【胚胎干细胞向胰岛素分泌细胞的定向分化】

【胚胎干细胞向胰岛素分泌细胞的定向分化】
【胚胎干细胞向胰岛素分泌细胞的定向分化】

胚胎干细胞向胰岛素分泌细胞的定向分化

吴木潮综述 程 桦审校

(中山大学附属第二医院内分泌科,广东 广州 510120)

摘要:在适当的条件下,胚胎干细胞可在体外被诱导分化为胰岛素分泌细胞。这一过程包括胚胎干细胞的诱导分化以及分化细胞的筛选和成熟。通过检测胰岛细胞的细胞标志和应用组织化学方法可鉴定胚胎干细胞是否已分化为胰岛素分泌细胞。研究显示,来源于小鼠胚胎干细胞的胰岛素分泌细胞可使糖尿病模型动物的血糖恢复到正常水平,但在胚胎干细胞进入临床应用之前,仍有很多问题需进一步研究加以解决。

关键词:胚胎干细胞;胰岛素分泌细胞;糖尿病

中图分类号:R587.105 文献标识码:A 文章编号:1003-5435(2003)03-0209-03

糖尿病是一种严重危害人类健康的疾病,并且患病率不断上升,但目前仍缺乏有效的根治方法。近年对胚胎干细胞(ES细胞)的研究为治愈糖尿病带来了希望。ES细胞是从早期胚胎分离出来的高度未分化细胞,在适当的条件下,可以分化为各种类型的组织细胞。目前,小鼠ES细胞已可在体外被诱导分化为胰岛素分泌细胞,将这些细胞移植到链脲佐菌素(STZ)诱导糖尿病小鼠体内,可使小鼠血糖恢复正常。人ES细胞也被成功诱导分化为胰岛素分泌细胞。这充分显示了ES细胞在治疗糖尿病的临床应用前景。在此,本文对近年来有关ES细胞诱导分化为胰岛素分泌细胞的研究进展作一简要综述。

1 ES细胞的特性

ES细胞主要来源于胚囊的内细胞团和受精卵发育至桑椹胚之前的早期胚胎细胞,其主要特点是:可在体外条件下建立稳定的细胞系,能长期增殖培养并保持未分化状态;具有多向分化潜能,在适当的条件下可以分化为各种类型的组织细胞。体外ES 细胞的最大特色是可对它进行遗传改造、核转移和冷冻而不失去其全能性。

2 ES细胞作为胰岛素分泌细胞来源的优点

目前,可作为胰岛素分泌细胞来源、用于糖尿病“细胞治疗”的包括胰岛、基因技术产生的人造β细胞、干细胞(成体干细胞和ES细胞)及治疗性克隆。其中,以ES细胞最有前途。ES细胞具有以下优点:细胞来源不受限制,功能比较一致,而且可在体外进行基因修饰使其移植入体内后不会引起免疫排斥反应[1]。此外,有人认为,来自ES细胞的已分化细胞可能也较少引起免疫排斥反应。

作者简介:吴木潮(1966-),男,广东人,主治医师,在读博士。研究方向:糖尿病的细胞治疗。3 ES细胞向胰岛素分泌细胞的分化

3.1 ES细胞的诱导分化 在体外,ES细胞不能自动分化为胰岛素分泌细胞[2],但在某些诱导分化因子的作用下,可向胰岛素分泌细胞分化。许多研究显示,某些因子,如碱性成纤维细胞生长因子(bF2 G F)、肝细胞生长因子(HG F)、神经生长因子(NG F)、表皮生长因子(EG F)、转化生长因子(TG F)、胰岛素样生长因子21(IG F21)、胰升糖素样肽21(G LP21)、血管内皮生长因子(VEG F)、胃泌素、激活素A、尼克酰胺、胰岛再生相关蛋白(I NG AP)、角化细胞生长因子(KG F)、betacellulin、exendin24和层粘连蛋白(laminin)等可促进胰岛细胞和导管上皮细胞的增殖分化[1,3~5],提示这些因子有可能作为体外干细胞向胰岛素分泌细胞分化的诱导剂。目前,应用上述提到的一些因子已成功诱导ES细胞向胰岛素分泌细胞分化,如Assady等[6]应用bFG F将人ES细胞诱导分化为胰岛素分泌细胞,Lumelsky等[7]研究显示尼克酰胺可促进小鼠ES细胞向胰岛素分泌细胞分化,而Schuldiner等[8]研究发现NG F和HG F可诱导人ES 细胞向包括胰岛细胞在内的三个胚层细胞分化。

尽管有多种因子可促进ES细胞向胰岛素分泌细胞分化,但大多数因子的诱导分化作用很有限,所诱导分化的胰岛素分泌细胞数量少,也没有一种诱导分化因子能诱导分化出唯一的一种细胞类型。此外,目前有关体外ES细胞分化的调控机制也尚未明确。

3.2 分化细胞的筛选 如上所述,用诱导因子诱导分化出来的胰岛素分泌细胞数量很有限。这种含有大量其他类型的分化细胞以及未分化细胞的细胞群是不能用于移植和细胞治疗的,故必须从中筛选出胰岛素分泌细胞。

S oria等[9]把胰岛素基因和抗生素耐药基因一起转染进小鼠的ES细胞,然后用含有该抗生素的培养液培养和筛选细胞。另外,神经祖细胞能表达一

种叫nestin的蛋白,这种蛋白也在未成熟的胰岛细胞中表达。Lumelsky等[7]将源于小鼠ES细胞的未成熟胰岛细胞置于没有血清的培养液中培养,让nestin阴性的细胞死亡,从而筛选出nestin阳性的细胞,再进一步诱导分化出胰岛细胞。采用这两种不同的方法均筛选到纯度较高的胰岛素分泌细胞。3.3 分化细胞的成熟 一些研究提示,已分化细胞最后需要经历一个成熟过程方能充分发挥其功能。胰岛素分泌细胞也是这样。未成熟的胰岛素分泌细胞分泌释放胰岛素的量很少,而上述提到的一些诱导分化因子如尼克酰胺可促进胰岛素分泌细胞的成熟[1]。此外,适当浓度的葡萄糖也有助于分化细胞的成熟。

3.4 分化细胞的鉴定 ES细胞经诱导因子诱导分化之后,是否已分化为胰岛细胞,可通过细胞标志和组织化学等方法进行鉴定。

胰岛细胞的细胞标志包括与胰岛素基因表达和胰岛发育有关的各种转录因子,如PDX21、Isl21、Pax2 4、Pax26、Ngn23、NeuroD、Nkx2.1和Nkx2.2,与胰岛细胞合成和分泌胰岛素功能相关的葡萄糖激酶(G CK)和葡萄糖转运子22(G LUT2)以及各种胰岛细胞表达产物如胰岛素、胰升糖素、生长介素和胰多肽等等[1,10~13]。在体外ES细胞的诱导分化过程中,检测这些细胞标志可确定ES细胞是否已向胰岛细胞分化。

