基于ANSYS的超声振动辅助气中放电加工材料去除率计算

基于ANSYS的超声振动辅助气中放电加工材料去除率计算
基于ANSYS的超声振动辅助气中放电加工材料去除率计算

基于ANSYS的超声振动辅助气中放电加工材料去除率计算

段彩云 张建华 朱耀明 徐明刚 李 丽

山东大学

摘 要:建立了超声振动辅助气中放电加工的有限元模型,使用ANSY S分析软件对其温度场进行了数值模拟,计算出了仿真条件下的材料去除率,并通过加工试验验证了模拟结果,发现与试验结果吻合较好。结果表明,用ANSY S来计算超声振动辅助气中放电加工的材料去除率是一种行之有效的方法。

关键词:ANSY S, 气中放电加工, 温度场, 材料去除率

C alculation of Material R emoved R ate of U ltrasonic Vibration

Aided E DM in G as B ased on ANSYS

Duan Caiyun Zhang Jianhua Zhu Y aoming et al

Abstract:Finite element m odel of ultras onic vibration aided electrical discharge machining in gas is built.The machining tem perature is simulated with ANSY S to calculate the material rem oved rate in the conditions of simulation.The data gained from the simulations is proved to be accordant with the data from test.The results indicate that the simulation with ANSY S is an effective way by which the material rem oved rate of ultras onic vibration aided E DM in gas can be calculated correctly.

K eyw ords:ANSY S, E DM in gas, tem perature field, material rem oved rate

1 引言

气中放电加工技术是日本东京农工大学M K u2 nieda[1]。放电加工时,由主轴头带动制成中空薄壁管形的工具电极旋转,同时在电极间通以高压介质气体,实现气中放电加工。这种加工方法可有效克服传统放电加工使用煤油等液态介质会产生有害气体而污染环境的问题,是一种有利于环境保护的绿色加工方法。超声振动辅助气中放电加工技术则是在气中放电加工技术基础上进一步发展的新技术[2],其加工原理见图1。通过附加工具电极的超声频振动,可以改善加工条件,强化工件材料去除。与液中放电加工相同,在气中放电加工中,电极表面形成的放电凹坑的直径和深度由单次脉冲放电的能量决定,放电加工的材料去除率与放电过程中蚀除凹坑的大小有关,而放电点周围的温度场分布则是形成放电凹坑的关键。因此,放电加工温度场的研究对于明确放电加工机理、预测材料去除率有着重要意义[3]。

2 温度场模拟

在放电过程中,电极表面因获得能量而在放电点附近瞬时形成一个高温热源,其局部温度迅速升高,而电极材料内部却保持放电之前的温度,从而在电极内部形成温度差。由热力学第二定律可知,

图1 超声振动辅助气中放电加工原理图

温度不均匀的电极材料内部,温度会逐渐拉平,即热量会从高温处直接传递到直接相邻的低温处。温度场就是在某一瞬时所有空间各点温度的总计,等温面则是电极材料内有着相同温度的各个点的轨迹。基于温度场的概念,可利用ANSY S有限元分析软件的热分析模块,根据加工要求模拟出放电加工过程,而不受加工试验条件的限制。通过模拟温度场的分布情况,可以直观地观察到金属熔融区的分布范围,并计算出放电加工的材料去除率。

3 基于ANSYS的分析计算方法

(1)定义单元类型

由于在放电加工过程中,放电点处的几何模型和载荷均为轴对称分布,故只需选取对称轴上的一个平面进行分析即可,这样可将放电加工温度场分析简化为二维模型。根据二维温度场分析的单元类型选择原则,在进行瞬态温度场分析特别是分析相

收稿日期:2005年7月

变问题时,应选择低阶热单元plane55。(2)选择材料属性

在ANSY S 分析的前处理中,需要定义材料属性。在计算材料去除率时,材料的熔点是很重要的物理量,为了与加工试验结果进行有效对照,仿真分析时采用与加工试验相同的材料45钢(密度7890kg/m 3)。由于其它重要的物性参数随着温度而不断变化,因此可输入离散的数值,系统会根据输入的离散值进行线性插值,得到各物性参数随温度变化的曲线。在放电加工过程中,材料会发生熔融和气化,即存在相变过程,需要的热量称为熔化的潜在热量。在相变分析中,必须考虑材料的潜在热量,潜在热量可用热焓材料特性(E NTH )表示[4]。各物性参数随温度的变化值如表1所示。

表1 各物性参数随温度的变化值

温度(℃

)25227427627755827122715362862导热系数

λ(W/m ℃)48

46413525

26292929比热容c

(J/kg ℃)445

529

615

825

1064

827

652

822

821

焓H

(J/m 3)

