current mode when current signal via ESR of output capacitance or input voltage forward feedback is imposed into control loop of voltage mode. The converter at current mode will go into voltage mode at light or no load, high value inductance or slope compensation with above 0.5 duty cycle. ?Key words: Current mode, Voltage mode, Alternation, Slope Compensation ?目前,电压模式和电流模式是开关电源系统中常用的两种控制类型。通常

电流电压电阻功率的关系

电流电压电阻功率的关 系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电流、电压、电阻、功率的关系功率(瓦)=电流(安培)x电压(伏特); 功率=电压*电流 12V*1A=12W 电流=电压/电阻 12V/40Ω= 电压/电流=电阻 功率符号P单位W 电压符号U单位V 电阻符号R单位Ω 电流符号I单位A 关系式 ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U2=U

总电阻等于各电阻之积除以各电阻之和 R=(R1R2)/(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方 Pe/Ps=(Ue/Us)的平方2.有关电路的公式 ⑴电阻 R ①电阻等于材料密度乘以(长度除以横截面积) R=ρ×(L/S) ②电阻等于电压除以电流 R=U/I ③电阻等于电压平方除以电功率 R=U²/P ⑵电功 W 电功等于电流乘电压乘时间 W=UIT(普式公式) 电功等于电功率乘以时间 W=PT 电功等于电荷乘电压 W=QU 电功等于电流平方乘电阻乘时间 W=I²RT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间 W=U²T/R(同上) ⑶电功率 P ①电功率等于电压乘以电流 P=UI ②电功率等于电流平方乘以电阻 P=I²R(纯电阻电路)

第5章电流模式拓扑和电流馈电拓扑

第5章电流模式拓扑和电流馈电拓扑 5.1简介 电流模式拓扑和电流馈电拓扑虽然有各自不同的特点,但是可以归为一类。因为它们都有同时控制输入电流和输出电压的特点。 电流模式拓扑有两个反馈环,如图5.3所示。一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环。这种方式可以解决推挽电路的偏磁问题,因而它得到了更广泛的应用。此外,由于开关管的电流波形峰值恒定,也简化了反馈环路的设计。 电流馈电拓扑经过一个输入电感来注入能量(到推挽变压器的中心抽头或者正激变换器变压器的顶端)。电路的输入是一个高内阻的电流源(输入电感),而不是低内阻的整流滤波电容或电池。这种通过输入电感形成的高内阻电流源可有效解决推挽变换器的偏磁问题,并且具有其他一些优点。 在以前讨论的拓扑(电压型拓扑)中,输出电压都是被单独检测和直接控制的。在这些电路中,对负载电流变化的调整过程是:电流变化引起输出电压的微小变化,而误差放大器会探测到这个变化并且调节开关管的导通时间以保持输出电压恒定,但电压型拓扑并不直接检测输出电流。 大约7年前,一种电压和电流同时被检测的新拓扑—电流模式拓扑出现了。虽然这种拓扑人们以前也知道,但由于需要分立元件实现控制,所以应用并不广泛。然而在7年前,出现了一种专为电流模式设计的新型PWM芯片—UC 1846,并且很快被大家认同和广泛应用。 UC 1846采用电流模式控制,输出两路相位差为180。的PWM脉冲信号,可应用于推挽、半桥、全桥、级联的正激或者反激变换器。现在也有较廉价的单端PWM控制器—UC1842,可应用于电流模式的单端变换器,如正激、反激和buck调整器。 5.2电流模式拓扑的优点5.2.1防止推挽变换器的偏磁问题 偏磁现象已在2.2.5节中讨论过。当推挽变换器的变压器磁心工作点偏离平衡点,就会出现这种现象。其后果是磁心饱和,使一只晶体管承受的电流远大于另外一只,如图2.4 (c)所示。如果磁心工作点偏离磁滞回线原点,就可能进入深度饱和并且损坏晶体管。在2.2.8节中讨论了一些防止偏磁的方法。但是这些方法在一些超常的输入和负载瞬变条件下,特别是高功率输出时,仍无法保证不偏磁。 电流模式拓扑检测每个周期的电流脉冲,并且通过调整晶体管导通时间使交替电流脉冲峰值相等。这一特点使推挽电路可应用于各种新设计,并且对其他拓扑也非常有价值。例如,电流模式出现之前,为可靠防止偏磁往往是选择没有偏磁现象的正激变换器,而这提高了设计成本。 从式(( 2.28 )可知,正激变换器的初级电流峰值为3.13 ( Po/Vdc)o而由式((2.9>可知,推挽电路的电流峰值只有它的一半,即1.56 (Po/Vdc).在低功率场合,尽管正激变换器电流是推挽的两倍,但由于只用一个晶体管,其应用还是比较广泛的。但在大功率场合,正激变换器两倍峰值电流的要求就很成问题了。 推挽拓扑非常适用于低压输入(最大输入电压为60V,最小为38V)的大功率(工业)电话电源。而可保证不偏磁的电流模式推挽电路则更适用于这种电源。 5.2.2对输入网压变化即时响应(电压前馈特性) 输入网压变化会立即引起晶体管导通时间调整是电流模式拓扑本身固有的特性。与传统的电压模式不同,这种响应无需等到输出变化反馈到误差放大器时才发生,因此没有延迟。具体情况将在后面详细讨论。 5.2.3反馈回路设计的简化 前面讨论的所有拓扑(除反激变换器以外)都有一个LC输出滤波器。在略大于谐振频率fo =1 / 2n创LC时,LC滤波器可造成最大180。的相移,且随频率的提高,输出输入的电