组织化学法也是鉴定分化细胞的一个方法。正常的胰岛β细胞由于含有大量的锌,对锌螯合剂Di2 thizone呈阳性反应。最近,Shiroi等[14]的研究显示, Dithizone染色可用于鉴定ES细胞来源的胰岛素分泌细胞。另一种新的特异锌荧光探针Newport G reen,由于能更容易、更快和更特异地与胰岛素分泌细胞结合,并对胰岛素分泌细胞无毒性,不仅可用于胰岛素分泌细胞的鉴定,还有望用于干细胞来源的胰岛素分泌细胞的收集和纯化[15]。

3.5 分化细胞的功能检测 在获得胰岛素分泌细胞之后,可在体外初步检测其胰岛素分泌功能,如用不同浓度的葡萄糖作用于胰岛素分泌细胞,观察细胞能否分泌胰岛素以及胰岛素的分泌量能否随葡萄糖浓度的变化而变化等。正常胰岛β细胞胰岛素释放机制涉及ATP依赖钾离子通道的关闭,细胞膜去极化和电压依赖钙离子通道的开放、细胞外钙离子内流等一系列环节。Lumelsky等[7]应用钾离子通道抑制剂甲苯磺丁脲和钙离子通道阻滞剂硝苯地平等在一定葡萄糖浓度下作用于胰岛素分泌细胞,观察胰岛素分泌水平的变化。结果提示,所诱导出来的胰岛素分泌细胞具有与正常胰岛β细胞一样的葡萄糖介导的胰岛素释放机制。

将胰岛素分泌细胞移植入糖尿病动物模型体内是观察胰岛素分泌细胞功能的最直接和最有效的方法,同时通过细胞移植而根治糖尿病是干细胞研究的最终目的。通常可将胰岛素分泌细胞移植入动物的脾内、肾被膜下或皮下。Lumelsky等[7]将诱导分化的类似胰岛结构的包含4种胰岛细胞和神经元的细胞簇移植到糖尿病小鼠皮下,尽管不能逆转小鼠的高血糖,但能延长小鼠的寿命。S oria等[9]将来源于小鼠ES细胞的胰岛素分泌细胞移植入STZ诱导糖尿病小鼠的脾内,可使小鼠血糖恢复正常。

4 未来的研究方向

近年ES细胞在糖尿病应用领域的研究进展令人鼓舞,充分显示ES细胞治愈1型糖尿病及部分2型糖尿病的广阔前景。但目前有关ES细胞在糖尿病应用领域的研究只是刚刚开始,在其真正进入临床应用之前,仍有很多问题需要进一步研究加以解决。首先,要加深对胰岛发育和体外ES细胞分化调控机制的研究,提高ES细胞的分化率,以获得更多的可供移植用的细胞。其次,由于增殖较好的细胞并不一定能有效地分泌胰岛素,并可能分化为肿瘤细胞,而那些分泌胰岛素的细胞也不一定能很好地增殖。只有使细胞不断地增殖并保持良好的胰岛素分泌功能而又无致瘤性,才能使机体的血糖长期得到良好的控制,并避免肿瘤的发生。故如何使移植细胞在增殖能力、无致瘤性和分化潜能之间保持精细的平衡是ES细胞进入临床应用之前必须解决的一个重要问题。再次,不纯的细胞可能会在体内形成畸胎瘤。为保证细胞的均质性,避免体内畸胎瘤的发生,必须研究出一种更好的细胞筛选方法。最后,与其他组织和器官移植一样,胰岛素分泌细胞的移植也存在免疫排斥反应的问题。ES细胞能在体外进行基因修饰,这是其优点之一。故应研究如何用基因修饰方法设计出可逃脱或减少免疫系统识别的细胞。也有人提出,应研究一项技术,把移植细胞包裹成囊状,隔离物应能让小分子物质如胰岛素自由通过而又使胰岛素分泌细胞不能与免疫细胞相互作用。这样包埋的胰岛素分泌细胞能分泌胰岛素进入血液,而免疫细胞不能进入去识别并加以破坏。

总之,尽管ES细胞的研究为治愈糖尿病带来了很大的希望,但目前仍有很多问题有待进一步研究。只有当这些问题得到解决时,ES细胞治愈糖尿病才会成为现实。

参考文献:

[1] S oria B,Skoudy A,Martin F.From stem cells to beta

cells:new strategies in cell therapy of diabetes mellitus

[J].Diabetologia,2001,44:4072415.

[2] Berna G,Leon2Quinto T,Ensenat2Waser R,et al.S tem

cells and diabetes[J].Biomed Pharmacother,2001,55:

2062212.

[3] Edlund H.Factors controlling pancreatic cell differentiation

and function[J].Diabetologia,2001,44:107121079. [4] Jiang F X,G eorges2Labouesse E,Harris on L C.Regulation

of laminin12induced pancreatic beta2cell differentiation by

alpha6integrin and alpha2dystroglycan[J].M ol Med,

2001,7:1072112.

[5] S toffers D A,K ieffer T J,Hussain M A,et al.Insulino2

tropic glucag on2like peptide1ag onists stimulate expression

of homeodomain protein I DX21and increase islet size in

m ouse pancreas[J].Diabetes,2000,49:7412748.

[6] Assady S,Maor G,Amit M,et al.Insulin production by

human embry onic stem cells[J].Diabetes,2001,50:16912

1697.

[7] Lumelsky N,Blondel O,Laeng P,et al.Differentiation of

embry onic stem cells to insulin2secreting structures similar to

pancreatic islets[J].Science,2001,292:138921394. [8] Schuldiner M,Y anuka O,Itskovitz2E ldor J,et al.E ffects

of eight growth factors on the differentiation of cells derived

from human embry onic stem cells[J].Proc Natl Acad Sci

US A,2000,97:11307211312.

[9] S oria B,R oche E,Berna G,et al.Insulin2secreting cells

derived from embry onic stem cells normalize glycemia in

streptozotocin2induced diabetic mice[J].Diabetes,2000,

49:1572162.

[10] Edlund H.T ranscribing pancreas[J].Diabetes,1998,47:

181721823.

[11] S oria B,Andreu E,Berna G,et al.Engineering pancreatic

islets[J].P flugers Arch,2000,440:1218.

[12] E frat S.Making sense of glucose sensing[J].Nat G enet,

1997,17:2492250.

[13] Shepherd P R,K ahn B B.G lucose transporters and insulin

action———implication for insulin resistance and diabetes

mellitus[J].N Engl J Med,1999,341:2482251.

[14] Shiroi A,Y oshikawa M,Y okota H,et al.Identification of

insulin2producing cells derived from embry onic stem cells by

zinc2chelating dithizone[J].S tem Cells,2002,20:2842292.

[15] Lukowiak B,Vandewalle B,Riachy R,et al.Identification

and purification of functional human beta2cells by a new spe2

cific zinc2fluorescent probe[J].J Histochem Cytochem,

2001,49:5192528.