01121E 91168E 92176E 94102E 94129E 96150E 91013E 91819E 9

(3)建模和网格划分

放电加工时,放电点相对于工件尺寸较小且放电时间很短,温度来不及传导,因此只有放电点周围的小部分区域受热影响,故放电加工可视为微小面热源对半无限大物体加热。考虑到几何模型与载荷都具有轴对称性,建模时选取工件的一部分(尺寸018mm ×1mm )建立二维模型,并经过仿真对比验证,可确保与工件连接处的绝缘条件。为简化模型,直接使用线上网格密度控制方法进行非均匀网格划分,可得到较理想的模型(见图2)。

图2 网格划分模型

(4)热源模型

在电加工的导热计算中,

为获得较精确的解,首

先必须考虑放电时的热源不是点热源,而是有一定尺寸大小的表面热源。虽然热流密度呈现高斯分

布[5],但因放电点很小,因此可假设放电通道中热流

密度呈均匀分布,可通过下式求得

q (r ,t )=η

U e (t )I e (t )πR 2(t )

(1)

式中 η———分配到工件上能量的分配系数U e (t )———放电维持电压(V )

I e (t )———放电维持电流(A )

R (t )———t 时刻放电通道的位形半径(m )

(5)确定初始条件和边界条件

与传统的电火花加工不同,气中放电加工时工件周围充满气体介质,故工件初始温度取决于周围

介质的温度。空气中放电加工的初始温度为室温,根据加工试验条件设为20℃。模拟分析时,除放电点处有热流密度输入外,其边界可认为是绝热表面,且放电加工时两电极间的距离较小,通道中辐射到周围介质中的热量很少,可通过能量分配系数来调节。需要输入的热流密度是一种面载荷,表示通过单位面积的热流率,其物理模型见图3。

图3 均布热源模型

(6)设置时间步长

气中放电加工试验时,脉冲放电脉冲宽度为

600

μs ,因放电击穿时间极短,可忽略不计[2]。设载荷作用时间为600

μs ,并打开自动时间步长。时间步长的设置会影响计算精度,步长越小,计算越精确,

但如步长太小,则计算所需时间较长,且对计算机的性能要求较高,故将时间子步设为10个。 4 求解与分析

(1)温度场的分布

在实际加工中,放电维持电压及电流与开路电压及峰值电流相差很大,放电维持电压比开路电压小得多,约为20~25V [6]。假设气体介质被击穿后放电半径不变,由式(1)可计算出均匀热流密度为113×109J/m 2。通过ANSY S 模拟仿真,可得放电脉

冲的脉宽为600

μs 。放电加工结束时温度场的分布情况如图4所示(放大5倍)。

图4 单脉冲放电温度场分布图(×5)

由图4能直观地观察到整个温度场的分布。从

仿真结果可看出,单脉冲气中放电加工的热影响区很小,放电点周围熔融点以下的温度影响区不太大,即大部分受热金属能够熔融、气化而被抛出。由于气中放电通入的是高压气体,除放电时熔池本身的爆炸抛出外,大部分熔融、气化的金属都会被高压气体带走,故重铸层较薄。图5和图6分别为传统电火花加工与超声振动辅助气中放电加工的工件断面图。由图可知,超声振动辅助气中放电加工工件断面的重铸层和变质层均比传统电火花加工薄很多,与仿真分析结果一致

图5 传统电火花加工工件

断面图

 

图6 超声振动辅助气中放

电加工工件断面图

(2)材料去除率的比较

通过后处理中的路径分布结果处理,可得出达到材料熔点以上的凹坑深度与直径随温度的变化曲线(见图7、图8)。由于电火花加工是基于放电的热过程,放电后电极表面所形成的放电凹坑的形状与放电时的等温面基本相似[5]。假设达到熔点以上的金属都能被全部抛出,通过计算球缺体积即可求得材料去除量

图7 

熔深随温度变化图

图8 熔宽随温度变化图

根据图7、图8的可测量值,由球缺体积公式可推导出材料去除量公式为

V =πh

h

2

6

-

L

2

8

(2)

式中 V ———材料去除量(10-12m 3)

h ———凹坑深度(m )L ———凹坑直径(m )

根据45钢的熔点,由图7、图8查得数据带入式(2),可求得仿真条件下的材料去除率为1011mm 3/s 。

图9为单个脉冲火花腐蚀工件材料凹坑的电镜照片。加工试验条件为:开路电压220V ,脉冲宽度600

μs ,峰值电流20A ,工具电极接负极,工件材料为45钢。通过加工前后工件质量的比较,算得材料去

除率为818mm 3/s 。与模拟仿真结果比较,仿真算得的材料去除率比试验得到的材料去除率大一些,这是因为在加工试验中,材料融化后一部分被抛出,而有一小部分被堆放到放电痕的外围[7]。此外,假设

为均匀热源也会造成一定的仿真误差。总的来说,仿真结果能较好地与试验结果相吻合。由此可见,放电加工温度场的研究对于预测材料去除率具有实际意义。如果在建模时更贴近实际加工条件,可以得到更为理想的结果。

图9 单个脉冲电火花腐蚀凹坑放大图(×130)

5 结语

从以上分析可知,用ANSY S 有限元分析软件进行计算机仿真,能够很好地模拟放电凹坑的温度场分布,可以根据加工要求模拟加工过程,而不受加工试验条件的限制。在通用后处理中,可以较精确地

得出熔深与熔宽的值,这对于预测材料去除率具有重要意义。通过模拟温度场的分布,能直观地观察

到受热影响的非熔融区金属的范围,从而分析加工后工件热影响层的组织结构,了解其力学性能、残余应力等。

参考文献

1 M K unieda ,X Nishiwaki.Observation of arc column m ovement

during m ono 2pulse discharge in E DM.Annals of GIRP ,V ol.41/1/1992:227~230

2 张勤河.超声振动辅助气中放电加工技术及机理研究.