Boost连续电流工作模式

2.4 Boost 变换器 2.4.1 Boost 变换器电路 R L R L (a) (b) 图2-14 Boost 变换器电路 Boost 变换器电路如图2-14所示,电路由开关SW、电感L、电容C 组成。完成把电压V S 升压到V O 。 2.4.2工作原理 为了分析稳态特性及简化推导过程,假定与Buck 变换器的假定相同。 当开关SW 在位置A 时,如图2-15(a)所示,电流i L 流过电感L,在电感未饱和前,电感电流线性增加,电能以磁能形式储存在电感L 中。此时,电容C 放电,负载R 上流过电流i O ,负载R 两端为输出电压V O ,由于开关管导通,二极管D 承受反向电压截止,所以电容C 不能通过开关管放电。当开关SW 在位置B 时,如图2-15(b)所示,由于电感中的磁能使电感L 两端电压极性反转,以保持i L 不变。电感两端的电压V L 与输入V S 串联,以高于输出电压V O 向电容C 和负载R 供电。当两电压之和高于V O 时,电容C 有充电电流;等于V O 时,电容C 没有充电电流;当V O 有下降时,电容向负载R 放电,以维持V O 不变。 (a)功率开关在导通时等效电路 (b)功率开关在截止时等效电路 图2-15 Boost 变换器电路工作过程等效电路 升压变换器的工作模式按电感电流在周期开始时是否从零开始,也可以分为两种工作模式: (1) 电感电流连续工作模式(Continuous Conduction mode;CCM); 在此模式下电感电流为连续导通的情况,也就是说电感电流的最小值不会降为零,所以有时称为重负载模式。因此, V s DT S = (V O -V s )(1-D)T S 式中 V s ——输入电源电压(V) ; V O ——输出电压(V); R L R L

峰值电流模式控制总结(完整版)

峰值电流模式控制总结 PWM (Peak Current-mode Control PWM) 峰值电流模式控制简称电流模式控制。它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。在70年代后期才从学术上作深入地建模研究。直至80年代初期,第一批电流模式控制PWM集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。如图1所示,误差电压信号 Ue 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜坡比较,而是与一个变化的其 比较,然后得到峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号U Σ PWM脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。 图1采用斜坡补偿的BUCK电流型控制 1. 峰值电流模式控制PWM的优点: ①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流环。电流环是瞬时快速按照逐个脉冲工作的。功率级是由电流环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC储能电路。由于这些,峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。 ②虽然电源的L-C滤波电路为二阶电路,但增加了电流环控制后,只有当误差电压发生变化时,才会导致电感电流发生变化。即误差电压决定电感电流上升的程度,进而决定功率开关的占空比。因此,可看作是一个电流源,电感电流与负载电流之间有了一定的约束关系,使电感电流不再是独立变量,整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度