(收稿日期:2002-08-20 修回日期:2002-11-11)

PGC21的研究进展

马春薇综述 徐焱成审校

(武汉大学中南医院内分泌科,湖北 武汉 430071)

摘要:过氧化物酶体增生激活受体γ协同刺激因子(PG C)21是一种近年来发现的转录协同刺激因子,被认为与内分泌疾病密切相关。PG C21能够调节适应性产热及线粒体的生成而影响肥胖的发生,还通过增加葡萄糖转运体(G LUT)4的表达增强葡萄糖的转运及激活糖异生的关键酶,与糖尿病的发生、发展密切相关。故通过调节其生理功能来治疗肥胖及糖尿病已成为研究热点。

关键词:过氧化物酶体增生激活受体γ协同刺激因子21;糖异生;糖尿病;治疗;肥胖

中图分类号:R587.105 文献标识码:A 文章编号:1003-5435(2003)03-0211-03

过氧化物酶体增生激活受体γ协同刺激因子(PG C21)是近年来发现的一种转录协同刺激因子。它被认为在适应性产热、线粒体生成、脂肪酸的β氧化及肝糖异生等过程中有着重要作用。

1 PGC21的结构

PG C21是由染色体4p15.1区域的基因编码的一种核受体刺激因子[1,2],而该区域已在印第安比马人中被证实与人空腹胰岛素浓度相关[3]。PG C21包含有一个单纯的RNA结合基序及2个富含丝氨酸

作者简介:马春薇(1977-),女,湖北人,在读硕士。研究方向:胰岛素抵抗。及精氨酸残基的SR区域,可以与RNA聚合酶Ⅱ的C末端区(CT D)相互作用。PG C21还含有可被蛋白激酶A磷酸化的3个位点及一个介导核受体协同刺激因子间相互作用的Lxx LL基序。PG C21的N末端转录活性区,是与几种转录因子相互作用的区域;C2末端与处理新转录的RNA有关。PG C21上还有与过氧化物酶体增生激活受体(PPAR)γ、细胞核呼吸因子(NRF)及肌细胞特异性增强子2C(MEF2C)结合的位点。

Donovan等[4]报道了一种新的PG C21相关的转录协同因子PG C21β,PG C21因此被重命名为PG C2 1α。在PG C21α和PG C21β的序列还发现了宿主细胞

胰岛的细胞组成与功能

胰岛的细胞组成及其功能 胰岛能分泌胰岛素与胰高血糖素等激素。人类的胰岛细胞按其染色和形态学特点,主要分为α细胞、β正常胰岛细胞、γ细胞及PP细胞。α细胞约占胰岛细胞的20%,分泌胰高血糖素;β细胞占胰岛细胞的60%-70%,分泌胰岛素;γ细胞占胰岛细胞的10%,分泌“生长抑素”;PP细胞数量很少,分泌胰多肽。 胰岛素对人体的糖脂肪和蛋白质代谢都有影响,但对于糖代谢的调 节作用尤为明显,胰岛素能够促进血液中的葡萄糖(血糖)进入组织 细胞被储存和利用。缺乏胰岛素时,血糖难以被组织细胞摄取,糖的 贮存和利用都将减少,这时血糖浓度如果过高,就会有一部分从尿液 中排出,形成糖尿。如果是因为胰岛素分泌不足导致,可以通过注射 胰岛素制剂来治疗。 2生物学作用 胰岛素是促进合成代谢、调节血糖稳定的主要激素。 1.对糖代谢的调节:胰岛素促进组织细胞对葡萄糖的摄取和利用, 加速葡萄糖合成为糖原,贮存于肝和肌肉中,并抑制糖异生,促进葡 萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。胰岛素缺 乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。 2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细 胞贮存。在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。胰岛 素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为 α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞

中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。胰岛素缺乏时,脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝 内氧化,生成大量酮体,由于糖氧化过程发生障碍,不能很好处理酮 体,以致引起酮血症与酸中毒。 3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋 白质合成的各个环节上: ①促进氨基酸通过膜的转运进入细胞; ②可使细胞核的复制和转录过程加快,增加DNA和RNA的生成; ③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还 可抑制蛋白质分解和肝糖异生。由于胰岛素能增强蛋白质的合成过 程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对 生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显 的效应。受体。胰岛素受体已纯化成功,并阐明了其化学结构。 3分泌调节 (1)血糖的作用血糖浓度是调节胰岛素分泌的最重要因素,当血糖浓 度升高时,胰岛素分泌明显增加,从而促进血糖降低。当血糖浓度下 降至正常水平时,胰岛素分泌也迅速恢复到基础水平。在持续高血糖 的刺激下,胰岛素的分泌可分为三个阶段:血糖升高5min内,胰岛 素的分泌可增加约10倍,主要来源于B细胞贮存的激素释放,因此持续时间不长,5-10min后胰岛素的分泌便下降50%;血糖升高15min 后,出现胰岛素分泌的第二次增多,在2-3h达高峰,并持续较长的 时间,分泌速率也远大于第一相,这主要是激活了B细胞胰岛素合

胚胎干细胞的体外诱导分化模型

胚胎干细胞的体外诱导分化模型马宗源 李祺福(厦门大学生命科学学院福建厦门361005) 胚胎干细胞是具有全能性及无限制的自我更新与分化能力的一类特殊的细胞群体,它能通过祖细胞为中介,分化为各种类型的体细胞,可重演体内干细胞的分化过程。自80年代从小鼠囊胚的内细胞团分离到胚胎干细胞并建系到现在已建立了神经细胞、肌肉细胞、上皮细胞、造血细胞等体外分化体系。将胚胎干细胞体外分化成为可利用的分化模型,无论从组织结构、细胞及分子水平都体现了体内分化过程的体外重演,再加上胚胎干细胞系具有体系简单,影响因子少,可控制,便于研究等特点,因此可用于研究早期胚胎发育和细胞分化调控;可成为器官移植和修复器官的细胞来源;还可用于新型药物筛选。 1 胚胎干细胞的生物学特性 胚胎干细胞具有与早期胚胎相似的结构特征,具有较高的核质比和整倍体核型。体外培养的细胞紧密堆积,呈克隆状生长,具有发育分化的多潜能性和无限制的自我更新能力,碱性磷酸酶染色呈阳性,具有高的端粒酶活性,早期胚胎细胞均表达胚胎阶段特异性抗原SSEA-1、SSEA-3、SSEA-4、T RA-1-81、T R A-1-60等;表达种系转录因子OCT-4,并且可将O CT-4基因作为细胞多能性的一个标志;白介素6型细胞因子家族参与维持调节胚胎干细胞未分化状态。 胚胎干细胞建系的过程中要解决的问题在于体外不断增殖的过程中保持未分化的状态,但是细胞如何维持其未分化状态的机理并不清楚。研究发现主要是通过膜上的特异受体蛋白gp130来发挥作用,细胞因子受体蛋白g p130可激活JA N U S、酪氨酸激酶,JA K-ST A T、M EK/M A P K等信号途径,而JAK/ST A T3和M EK/ ERK信号途径则处于相对平衡的状态。另外,一些未知的膜结合分子也参与胚胎干细胞的增殖与分化。分离纯化及鉴定调节细胞的自我更新及分化的未知分子已成为研究的热点。 2 胚胎干细胞为基础的分化模型 胚胎干细胞要维持其未分化的状态,需要在胚胎饲养层中加入分化抑制因子。一旦改变了维持胚胎干细胞未分化状态的条件,胚胎干细胞首先形成胚胎小体,胚胎小体有外中内三胚层,继续分化可形成多种类型的细胞。在体外分化培养时,可自发形成有节律性跳动的心肌细胞,同时还形成骨骼肌、神经细胞、上皮细胞等。由于体外胚胎细胞可重演体内胚胎细胞的发育过程,并且基因的表达时相与体内的胚胎发育过程是相似的,在这一过程中加入外源的诱导分化因子并与相关的调控基因结合,可使胚胎干细胞分化为各种类型的细胞。现在已初步建立了神经细胞、肌肉细胞、上皮细胞和造血细胞等体外分化模型。 2.1 神经细胞 体外培养胚胎干细胞可模拟从未定型细胞向功能性神经元转化的过程,并且其基因的表达时相与体内的胚胎发育过程相似。在分化的早期表达N FL、N F M基因,后期则表达N eur ocan基因。维甲酸及神经生长因子可诱导胚胎干细胞定向分化为神经细胞,是常用的诱导分化物,它能上调神经元特异基因的表达,同时下调中胚层基因的表达。将神经元特异的SOX2基因转进胚胎干细胞,再经维甲酸诱导,可表达90%以上的具有神经元标志的神经细胞。可能是外源基因和维甲酸同时拮抗分化抑制因子的作用,阻碍细胞向其他的方向分化,迫使其向神经元的方向分化。维甲酸能诱导胚胎干细胞分化为C-氨基丁酸能和多巴胺能神经元,而维甲酸分别结合无血清培养基和含胎牛血清的培养基培养胚胎干细胞后发现,采用无血清培养时,几乎检测不到分化的多巴胺能神经元的存在;但在有血清培养时,却能检测到大量的多巴胺神经元。这暗示血清中的某些未知的因子和维甲酸共同起到定向诱导分化 化为特定组织细胞,将这些细胞回输体内,从而达到长期治疗的目的。干细胞的医学应用还包括体外克隆人体器官,然而这比体内移植干细胞要复杂的多。相信随着研究的不断深入,来自人体干细胞的器官应用于临床治疗已为期不远。干细胞研究与应用不仅在疾病治疗方面有着极其诱人的前景,而且将对克隆动物,转基因动物生产,发育生物学,新药物的开发与药效、毒性评估等领域产生极其重要的影响。 参考文献  1 Th omson J A,Itsk ovitz-Eldor J os eph,Shapiro S S,et al. Em bryonic s tem cell lin es d erived from human b las tocysts.S cience,1998,282:1145—1147.  2 Sh amb lott M J,Axelman J,W ang S,et al.Derivation of Plurip otent stem cells from cultured human primordial germ cell.Proc Natl Acad S ci U SA,1998,95:13726—13731.  3 Jack son K A,M i T,Goodell M A.Hematopoietic potential of s tem cells isolated from murie s keletal mus cle.Proc Natl Acad Sci USA,1999,96:14482— 14486.  4 裴雪涛.干细胞研究现状与展望.高技术通讯,2001, (6):93—95. (BH)