山东大学博士学位论文,2003

3 孟庆国,王 刚,赵万生.混粉电火花加工温度场的计

算与分析.电加工与模具,2000(2):4~6

4 刘国庆,杨庆东.ANSY S 工程应用教程———机械篇.北

京:中国铁道出版社,2002

5 李明辉.电火花加工理论基础.北京:国防工业出版社,

1989

6 张建华.精密与特种加工技术.北京:机械工业出版社,

2003

7 楼乐明.电火花加工计算机仿真研究.上海交通大学博

士学位论文,2000

第一作者:段彩云,山东大学机械工程学院,250061济南市

收稿日期:2005年10月

基于ANSYS 并联机床结构形式的有限元分析

胡景姝 王亚萍 马海涛

哈尔滨理工大学

摘 要:为探讨并联机床结构刚度对并联机床性能的影响,在并联机床刀具顶点受力相同的情况下,利用AN 2

SY S 软件对三种并联机床的主要结构形式进行了静刚度有限元分析,得出了三种结构的位移变形、最大应力和动平

台的最大位移变形。经过分析比较,认为交叉结构是并联机床比较理想的结构形式。

关键词:ANSY S , 并联机床, 结构, 有限元分析

Finite E lement Analysis on Structure of P arallel K inematic Machine Tool

B ased on ANSYS

Hu Jingshu Wang Y aping Ma Haitao

Abstract :F or discussing the in fluence of the structure rigidity of parallel kinematic machine tool on the per formance of the machine ,the finite element analysis on the stiffness of three kinds of structures of parallel kinematic machine tool is operated by ANSY S ,and the displacement deformations and maximum stress of the structures ,and maximum displacement deformation of the m oving platform are obtained.With com paring the result of the analyses ,it is considered that the cross structure is the better struc 2ture for the machine.

K eyw ords :ANSY S , parallel kinematic machine tool , structure , finite element analysis

1 引言

六自由度数控并联机床是机器人技术、数控技术、机械设计理论等学科的最新综合技术成果,有可能成为21世纪高速轻型数控加工的主力装备,因此对并联机床的理论研究和工程应用实践是十分必要的[1]。由于国内对并联机床的研究尚处于起步阶段,在设计和选型过程中常常是根据设计者的设计经验确定其结构参数,结构往往不合理。本文借助大型有限元分析软件ANSY S ,对三种并联机床的主要结构形式进行了静刚度有限元分析,得到在并联机床刀具顶点受力相同的情况下三种机构形式的位

移变形、最大应力和动平台的最大变形情况。为改进并联机床的结构设计提供了精确的分析方法,促进了并联机床的开发与实际应用。 2 并联机床的结构形式

并联机床是采用并联机构作为主传动机构的新型数控机床,机床主体结构由定平台、动平台和六根可伸缩驱动杆组成。每根伸缩杆的两端分别用虎克铰与定平台和动平台相连接,由交流伺服电机和滚珠丝杠副驱动各伸缩杆运动。动平台中心安装主轴电机和刀具,驱动杆长度的变化引起动平台和刀具位姿的变化,使动平台和刀具实现六自由度的空间运动。

目前,并联机床整体结构主要采用两种结构:交

ANSYS随机振动理论

§4.5随机振动(PSD)分析步骤 PSD分析包括如下六个步骤: 1.建造模型; 2.求得模态解; 3.扩展模态; 4.获得谱解; 5.合并模态; 6.观察结果。 以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。ANSYS/Professional产品中不能进行随机振动分析。 如果选用GUI交互方法进行分析,模态分析选择对话框(MODOPT命令)中包含有是否进行模态扩展选项(MXPAND命令),将其设置为YES就可以进行下面的:扩展模态。这样,第二步(求得模态解)和第三步(扩展模态)就合并到一个步骤中进行计算。 §4.4.9建造模型 该步与其它分析类型建立模型的过程相似,即定义工作名、分析的标题、单元类型、单元实常数、材料性质、模型几何形状等。注意以下两点: ·只有线性行为在谱分析中才是有效的。任何非线性单元均作为线性处理。如果含有接触单元,那么它们的刚度始终是初始刚度,不再改变; ·必须定义材料弹性模量(EX)(或其他形式的刚度)和密度(DENS)。材料的任何非线性将被忽略,但允许材料特性是线性的、各向同性或各向异性以及随温度变化或不随温度变化。 §4.5.0获得模态解 结构的模态解(固有频率和振型)是计算谱解所必须的。模态分析的具体过程在《模态分析》中已经阐述过,这里还需注意以下几点: ·使用Block Lanczos法(缺省)、子空间法或缩减法提取模态。非对称法、阻尼法、QR阻尼法以及PowerDynamics法对下一步谱分析是无效的;