DC-DC的基本调制方式与控制模式的介绍与比较

DC-DC三种基本调制方式的比较 通常来说,DC-DC有三种最常见的调制方式,分别为脉冲宽度调制(PWM)、脉冲频率调制(PFM)和跨周期调制PSM)[17]。他们调制行为的示意图可以用如图2-8所表示,下面将分别介绍三种调制方式,以及他们各大自的优缺点。 时钟 PWM PFM PSM 图2-8 三种调制方式示意图 1)PWM方式 PWM方式,可称之为定频调宽,即开关频率保持恒定,而通过改变在每一个周期内的驱动信号的占空比来达到调制的目的,这是最常用的一种调制方式[18]。当输出电压发生变化时,通过环路的控制,便会使驱动信号的占空比发生改变,从而维持输出电压的恒定。 作为最常用的调制方式,PWM方式有以下优点:控制电路简单,易于设计与实现,输出纹波电压小,频率特性好,线性度高,并且在重负载的情况下有及高的效率。其缺点是随着负载的变轻,其效率也下降,尤其是轻负载的情况下,其效率很低。 2)PFM方式 PFM模式在正常工作时,驱动信号的脉冲宽度保持恒定,但脉冲出现的频率发生改变,即所谓的定宽调频。当输出电压发生变化时,通过环路的调整,而使脉冲出现的频率发生改变,从而实现对电路的控制与调整。PFM又可以分为恒定驱动信号的高电位时间以及恒定驱动信号的低电平时间两种方式。 在具有模式切换的DC-DC电路中,PFM也是很常见到的一种调制试。这种调制方式的优点是:在轻负载的情况下,效率很高,并且频率特性也十分好。但是在重负载的情况下,其效率会明显低于PWM方式,并且由于其纹波的频谱比较分散,没有多少规律,这使得滤波电路的设计变得十分复杂与困难。 3)PSM方式

PSM方式,可称之为定频定宽。其驱动信号的频率与宽度都保持恒定,只是,当负载为最重的情况时,驱动信号满频工作,当负载变轻时,驱动信号就会跳过一些开关周期,在被跨过的周期内,开关功率管一直保持为关断的状态。当负载发生变化时,通过改变跨过周期的数目以及跨周期出现的次数,来实现对系统的调整与控制。 相对于前面的两种控制方式,PSM方式在工业上的应用要晚一些。相比于PWM方式,在轻负载的情况下,PSM要有更高的效率,并且其开关损耗与系统的输出功率成正比,与负载的变化情况关系不大。但是这种调控方式,会使输出电压有着比较大的纹波电压,不适合用于为对电源电压精度要求很高的一些系统供电。 通过以上的分析,我们可以知道,三种调控方式各有优缺点,在使用时,我们应该根据电路的应用情况而进行合理的选择。很多电路中通常都选择PWM与PFM或者PSM相结合的方式,以保证系统在整个负载范围内都有比较高的效率。本论文由于负载情况相对变化不会太大,所以只采用的了PWM方式对电路进行调制。 DC-DC基本的控制模式式介绍 DC-DC有多种反馈控制方式,如电压模式、峰值电流模式(电流模式)、平均电流模式、相加模式和滞回电流模式等[19]。其中最常用的便是电压模式与电流模式,下面将对这两种控制方式进行介绍。 1)电压模式 电压模式是一种比较老,也是比较成熟的一种控制方式。其电路整体结构如图2-9所示。电路正常工作时,误差放大器直接采样输出信号,然后把输出信号与基准电压的误差信号经过误差放大器放大后,输入到PWM比较器,与振荡器输出的三角波信号进行比较,生成控制信号,来控制开关功率管的开启与关断。

相关文档
最新文档