高中生物胰岛素知识考点解析

高中生物胰岛素知识考点解析 胰岛素是人和高等动物体内的一种重要激素,通过胰岛素可将高中生物必修课和选修课中很多考点串联起来,融为一体,形成一个完整的知识网络。 1、1965年,我国的科学工作者经过6年多坚持不懈的努力,获得了人工合成的牛胰岛素结晶,这是世界上第一个人工合成的__。 答:蛋白质 2、结晶牛胰岛素是由两条链组成,其中A链有21个氨基酸,B链有30个氨基酸。从理论上讲,结晶牛胰岛素最多是由——种氨基酸组成,至少含有__个游离的氨基和__游离的羧基。 答;20种(因为构成蛋白质的氨基酸总共就20种);2;2. 3、这51个氨基酸彼此之间是通过——过程结合成胰岛素的。这些氨基酸形成胰岛素时,共形成了____个肽键,失去了__分子水,分子量比原来减少了__。 答:脱水缩合;49;49;888.提示:-SH+-SH→-S-S-过程中脱去2个氢原子,即形成1个二硫键分子量减少2,胰岛素分子共3个二硫键,所以分子量减少为:(51-2)×18+6=888 4、合成胰岛素的信使RNA至少含有__个碱基;胰岛素的基因中至少含有__个脱氧核苷酸。 答:153;306 5、胰岛素和血红蛋白都是蛋白质,但功能却不相同,原因是__。 答:氨基酸种类不同,数目不同,排列顺序不同,空间结构也不一样,所以功能就不一样。 6、胰腺是__分泌腺,分泌各种消化酶进入消化道;而胰岛是__分泌腺,胰岛素是由胰__细胞合成的,胰高血糖素是由胰岛__细胞分泌的,它们是直接释放到——内,二者在调节血糖上的关系是__作用。具体说,胰岛素分泌能__胰高血糖素的分泌,而胰高血糖素分泌能__胰岛素的分泌。 答:外;内;B;A;血液;拮抗;抑止;促进 7、和胰岛素的合成和分泌有关的四种细胞器是__、__、__、__;胰岛素是通过——方式分泌到细胞外的。 答:线粒体、核糖体、内质网、高尔基体;外排作用。 8、正常人在进食后血糖升高,会直接刺激胰岛B细胞分泌胰岛素增加,也可通过刺激__的某些部位,而间接引起胰岛B细胞分泌胰岛素增加,胰岛素的作用是__,主要是通过促进__、__、__,抑制其他非糖物质转变成血糖-实现的。当血糖浓度降低时,会直接刺激胰岛A细胞,或通过刺激__的另一些部位来间接刺激胰岛A细胞分泌胰高血糖素增加,从而通过促进__、__来提高血糖浓度。 答:下丘脑;血糖氧化分解、血糖转变成肝糖元和肌糖元、血糖转变成脂肪、氨基酸等非糖物质;下丘脑;肝糖元的分解;非糖物质转化乘血糖。 9、(2001广东高考)注射一种较大剂量激素后,小白鼠渐渐反应迟钝,活动减少,以至浑睡,该激素是() A 甲状腺激素 B 雄性激素 C 雌性激素 D 胰岛素 答:D(大剂量注射胰岛素,会使小白鼠的血糖浓度过低,出现低血糖昏迷) 10、当人的血糖浓度为150 mg/dL时,机体会作何反应() A 交感神经兴奋,促进胰岛素分泌 B 副交感神经兴奋,促进胰岛素分泌 C 交感神经兴奋,抑制胰岛素分泌D副交感神经兴奋,抑制胰岛素分泌 答:B . 人的血糖浓度正常值为80~120 mg/dL,当血糖浓度过高时,会引起副交感神经兴奋,促进胰岛素分泌,加速血糖的氧化分解,使血糖浓度恢复正常。 11、胰岛素的作用机理是只有胰岛素和组织细胞细胞膜上的受体结合后,组织细胞才能将葡萄糖搬运到细胞内利用,这种受体的化学本质是__。 答:糖蛋白 12、糖尿病发病的主要原因是人体胰岛__细胞受损,使血糖浓度超过__即160~180mg/dL时,一部分葡萄糖随__排出体外。糖尿病人的主要症状是三多一少,既__、__、__、__。 答:B;肾糖阈;尿液;多饮、多食、多尿、体重减少; 13、糖尿病的确定是检测病人的尿液,检测方法有__、__、__。 答:用斐林试剂、班氏糖定性试剂、尿糖试纸检测。