·所提取的模态数目应足以表征在感兴趣的频率范围内结构所具有的响应; ·如果使用GUI交互式方法进行分析,模态分析设置[MODOPT]对话框的扩展模态选项置为NO状态,那么模态计算时将不进行模态扩展,但是可以选择地扩展模态(参看MXPAND命令的SIGNIF输入项的用法)。否则,将扩展模态选项置为YES状态。 ·材料相关阻尼必须在模态分析中进行指定; ·必须在施加激励谱的位置添加自由度约束; ·求解结束后退出SOLUTION处理器。 §4.5.1扩展模态 无论选用子空间法、Block Lanczos法还是缩减法,都必须进行模态扩展。关于模态扩展,《动力学分析指南—模态分析》部分“扩展模态”一节有详细讲述。另外还需注意以下几点: ·只有扩展后的模态才能在以后的模态合并过程中进行模态合并操作; ·如果对谱所产生的应力感兴趣,这时必须进行应力计算。在缺省情况下,模态扩展过程是不包含应力计算的,这同时意味着谱分析将不包含应力结果数据。 ·模态扩展可以作为一个独立的求解过程,也可以放在模态分析阶段; ·在模态扩展结束之后,应执行FINISH命令退出求解器(SOLUTION)。 正如《动力学分析指南—模态分析》部分中讲述的那样,在进行模态分析时执行MXPAND命令就可以将模态求解和模态扩展合并成一步(GUI交互方法和批处理方法)。 §4.5.2获得谱解 功率谱密度谱求解时,系统数据库必须包含模态分析结果数据,以及模态求解获得的下列文件:Jobname.MODE、Jobname.ESAV、Jobname.EMAT、Jobname.FULL (仅子空间法和Block Lanczos法有)和Jobname.RST。 1.进入求解器(/SOLU命令) Command: /SOLU GUI: Main Menu > Solution

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

利用ANSYS随机振动分析功能实现随机疲劳分析.

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响 应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构 的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、 阻尼、恒定阻尼比和频率相关阻 尼比;

3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二 次谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原 理 在工程界,疲劳计算广泛采用名义应力法,即以S-N 曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这里仅介绍一种比较简单的方法,即Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时 间 -1σ ~+1σ68.3%的时间 -2σ ~+2σ27.1%的时间

ansys workbench 常见材料设置

Ansys workbench常用材料属性 1. isotropic secant coefficient of expansion 各向同性的热胀系数 需要输入基准温度、热膨胀系数。 基准温度,默认22度热膨胀系数 2. orthotropic secant coefficient of expansion 各向异性的热胀系数 需要输入基准温度、三个方向的热膨胀系数。 3. isotropic instantaneous coefficient of expansion 各向同性的热胀系数(随温度变化)需要输入基准温度、热膨胀系数。(随温度变化)

4. orthotropic instantaneous coefficient of expansion 各向异性的热胀系数(随温度变化)需要输入基准温度、三个方向的热膨胀系数。(随温度变化) 5. 阻尼系数、质量阻尼、刚度阻尼

6.Isotropic elasticity 各项同性的线弹性材料 需要输入弹性模量与泊松比 7.orthotropic elasticity 各项异性的线弹性材料 需要输入各方向的弹性模量与泊松比 8 Bilinear isotropic/kinematic hardening 双线性材料(非线性材料)需要输入屈服强度及切向模量,需要配合isotropic elasticity使用。

9.multilinear isotropic/kinematic hardening 多线性材料(非线性材料,应力应变曲线)需要配合isotropic elasticity使用,输入应力应变曲线。

ANSYS动力学分析

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤

ANSYS命令流解释大全

A N S Y S命令流解释大 全 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:

MP,EX,1,1E8 MP,NUXY,1, TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点 ESEL,ALL !选择所有单元

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

ANSYS-随机振动分析功能实现随机疲劳分析

4.能够考虑多个PSD激励之间的相关程度:共谱值、二次 谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原理 在工程界,疲劳计算广泛采用名义应力法,即以S-N曲线 为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕 该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已 经有许多种分析方法,这里仅介绍一种比较简单的方法,即 Steinberg提出的基于高斯分布和Miner线性累计损伤定律的 三区间法(应力区间如图1所示): 应力区间发生的时间 68.3%的时 -1σ ~+1σArray间 27.1%的时 -2σ ~+2σ 间 4.33%的时 -3σ ~+3σ 间 99.73% 大于3σ的应力仅仅发生在0.27%的时间内,假定其不造成

任何损伤。在利用Miner定律进行疲劳计算时,将应力处理成上述3个水平,总体损伤的计算公式就可以写成: 其中: :等于或低于1σ水平的实际循环数目(0.6831 ); :等于或低于2σ水平的实际循环数目(0.271 ); :等于或低于3σ水平的实际循环数目(0.0433 ); , , :根据疲劳曲线查得的1σ、2σ和3σ应力水平分别对应许可循环的次数。 综上所述,针对Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法的ANSYS随机疲劳分析的一般过程是: (1) 计算感兴趣的应力分量的统计平均频率(应力速度/应力); (2) 基于期望(工作)寿命和统计平均频率,计算1 ,2 和3 、和; 水平下的循环次数 (3) 基于S-N曲线查表得到 、和; (4) 计算疲劳寿命使用系数。 显然,根据其他随机疲劳分析方法和ANSYS随机振动分析结果,我们还可以进行许多类似的疲劳分析计算。

Ansys材料参数的定义问题

材料参数的定义问题 我想用过ANSYS的人都知道:ANSYS计算结果的精度,不仅与模型,网格,算法紧密相关,而且材料参数的定义正确与否对结果的可靠性也有决定性的作用,为方便大家的学习,本人就用过的一些材料模型,作出一些总结,并给出相关的命令操作,希望对从事ANSYS应用的兄弟姐妹们有所帮助,水平有限,不对之处还望及时纠正. 先给出线性材料的定义问题,线性材料分为三类: 1.isotropic:各向同性材料 2.orthotropic:正交各向异性材料 3.anisotropic:各向异性材料 1. isotropic各向同性材料的定义: 这种材料比较普遍,而且定义也非常简单,只需定义两个常数:EX, NUXY NUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹性材料的话,这个参数一般不用定义.如果要定义,一定要和公式: EX/(2(1+NUXY))的值匹配,否则出错,另泊松比的定义一般推荐不要超过0.5. 相关命令,例如: mp,ex,1,300e9 mp,nuxy,1,0.25 2.orthotropic:正交各向异性材料: 这种材料也是比较常见的,不过定义起来稍微麻烦一点,需定义的常数 有: EX, EY, EZ, NUXY, NUYZ, NUXZ, GXY, GYZ, GXZ 注意:在这里没有默认值,就是说,如果你某些参数不定义的话,程序会提示出错,比如:XY平面的平面应力问题,如果你只定义了EX, EY,程序将提示你,这是正交各向异性材料, GXY, NUXY是必须的. 相关命令,例如: mp,ex,1,300e9 mp,ey,1,200e9 mp,nuxy,1,0.25 mp,gxy,1,170e9 … 3.anisotropic:各向异性材料: 各向异性材料定义起来较为复杂,这里我只作些简单的说明,更详细的资料,大家可以去看帮助.对于各向异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是一个对称正定阵,因而输入的值一定要为正值. 弹性常数矩阵如下图所示,各向异性体只有21个独立的弹性常数,因而我们也就只需输入21个参数即可,而且对于二维问题,弹性常数缩减为10个.弹性系数矩阵可以用刚度或柔度两种形式来定义,自己根据情况选用,输入的时候,可以通过菜单或者TB命令的TBOPT选项来控制. 相关的命令流,例如: tb,anel,1

ansys中两种方法给材料添加材料属性

ansys中两种方法给材料添加材料属性 1 第一种在划分网格之前指定 1.1 main menu/preprocessor/meshing/mesh attributes/default attribs 出现meshing attributes 对话框,在【mat】material number下拉框中选择你需要的材料序号。单击ok 1.2 然后划分网格,则此次划分的网格的材料属性为选择的材料序号的属性。 2 第二种在划分网格之后指定 2.1 先划分好网格 2.2 点击select/entities/ 第一项选择areas ,第二项选择by num/pick,然后点击ok ,弹出面积选择框,选定面积,点击ok,完成面积选择 2.3 点击select/entities,第一项选择elements,第二项选择attached to ,第三项选择areas,表示所要选择的单元为已选定面积中的单元,点击ok,选中面中的所有单元。 2.4 点击plot/replot,将只显示已选定的单元和面积。 2.5 点击main menu/preprocessor/material pros/change mat num,在new material number 文本框中输入你需要的材料序号,在elements No. to modefied 输入all 表示所选定的所有单元对应的材料属性转为此材料属性。 ansys多种材料怎样设置材料属性呀,用什么命令? GUI方式楼上正解,或者Proprecessor->Meshing->Mesh Attributes->Picked Volumes 命令为VATT 本人喜欢在划分单元前先选好材料、实常数等再划分,命令流如下: type,1 mat,1 real,11 vmesh,all 对于其他不同材料,方式相同 :ansys中的等效应力是什么物理含义? 它与最大应力s1有什么区别,平常讨论应力分布,应该用等效应力还是最大应力s1呢?1)计算等效应力时是否需要输入等效泊松比呢?好像有效泊松比的默认值是0.5。(2)

ansys材料模型

B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP, nu xy,1,.29 ! No units MP,dens,1,7850 ! kg/m 3