胚胎干细胞的归类

胚胎干细胞的归类 干细胞按分化潜能可分为全能干细胞、多能干细胞和专能干细胞三类,对于胚胎干细胞和造血干细胞各属于哪一类,不同的教材和资料说法不同。新课标人教版必修1教师教学用书P31“胚胎干细胞分裂速度快,并且有产生多种分化细胞类型的潜力,因此,它们也被称为多能干细胞。”选修3教师教学用书P73“全能干细胞是可以发育成一个完整个体的未分化细胞,如受精卵。多能干细胞是指能分化成除胎盘之外所有其它组织细胞的未分化细胞,如ES细胞(胚胎干细胞),他的分化能力仅次于受精卵。专能干细胞是指与特定器官和特定功能相关的一类干细胞,如神经干细胞、造血干细胞等。”从中不难看出,胚胎干细胞和造血干细胞分别属于多能干细胞和专能干细胞。 而苏教版教材上是这样解释的:“专能干细胞只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌干细胞;多能干细胞具有分化成多种细胞或组织的潜能,但失去了发育成完整个体的能力,如造血干细胞等;全能干细胞可以分化为全身200多种细胞,如神经细胞,并进一步形成机体的所有组织、器官,如胚胎干细胞。” 再看中图版教材上的描述:“全能干细胞具有形成机体的任何组织或器官,直至形成完整个体的潜能。受精卵便是一个最初的全能干细胞,它可以分化出许多全能干细胞,如胚胎干细胞。提取这些细胞中的任意一个置于子宫内,就可以发育出一个完整的个体。多能干细胞具有分化出多种组织的潜能,但不能发育成完整的个体,如骨髓造血干细胞可以分化出至少12种血细胞。专能干细胞只能分化成某一类型的,如神经干细胞只可分化出各类神经细胞。” 从苏教版和中图版教材的内容中可以看出,胚胎干细胞是全能干细胞,造血干细胞是多能干细胞,这和人教版教师教学用书上的叙述相矛盾,和人

胰岛素制备

生物技术制药参考资料 基因工程制备胰岛素 一、胰岛素的定义 胰岛素是由胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸等的刺激而分泌的一种蛋白质激素。 二、目前临床使用的胰岛素来源 1、动物胰岛素:从猪和牛的胰腺中提取,两者药效相同,但与人胰岛素相比,猪胰岛素中有1个氨基酸不同,牛胰岛素中有3个氨基酸不同,因而易产生抗体。 2、半合成人胰岛素:将猪胰岛素第30位丙氨酸,置换成与人胰岛素相同的苏氨酸,即为半合成人胰岛素。 3、重组人胰岛素(现阶段临床最常使用的胰岛素):利用生物工程技术,获得的高纯度的生物合成人胰岛素,其氨基酸排列顺序及生物活性与人体本身的胰岛素完全相同。 三、目前,国际上生产医用重组人胰岛素(recombi—nant human insulin,rhI)的方法 1、用基因工程大肠杆菌escherichia coli,E.CO一)分别发酵生产人胰岛素(human insulin,hi)的A、B链,然后经化学再氧化法,使两条链在一定条件下重新形成二硫键,得到hI。这一方法缺点较多,目前已较少使用; 2、用基因工程E.coli发酵生产人胰岛素原(hu—man peoinsulin,hPI),后经加工形成hI。E.coli系统表达量高,但缺点是不利于表达hI这样的小蛋白,产物易降解,故常采用融和蛋白形式将hPI连接在一个较大的蛋白质后,表达产物需经过一系列复杂的后加工才能形成有活性的hi; 3、通过基因工程酵母菌发酵生产hPI,经后加工形成hI。酵母系统下游后加工比细菌表达系统简单,但缺点是生产慢,生产周期长,且重组蛋白分泌量少(1~50 mg/L),产量低。因此,虽然rhI投放市场已久,但人们一直在努力寻求和探索更加有效的表达系统和高效的表达策略I2 J,尤其是对E.CO一尻表达系统的研究更是越来越深入,用E.coli系统表达hPI的策略也越来越多。另一方面,在胰岛素的基因工程生产中,下游处理非常复杂,复杂的下游处理极大地降低了胰岛素的最终收率。本研究围绕着提高重组目的蛋白表达量,简化下游处理过程等方面进行探索,建立了一套经过优化的高效完整的基因工程E.coli发酵表达(His)6一Arg—Arg一人胰岛素原[(His)6一Arg—Arg—human proinsulin,PPh—PI],后加工成hI的制备工艺。 四、基因工程制备胰岛素 1、提取目的基因:既从人的DNA中提取胰岛素基因,可使用限制性内切酶将目的基因从原DNA中分离。主要有如下4种方法: (1)鸟枪法:用一大堆限制性核酸内切酶对附近基因进行剪切,再提取所需要的。至于如何筛选,用DNA分子杂交,即DNA探针 (2)人工合成法:根据转录蛋白或者mRNA推导出基因序列,然后人工合成,没有内含子。 (3)从基因文库中提取:也就是事先已经提取完毕的拿来用 (4)PCR扩增技术:用于大量生产该段基因片段,用于商业化运作…… 2、提取质粒:使用细胞工程,培养大肠杆菌,从大肠杆菌的细胞质中提取质粒,质粒为 环状。主要有如下2种方法: (1)碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。 (2)煮沸法

胰岛素早相分泌

李强教授谈胰岛素早相分泌与餐后血糖 胰岛B细胞功能缺陷在2型糖尿病发生、发展过程中起了极其重要的作用,其中早相(第一时相)胰岛素分泌缺陷是其最早也是最主要的特征。早相胰岛素分泌减少,是导致餐后高血糖症和高胰岛素血症的重要环节,而餐后高血糖具有毒性作用,可加重胰岛素抵抗和B细胞功能缺陷,使早相胰岛素分泌进一步受损,如此形成恶性循环,最终导致糖尿病的发生。 胰岛素早相分泌在正常人中的生理意义 正常人体中葡萄糖刺激B细胞导致胰岛素分泌,胰岛素分泌包括基础(吸收后)和刺激后(餐后)两种状态,胰岛素对葡萄糖反应的动力学特征是它的双时相分泌。早在1968年,Donald等人在离体大鼠胰腺葡萄糖灌注1h的试验中就观察到这个现象:第一时相胰岛素分泌速度快,从第3min开始持续约2min减弱,随后是胰岛素缓慢释放的第二时相,持续到葡萄糖灌注的结束。同年,Cerasi等用葡萄糖输注试验将健康个体同糖尿病患者比较,发现人体中也存在双相的胰岛素分泌,并观察到IGT者和2型糖尿病患者的第一时相分泌峰值降低或完全消失。 在空腹的非糖尿病受试者中,胰岛素呈规则脉冲式分泌,每12~15min一次,葡萄糖是刺激人体分泌胰岛素的主要因素。在正常人体中,胰岛B细胞接受葡萄糖刺激的信号直接导致胰岛素分泌,其动力学特征是胰岛素的双时相分泌。正

常人静脉注射葡萄糖后,可诱导胰岛素分泌呈双峰曲线。快速分泌相包含不同条件下的两种情况:当静脉注射葡萄糖后,B细胞接受葡萄糖刺激,在0.5~1.0min 的潜伏期后,出现快速分泌峰,峰值很高可达250~300mU/L,持续5~10min 后减弱,即使通过静脉继续维持葡萄糖浓度也是如此。该快速分泌相称为第一时n相。第一时相在血糖大于5.6mmol/L时即可诱发,是较好地评价胰岛B细胞功能指标,其生理意义在于可以迅速抑制血糖的升高。第二时相为延迟分泌相,快速分泌相后出现的缓慢但持久的分泌峰,其峰值位于刺激后30min左右。持续数小时,直到刺激消失,或血浆葡萄糖回落至基线水平。第二时相释放的胰岛素大约占B细胞胰岛素储备的20%。胰岛素第一时相分泌显示的是葡萄糖促使来自储存在B细胞中分泌胰岛素颗粒的迅速释放,第二时相分泌除了来自储存的分泌颗粒外,还包括不断新合成的胰岛素。 2型糖尿病患者的胰岛素分泌缺陷 在2型糖尿病早期阶段,第一时相胰岛素分泌减少或者消失,常低于 50mU/L,由于第一时相异常导致血糖升高,使第二时相胰岛素分泌量增加,且分泌峰值时间向后推移。随着患者胰岛功能的衰竭,第二时相可无峰值出现,最后基础分泌也逐渐消失。因此,葡萄糖诱导的胰岛素第一时相分泌受损是胰岛B细胞功能障碍的最早标志之一。影响糖尿病患者第一时相的因素包括以下方面: 1. 高热量饮食

胚胎干细胞体外诱导分化综述

胚胎干细胞体外诱导分化综述 摘要:由于胚胎干细胞具有自我更新、高度增值和多向分化的潜能,因此,自20世纪90年代开始,对胚胎干细胞的研究成为生物学领域和医药工程领域研究的一个焦点。本文从胚胎干细胞的分离、体外诱导胚胎干细胞的原理和定向分化的机制、胚胎干细胞体外诱导的方法、定向分化的细胞、应用前景和研究存在的问题对胚胎干细胞进行综述。 关键词:胚胎干细胞;体外培养;诱导分化;应用 干细胞是一种具有多分化潜能和自我更新功能的早期未分化细胞。在特定条件下,它可以 分化成不同的功能细胞,形成多种组织和器官,它包括胚胎干细胞和成体干细胞。前者指早期胚胎的多能干细胞,后者是存在于胎儿和成体不同的组织内的多潜能干细胞这些细胞具有自我复制能力,并产生不同种类的具有特定表型和功能的成熟细胞的能力,能够维持机体功能的稳定,发挥生理性的细胞更新和修复组织损伤作用[4,9,10]。 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎内内细胞团(inner cell mass,ICM)或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外三个胚层的几乎所有类型细胞。自1981年Evans和Kauffman[2,8]用不同的方法首次成功分离得到小鼠胚胎干细胞以来,小鼠胚胎干细胞成为近20年来人们用来研究发育分化、基因表达调控、基因治疗等最理想的模型,并且有大量研究表明小鼠胚胎干细胞可以在体外被诱导分化为绝大多数类型的成体细胞.1998年Thomson等首次成功分离并建立人胚胎干细胞系。自此,人胚胎干细胞不但提供了一个研究人类自身发育分化的良好机会,而且如果人胚胎干细胞能像小鼠胚胎干细胞一样可以在体外诱导形成各种成体细胞,那么利用这些诱导分化形成的成熟细胞将有可能进行细胞和组织替代治疗, 包括糖尿病、帕金森病、早老性痴呆、心血管疾病和肿瘤等多种目前临床上难以治愈的疾病。 1 胚胎干细胞的分离 自Thomson成功分离并建立人胚胎干细胞系后,多年以来,人们研究出很多胚胎干细胞的 分离方法,在这里主要介绍三种: 1.1 分离自胚胎内细胞团 内细胞团又称胚细胞(embryoblast),是一团于哺乳动物初期胚胎中的一个细胞团块。从早期胚胎内细胞团(inner cell mass,ICM)分离是获得胚胎干细胞的主要途径。由于不同动物的胚胎发育存在差异,因此应注意取材时间。可通过免疫外科手术法、机械剥离法、组织培 养法等方法除去胚胎滋养层细胞获得囊胚内细胞团(ICM)细胞进行体外分化抑制培养。 1.2分离自原始生殖细胞

小鼠胚胎干细胞培养实验步骤

细胞的原代培养 点击次数:540 作者:佚名发表于:2009-03-06 16:26转载请注明来自丁香园 一、原代细胞培养原理 原代细胞培养是将机体内的某组织取出,分散成单细胞,在人工条件下培养使其生存并不断生长、繁殖的方法。借助这种方法可以观察细胞的分裂繁殖、细胞的接触抑制以及细胞的衰老、死亡等生命现象。 ? 幼稚状态的组织和细胞,如:动物的胚胎、幼仔的脏器等更容易进行原代培养 ? 掌握无菌操作技术 ? 了解小鼠解剖操作技术 ? 了解原代细胞培养的一般方法与步骤 ?了解培养细胞的消化分散 ? 了解倒置显微镜的使用 二、实验材料 ? 实验动物:孕鼠或新生小鼠 ? 液体:细胞生长液(内含20%小牛血清) 0.25%胰蛋白酶 平衡盐溶液 70%乙醇 ?器材:灭菌镊子、剪刀若干把 灭菌培养皿、细胞培养瓶、小瓶、烧杯若干个 吸管若干支 酒精灯 原代细胞培养方法 三、胰酶消化法 (1)胰酶消化法操作步骤——取材 a. 用颈椎脱位法使孕鼠迅速死亡。

b. 把整个孕鼠浸入盛有75%乙醇的烧杯中数秒钟消毒,取出后放在大平皿中携入超净台。 c. 用无菌的镊子和剪子在前腿下作一腹部水平切口,用无菌镊子将皮肤扯向后腿。 d. 用另一无菌的剪刀和镊子切开腹部,取出含有胚胎的子宫,置于无菌的培养皿上。 e. 剔除胚胎周围的包膜(若胚胎较大,应剪去头、爪),将胚胎放于无菌的含有平衡盐溶液的培养皿中。 f. 漂洗胚胎,去掉平衡盐溶液。继续用平衡盐溶液漂洗胚胎直至清洗液清亮为止。 (2)胰酶消化法操作步骤——切割 a. 将部分胚胎转移至一个无菌小瓶中,用平衡盐溶液漂洗。 b. 然后用眼科手术剪刀小心地绞碎胚胎,直到成1mm3左右的小块,再用平衡盐溶液清洗,洗到组织块发白为止。 c. 静置,使组织块自然沉淀到管底,弃去上清。 (3)胰酶消化法操作步骤——消化、接种培养 a. 视组织块量加入5-6倍的0.25%胰酶液,37℃中消化20-40分钟,每隔5分钟振荡一次,或用吸管吹打一次,使细胞分离。 b. 加入3-5ml细胞生长液以终止胰酶消化作用(或加入胰酶抑制剂)。 c. 静置5-10分钟,使未分散的组织块下沉,取悬液加入到离心管中。 d. 1000rpm,离心10分钟,弃上清液。 e. 加入平衡盐溶液5ml,冲散细胞,再离心一次,弃上清液。 f. 加入细胞生长液l-2ml(视细胞量),血球计数板计数。 e. 将细胞调整到5×105/ml左右,转移至25ml细胞培养瓶中,37℃下培养。 (4)胰酶消化法操作步骤——消化、接种培养