TB, BISO B.2.7. Bili near Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,n uxy,1,.31 ! No units MP,dens,1,8490 ! kg/m 3 TB,BISO,1 TBDATA,1,900e6! Y ield stress (Pa) TBDATA,2,445e6! Tangent modulus (Pa) 双线性随动模型 (与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹 性和塑性)来表示材料的应力应变特性。用MP命令输入弹性模量(Exx),密度(DENS 和泊松比(NUXY。可以用TB, BKIN禾口TBDATA 命令中的1-2项输入屈服强度和切线模量: TB, BKIN

TBDATA1,二Y(屈服应力)TBDATA 2,E tan (切线模量)

例题参看 B.2.10 , Bilinear Kinematic Plasticity Example Tita nium Alloy 。 B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,n uxy,1,.36 ! No units MP,dens,1,4650 ! kg/m 3 TB,BKIN,1 TBDATA,1,70e6 ! Y ield stress (Pa) TBDATA,2,112e6! Tan ge nt modulus (Pa) 723.6塑性随动模型 各向同性、随动硬化或各向同性和随动硬化的混合模型, 与应变 率相关,可考虑失效。通过在 0 (仅随动硬化)和1 (仅各向同性硬 化)间调整硬化参数 B 来选择各向同性或随动硬化。应变率用 Cowper-Symo nds 模型来考虑,用与应变率有关的因数表示屈服应力, 如下所示: 这里二0—初始屈服应力,;一应变率,C 和P-Cowper Symonds --E P ; P ff

ANSYS谱分析的概念步骤及关键点

ANSYS谱分析的概念、步骤及关键点 谱是谱值和频率的关系曲线,反映了时间-历程载荷的强度和频率之间的关系。 响应谱代表系统对一个时间-历程载荷函数的响应,是一个响应和频率的关系曲线。 谱分析是一种将模态分析结果和已知谱联系起来的计算结构响应的分析方法,主要用于确定结构对随机载荷或随时间变化载荷的动力响应。谱分析可分为时间-历程分析和频域的谱分析。时间-历程谱分析主要应用瞬态动力学分析。谱分析可以代替费时的时间-历程分析,主要用于确定结构对随机载荷或时间变化载荷(地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等)的动力响应情况。谱分析的主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),宇宙飞船部件、飞机构件,任何承受地震或其他不规则载荷的结构或构件,建筑框架和桥梁等。 功率谱密度(Power Spectrum Density):是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值-频率值的关系曲线,其中PSD可以是位移PSD、速度PSD、加速度PSD、力PSD等形式。数学上,PSD-频率关系曲线下面的面积就是方差,即响应标准偏差的平方值。 ANSYS谱分析分为3种类型: *响应谱分析(SPRS OR MPRS) ANSYS响应谱分为单点响应谱和多点响应谱,前者指在模型的一个点集(不局限于一个点)定义一条响应谱;后者指在模型的多个点集定义多条响应谱。 * 动力设计分析(DDAM) 动力分析设计是一种用于分析船舶装备抗震性的技术 *随机振动分析(PSD) 随机振动分析主要用于确定结构在具有随机性质的载荷作用下的响应。 与响应谱分析类似,随机振动分析也可以是单点的或多点的。。在单点随机振动分析时,要求在结构的一个点集上指定一个PSD;在多点随机振动分析时,则要求在模型的不同点集上指定不同的PSD。 一单点响应谱分析 基本步骤 (1)建立模型 (2)求得模态解 (3)求得谱解 (4)扩展模态 (5)合并模态 (6)观察结果 1.模型的建立 *只允许线性行为,任何非线性特性均作为线性处理,即非线性行为无效; *一定要定义弹性模量EX和密度DENS

ansys材料属性特详细

1.材料一级菜单的中英文对照 材料菜单位置:选择主菜单preferences 的preprocessor 中的material probs 的material model 材料对话框中英文对照 ?????????特殊材料 材料摩擦系数材料阻尼系数热膨胀材料材料密度非线性材料线性材料dMaterials Specialize icient ctionCoeff F Dam ping ri Expansion T hermal Density Nonlinear Linear 2.线性材料的中英文对照 线性材料Linear 的下级菜单为elastic :线弹性材料的下级菜单的中英文对照 ?????各向异性材料 正交各向异性材料各向同性材料nisotropic A c Orthotropi Isotropic Isotropic 各向同性材料的菜单中的各主要名词中英文对照 Linear Isotropic Material properties for Material Number 1 线性各向同性材料:材料1的材料属性 ?????????显示材料属性 属性删除材料在某温度下的性新增材料在某温度的属比材料在该温度下的泊松在该温度下材料在某温度下的属性raph ele PRXY 的弹弹性模材料G re ctTeperatu D ture AddTem pera EX es tem peratur Orthotropic 正交各向异性材料的菜单中的各主要名词中英文对照 LinearOrthotropic Material properties for Material Number 1 线性正交各向异性材料:材料1的材料属性 ?????????显示材料属性 属性删除材料在某温度下的性新增材料在某温度的属面的剪切模量材料方向的泊松比材料在该温度下方向在该温度下材料在某温度下的属性raph ele //////PRXY/PRXZ 的弹弹性模//材料//G re ctTeperatu D ture AddTem pera XZ YZ XY XZ GYZ GXY Z Y X Z Y X EZ EY EX es temperatur Anisotropic 各向异性材料的菜单中的各主要名词中英文对照

随机振动分析实例

ANSYS 动力分析(18) - 随机振动分析- 实例(1) 2010-09-26 07:41:23| 分类:ANSYS 动力分析| 标签:随机振动实例模型飞机机翼psd|举报|字号订阅 PSD 实例:模型飞机机翼的随机振动 说明: 确定由于施加在机翼根部的Y 向加速度PSD,在模型飞机机翼中造成的位移和应力。假设机翼在Z=0 处固支。 操作指南 1. 清除数据库并读入文件wing. inp 以创建几何模型和网格。

2. 定义材料属性: 弹性模量= 38000 psi 泊松比= 0.3 密度= 1.033E-3/12 lbf-sec2/in4 = 8.6083E-5 3. 施加边界条件。 提示:选择在areas 上施加位移约束,拾取Z=0 处所有的Areas,约束所有自由度。

4. 定义新分析为Model,使用Block Lanczos 方法,抽取和扩展前15 个自然模态。然后求解Current LS。 5. 查看模态形状,如图为前 4 阶振型。

6. 使用所显示的 PSD 谱,执行 PSD Spectrum 分析。 首先定义分析类型为 Spectrum 分析类型为 PSD,使用全部模态,计算单元应力:注意激活“Calculate elem stresses”选项。 7. 在基础上施加指定的 PSD 谱 (注意:确保 PSD 的单位是 G2/Hz)。

施加 Y 向激励 (方法是:在基础节点上施加单位 Y 向位移)。 设置常阻尼比 0.02:

设置有关参数–重力加速度值 注意:响应谱类型选择 Accel (g**2/Hz),否则后面的 PSD 谱应该输入实际加速度值: 定义 PSD 谱表格:

ANSYS随机振动理论

§4、5随机振动(PSD)分析步骤 PSD分析包括如下六个步骤: 1.建造模型; 2.求得模态解; 3.扩展模态; 4.获得谱解; 5.合并模态; 6.观察结果。 以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。ANSYS/Professional产品中不能进行随机振动分析。 如果选用GUI交互方法进行分析,模态分析选择对话框(MODOPT命令)中包含有就是否进行模态扩展选项(MXPAND命令),将其设置为YES就可以进行下面得:扩展模态。这样,第二步(求得模态解)与第三步(扩展模态)就合并到一个步骤中进行计算。 §4、4、9建造模型 该步与其它分析类型建立模型得过程相似,即定义工作名、分析得标题、单元类型、单元实常数、材料性质、模型几何形状等。注意以下两点: ·只有线性行为在谱分析中才就是有效得。任何非线性单元均作为线性处理。如果含有接触单元,那么它们得刚度始终就是初始刚度,不再改变; ·必须定义材料弹性模量(EX)(或其她形式得刚度)与密度(DENS)。材料得任何非线性将被忽略,但允许材料特性就是线性得、各向同性或各向异性以及随温度变化或不随温度变化。 §4、5、0获得模态解 结构得模态解(固有频率与振型)就是计算谱解所必须得。模态分析得具体过程在《模态分析》中已经阐述过,这里还需注意以下几点: ·使用Block Lanczos法(缺省)、子空间法或缩减法提取模态。非对称法、阻尼法、QR阻尼法以及PowerDynamics法对下一步谱分析就是无效得;

·所提取得模态数目应足以表征在感兴趣得频率范围内结构所具有得响应; ·如果使用GUI交互式方法进行分析,模态分析设置[MODOPT]对话框得扩展模态选项置为NO状态,那么模态计算时将不进行模态扩展,但就是可以选择地扩展模态(参瞧MXPAND命令得SIGNIF输入项得用法)。否则,将扩展模态选项置为YES状态。 ·材料相关阻尼必须在模态分析中进行指定; ·必须在施加激励谱得位置添加自由度约束; ·求解结束后退出SOLUTION处理器。 §4、5、1扩展模态 无论选用子空间法、Block Lanczos法还就是缩减法,都必须进行模态扩展。关于模态扩展,《动力学分析指南—模态分析》部分“扩展模态”一节有详细讲述。另外还需注意以下几点: ·只有扩展后得模态才能在以后得模态合并过程中进行模态合并操作; ·如果对谱所产生得应力感兴趣,这时必须进行应力计算。在缺省情况下,模态扩展过程就是不包含应力计算得,这同时意味着谱分析将不包含应力结果数据。 ·模态扩展可以作为一个独立得求解过程,也可以放在模态分析阶段; ·在模态扩展结束之后,应执行FINISH命令退出求解器(SOLUTION)。 正如《动力学分析指南—模态分析》部分中讲述得那样,在进行模态分析时执行MXPAND命令就可以将模态求解与模态扩展合并成一步(GUI交互方法与批处理方法)。 §4、5、2获得谱解 功率谱密度谱求解时,系统数据库必须包含模态分析结果数据,以及模态求解获得得下列文件:Jobname、MODE、Jobname、ESAV、Jobname、EMAT、Jobname、FULL(仅子空间法与Block Lanczos法有)与Jobname、RST。 1、进入求解器(/SOLU命令) Command: /SOLU GUI: Main Menu > Solution