胰岛素及其分泌

胰岛是在胰脏腺泡之间的散在的细胞团。 胰岛能分泌胰岛素与胰高血糖素等激素。参考资料:胰岛人类的胰岛细胞按其染色和形态学特点,主要分为A细胞、B细胞、D 细胞及PP细胞。A细胞约占胰胰岛细胞的20%,分泌胰主血糖素(glucagon);B细胞占胰岛细胞的60%-70%,分泌胰岛素(insulin);D细胞占胰岛细胞的10%,分泌生成抑素;PP细胞数量很少,分泌胰多肽(pancreatic polyeptide)。一、胰岛素胰岛素是含有51个氨基酸的小分子蛋白质,分子量为6000,胰岛素分子有靠两个二硫键结合的A链(21个氨基酸)与B链(30个氨基酸),如果二硫键被打开则失去活性(图11-21)。B细胞先合成一个大分子的前胰岛素原,以后加工成八十六肽的胰岛素原,再经水解成为胰岛素与连接肽(C 肽)。图11-21 人胰岛素的化学结构胰岛素与C肽共同释入血中,也有少量的胰岛素原进入血液,但其生物活性只有胰岛素的3%-5%,而C肽无胰岛素活性。由于C肽是在胰岛素合成过程产生的,其数量与胰岛素的分泌量有平行关系,因此测定血中C肽含量可反映B 细胞的分泌功能。正常人空腹状态下血清胰岛素浓度为 35-145pmol/L。胰岛素在血中的半衰期只有5min,主要在肝灭活,肌肉与肾等组织也能使胰岛素失活。1965年,我国生化学家首先人工合成了具有高度生物活性的胰岛素,成为人类历史上第一次人工合成生命物质(蛋白质)的创举。(一)胰岛素的生物学作用胰岛素是促进合成代谢、调节血糖稳定的主要激素。1.对糖代谢的调节胰岛素促进组织、细胞对葡萄糖的摄取和利用,加速葡萄糖合成为糖原,

贮存于肝和肌肉中,并抑制糖异生,促进葡萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。胰岛素缺乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细胞贮存。在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。胰岛素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。胰岛素缺乏时,出现脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝内氧化,生成大量酮体,由于糖氧化过程发和障碍,不能很好处理酮体,以致引起酮血症与酸中毒。3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋白质合成的各个环节上:①促进氨基酸通过膜的转运进入细胞;②可使细胞核的复制和转录过程加快,增加DNA和RNA 的生成;③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还可抑制蛋白质分解和肝糖异生。由于胰岛素能增强蛋白质的合成过程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显的效应。近年的研究表明,几乎体内所有细胞的膜上都有胰岛素受体。胰岛素受体已纯化成功,并阐明了其化学结构。胰岛素受体是由两个α亚单位和两个β亚单位构成的四聚体,α亚单位由719个氨基酸组成,完全裸露在细胞膜外,是受体结合胰岛素的主要部位。α与α亚单位、α与β亚单位之间靠二硫键结合。β亚单位由

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高二生物:胚胎分割和胚胎干细胞

二、重难点提示 重点:1. 胚胎分割的过程 2. 胚胎干细胞的特点和应用 难点:胚胎干细胞的特点和应用

【随堂练习】 1. 胚胎分割是一种现代生物技术,关于这一技术的叙述正确的是() A. 胚胎分割可以将早期胚胎任意分割成多份 B. 胚胎分割技术可以获得同卵双胎或多胎 C. 胚胎分割技术属于有性生殖,不属于克隆 D. 胚胎分割技术可以分割任意时期的胚胎 思路分析:在胚胎分割时要将内细胞团均等分割,否则会影响分割后胚胎的恢复和进一步发育,所以不能将早期胚胎任意分割成多份;胚胎分割移植可以看作无性生殖;胚胎分割一般要在桑椹胚或囊胚时期进行。 答案:B 2. 北京市某医院接生了一名婴儿,医院为他保留了脐带血,如果后来他患了胰岛素依赖型糖尿病,就可以通过脐带血中的干细胞为其治疗。关于这个实例说法正确的是() A. 用干细胞培育出人体需要的器官来治疗疾病,需要激发细胞的所有全能性 B. 用脐带血干细胞能治疗这个孩子的所有疾病 C. 如果要移植用他的干细胞培育出的器官,需要用到细胞培养技术 D. 如果要移植用他的干细胞培养出的器官,应该长期给他使用免疫抑制药物 思路分析:用脐带血干细胞培养出人体需要的器官用来治疗疾病,不需要激发细胞的所有全能性。脐带血干细胞不能治疗所有疾病,如意外伤害、毒药伤害等。脐带血干细胞最大的优点就是自体移植不会有免疫排斥反应,因而不需要给他使用免疫抑制药物。 答案:C 例题1 利用胚胎干细胞治疗肝衰竭,实现此过程的最重要原因是() A. 细胞生长 B. 细胞特化 C. 细胞分化 D. 细胞增殖 思路分析:胚胎干细胞具有发育的全能性,可以被诱导分化形成新的组织细胞,移植胚胎干细胞可使坏死或退化的部位得以修复并恢复正常功能,因此利用胚胎干细胞治疗肝衰竭主要是利用其分化特性而实现的。 答案:C 例题2 如图为经过体外受精和胚胎分割移植培育优质奶牛的过程,请回答下列问题: (1)A细胞是____________,在进行体外受精前要对精子进行____________处理。 (2)进行胚胎分割时,应选择发育到____________时期的胚胎进行操作。 (3)②指的是____________。 (4)通过胚胎分割产生的两个或多个个体具有相同遗传性状的根本原因是

胚胎干细胞的定向诱导分化及应用前景

龙源期刊网 https://www.360docs.net/doc/1216374376.html, 胚胎干细胞的定向诱导分化及应用前景 作者:王士珍李雪甫陈培 来源:《科技视界》2012年第23期 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称 为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白 (cellular RA binding protein,CRABP)形成复合物,然

胰岛素基因的获取

胰岛素基因的获取 和表达实验 生物技术一班

一、寻找高表达的靶器官,获取目的mRNA 胰脏是胰岛素的高表达器官。胰脏中有胰岛A细胞和胰岛B细胞,胰岛A细胞产生胰高血糖素,胰岛B细胞产生胰岛素。在胰脏中切除含胰岛B细胞较多的组织用于提取目的mRNA 1.总RNA的提取 总RNA的抽提方法有多种,T rizol试剂是使用组广泛的RNA抽提试剂,只要由苯 酚和异硫氰酸胍组成,可以迅速破坏细胞结构,使存在于细胞质即核内的RNA释 放出来,并使核糖体蛋白与RNA分子分离,还能保证RNA的完整。提取RNA时,首先用液氮研磨材料,匀浆,加入T rizol试剂,进一步破碎细胞并溶解细胞成分。 然后加入氯仿抽提,离心,分离水相和有机相,收集含有RNA的水相,通过异丙 醇沉淀,可获得比较纯的总RNA,用于下一步mRNA的纯化。 2.mRNA的纯化 该方法利用mRNA 3'端含有PolyA﹢的特点,当RNA流经寡聚dT纤维素柱时, 在高盐缓冲液的作用下,mRNA被特异性的结合在柱上,再用低盐溶液或蒸馏水洗 脱mRNA。经过两次寡聚纤维柱后可得到较高纯度的mRNA。 3 .RNA甲醛变性胶电泳 提取样品的总RNA后,一般根据RNA的凝胶电泳图来判断RNA的质量。由于R NA容易形成二级结构,因此常用甲醛变性胶来进行RNA电泳,得到的电泳图能真实反映RNA的质量状况。 4. 设计引物 根据已知的编码胰岛素的核苷酸序列,设计引物,将目的mRNA筛选出来。 5.合成cDNA 用逆转录法以目的mRNA为模板,在逆转录酶催化下合成cDNA。 目的mRNA顺序是从NCBI中搜索得到的,数据如下: Homo sapiens insulin (INS) mRNA, partial cds /translation="WGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTR REAED LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENY CN" sig_peptide <1..25 /gene="INS" misc_feature 26..115 /gene="INS" /note="insulin B chain" misc_feature 124..216 /gene="INS" /note="C-peptide" misc_feature 223..>285

胚胎干细胞的定向诱导分化及应用前景

胚胎干细胞的定向诱导分化及应用前景 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白(cellular RA binding protein,CRABP)形成复合物,然后复合物进入细胞核内,与染色质上的受体结合,从而调控一系列基因的表达,使细胞的表型发生转变。二甲基亚砜(DMSO)是一种含硫的有机化合物,不仅能用于细胞的常规冻存,而且还是一种常用的细胞分化诱导剂,能够诱导ES细胞分化为骨骼肌细胞、心肌细胞等,其作用机制主要是影响c-myc基因表达,降低细胞的内源性聚腺苷二磷酸核苷表达水平。也有研究证明,DMSO能使细胞内储存的钙释放出来,而细胞内钙离子浓度升高在诱导细胞分化中可能起着重要作用。除了RA、DMSO外,还有β-磷酸甘油、维生素C(VC)、地塞米松、维生素K3(VK3)以及2,5-羟基维生素D3等化学试剂,也能诱导ES细胞定向分化为特定类型细

胰岛细胞及其功能

胰岛细胞及其功能 岛细胞根据其分泌激素的功能分为以下几种 一、B细胞(β细胞),约占胰岛细胞的60%~80%,分泌胰岛素,胰岛素可以降低血糖。缺乏胰岛B细胞将导致糖尿病的发生。 二、A细胞(α细胞),约占胰岛细胞的24%~40%,分泌胰高血糖素,胰高血糖素作用同胰岛素相反,可增高血糖。 三、D细胞(δ细胞-),约占胰岛细胞总数的6%~15%,分泌生长抑素。 四、胰岛PP细胞,约占胰岛细胞的1%,分泌胰多肽。 胰腺既是内分泌腺又是外分泌腺,它位于胃的后面。胰腺含有多组特异性的细胞,我们称之为朗格汉斯岛(胰岛)。这些细胞构成了胰腺的内分泌部分(无导管),其功能与外分泌腺部分(有导管)截然不同,后者在消化过程中向小肠内分泌消化酶。胰腺作为内分泌腺发挥作用时直接向血流中分泌激素,其中最重要的激素是胰岛素和胰高血糖素。 ?胰岛素作为特定物质如葡萄糖的转运机制,形成细胞膜上的载体,使葡萄糖能够穿过细胞膜。胰岛素促进糖原的合成,即将胰岛素转化为糖原,后者继而储存在肝脏中以供将来需要时使用。 ?胰岛素通过增加葡萄糖向细胞内的转运来增加碳水化合物的代谢并降低血糖的代谢(降低血糖的效应)。 ?胰岛素通过促进氨基酸向细胞内的转运,增加了蛋白质的合成。 ?当血糖水平高时,胰岛素能够防止糖原异生作用(糖原转化为葡萄糖)。 当血糖浓度过高时,葡萄糖转移进入肝脏的各个细胞。这刺激了胰岛素的释放,其作用是阻止糖原向葡萄糖的转化并随后被释放到血流中。这一过程的直接结果就是血糖下降到正常水平。当胰岛细胞不能产生胰岛素时,葡萄糖就无法进入细胞内,这样,它会蓄积在血液中并随尿液排出。这种情况导致的疾病被称为糖尿病。与此相反,胰岛素的过度分泌导致低血糖症

胚胎干细胞

1. 干细胞(stem cell): 干细胞是一类具有自我更新和分化潜能的细胞。 2.干细胞分类 (1)胚胎干细胞:指胚胎早期的干细胞。这类干细胞分化潜能宽,具有分化为机体任何组织细胞的能力。如囊胚期内细胞团的细胞。 (2)成体干细胞:指成体各组织器官中的干细胞,成体干细胞具有自我更新能力,但分化潜能窄,只能分化为相应(或相邻)组织器官组成的细胞。如神经干细胞,表皮干细胞。 第一节干细胞生物学 1. 组织自体稳定性: 特定组织通过使自身细胞死亡和增生的方式保持组织细胞数量动态平衡的特征称组织自稳定性。 2. 干细胞是个体发育和组织再生的基础。 一、干细胞的形态和生化特征 1.干细胞的形态特征 ①干细胞形态共性:细胞呈圆形或卵圆形,体积小,核质比大,增殖力强。 ②干细胞的固定组织位置:有的干细胞有固定存在部位与方式。如表皮干细胞与其周围的子细胞形成增殖结构单元。但许多组织的干细胞没有这种分布特点。 2.干细胞的生化特性 ①端粒酶活性高:如造血干细胞具癌细胞的端粒酶活性,增殖能力强。随着增殖与分化,端粒酶活性下降。 ②蛋白标志分子:不同干细胞有各异的蛋白质标志分子,可作为确定干细胞位置、分离提纯干细胞的标志。如:巢素蛋白—神经干细胞;角蛋白15—表皮干细胞。 二、干细胞的增殖特征 (一)增殖缓慢性 1.干细胞增殖速度慢:细胞动力学研究表明,干细胞的增殖速度较慢,组织中快速分裂的细胞是过渡放大细胞。 如小肠干细胞的分裂速度(Tc=11小时)比过渡放大细胞(Tc≥24小时)慢一倍。 2.过渡放大细胞: 过渡放大细胞是介于干细胞和分化细胞之间的过渡细胞,过渡放大细胞经若干次分裂产生分化细胞。 通过这种方式,机体可用较少干细胞获得较多分化细胞。 3.干细胞增殖缓慢的意义: (1)利于干细胞对外界信号作出反应,以决定细胞的发展方向—增殖或分化。 (2)减少基因突变的危险。增殖缓慢使干细胞有时间发现并纠正处于增殖周期过程中的错误。(二)干细胞的自稳定性 1.自稳定性: 自稳定性是干细胞的基本特征之一。指干细胞可在个体生命过程中自我更新并维持其自身数目恒定。 干细胞的自稳定性是区别肿瘤细胞的本质特征。 干细胞通过其特有的分裂方式维持自稳定性。 2.干细胞的分裂方式 ①干细胞有对称与不对称两种分裂方式。 不对称分裂的结果使两个子细胞一个成为功能专一的分化细胞;另一个保持干细胞的特征。 3. 不对称分裂发生原因:

相关文档
最新文档