ANSYS中非线性材料的定义---文本资料

ANSYS中非线性材料的定义 ANSYS中定义材料非线性包括如下步骤: 1.定义材料的弹性模量(MP或MPDATA命令); 2.激活非线性材料属性表并定义(TB族命令,包括:TB + TBTEMP + TBDATA或TBPT等) 即:ANSYS中材料非线性定义命令流: 1.定义材料的弹性模量: ①MP, ! (该命令中应含有材料号) 或①MPTEMP, MPDATA, ! (该命令中应含有材料号, MPTEMP+MPDATA是连续的) 2. 激活非线性材料属性表并定义 ②TB, ! (该命令中应含有材料号, 三个命令是连续的) TBTEMP, TBDATA, 或②TB, ! (该命令中应含有材料号, 三个命令是连续的) TBTEMP, TBPT, 详述如下: 1. 利用MP或MPDATA命令定义材料的弹性模量 MP,Lab,MAT,C0,C1,C2,C3,C4 说明:定义材料的属性(Material Property),材料属性为固定值时,其值为C0,当随温度变化时,由后四个参数控制。 MAT:对应ET所定义的号码(ITYPE),表示该组属性属于ITYPE。 Lab:材料属性类别,任何元素具备何种属性在元素属性表中均有说明。

例如:杨氏系数(Lab=EX,EY,EZ), 密度(Lab=DENS), 泊松比(Lab=NUXY,NUXYZ,NUZX), 剪切模数(Lab=GXY,GYZ,GXZ), 热膨胀系数(Lab=ALPX,ALPY,ALPZ)等。 2. 利用TB命令激活非线性材料属性表,并利用TBTEMP及TBDATA或TBPT命令定义属性表中数据 ?TB, Lab, mat, ntemp,npts,tbopt,eosopt 激活非线性材料特性表的定义 ?TBTEMP,temp,kmod 为材料表定义温度值(每一个温度对应一个材料非线性公式或应力-应变曲线) ?TBDATA, stloc, c1,c2,c3,c4,c5,c6 给当前数据表定义数据 或TBPT,oper, x,y 在应力-应变曲线上定义一个点 上述两个命令要配合TB及TBTEMP使用。在TB及TBTEMP后是用TBDATA还是TBPT,取决于TB 和TBTEMP中的相关选项,详见ANSYS帮助文档。 总的来说,TB确定了材料非线性属性表类型、意义和有几张表格(即有几个温度值);TBTEMP确定温度值;TBDATA或TBPT确定与上述温度值对应的材料非线性公式或应力-应变曲线。其中,TBPT仅用于TB中Lab项下KINH、MISO、MELAS或BH模型中的应力-应变曲线的定义,其余Lab项均用TBDATA。 参数说明: Lab:材料特性表之种类(下述为常见的几种,其余的还有很多,详见ANSYS帮助文档) Bkin: 双线性随动强化 Biso: 双线性等向强化 Mkin: 多线性随动强化(最多5个点) Miso: 多线性等向强化(最多100个点) Dp: dp模型 Mat:材料号 Ntemp:数据的温度数。对于bkin: ntemp缺省为6 ;miso: ntemp缺省为1,最多20;biso: ntemp缺省为6,最多为6; dp: ntemp, npts, tbopt 全用不上 Npts:对某一给定温度数据的点数 ----------------------------------------------------------------------- temp:温度值 kmod:缺省为定义一个新温度值。如果是某一整数,则重新定义材料表中的温度值。 注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序

ansys材料模型

各向同性弹性模型 各向同性弹性模型。使用MP命令输入所需参数: MP,DENS—密度 MP,EX—弹性模量 MP,NUXY—泊松比 此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3 双线性各向同性模型 使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型(与应变率无关)。仅可在一个温度条件下定义应力应变特性。(也有温度相关的本构模型;参看Temperature Dependent Bilinear Isotropic Model)。用MP命令输入弹性模量(Exx),泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算

体积模量(K)。用TB和TBDATA命令的1和2项输入屈服强度和切线模量: TB,BISO TBDATA,1, (屈服应力) Y TBDATA,2, E(切线模量) tan 例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。 B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDATA,1,900e6 ! Yield stress (Pa) TBDATA,2,445e6 ! Tangent modulus (Pa) 双线性随动模型 (与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应力应变特性。用MP命令输入弹性模量

相关文档
最新文档