巧用向量数量积解题

巧用向量数量积解题

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16 DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得 3(-1+2m )-4(-2-m )=0,则m =-12,所以b =????-12,1,所以a ·b =-1×????-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =????23 BC - BA ·????-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结 论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC , D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C [易错提醒] x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

向量知识点总结

高中数学第五章-平面向量 考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 考试要求: (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式. §05. 平面向量 知识要点 1.本章知识网络结构 2.向量的概念 (1)向量的基本要素:大小和方向. (2)向量的表示:几何表示法 AB ;字母表示:a ; 坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ?|a |=O . 单位向量a O 为单位向量?|a O |=1. (5)相等的向量:大小相等,方向相同 (x1,y1)=(x2,y2)???==?2 12 1y y x x (6) 相反向量:a =-b ?b =-a ?a +b =0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 3.向量的运算

(1)平面向量基本定理 e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有, 一对实数λ 1 λ2,使a=λ1e1+λ2e2. (2)两个向量平行的充要条件 a∥b?a=λb(b≠0)?x1y2-x2y1=O.

高中数学有关平面向量的公式的知识点总结.

定比分点定比分点公式(向量P1P=向量PP2 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数,使向量P1P=向量PP2,叫做点P分有向线段P1P2所成的比。 若P1(x1,y1,P2(x2,y2,P(x,y,则有 OP=(OP1+OP2(1+;(定比分点向量公式 x=(x1+x2/(1+, y=(y1+y2/(1+。(定比分点坐标公式 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=OA +OB ,且+=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b0,则a//b的重要条件是存在唯一实数,使a=b。 a//b的重要条件是 xy-xy=0。零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 ab的充要条件是 ab=0。 ab的充要条件是 xx+yy=0。 零向量0垂直于任何向量.

设a=(x,y,b=(x,y。 1、向量的加法向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x,y+y。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b+c=a+(b+c。 2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即共同起点,指向被减 a=(x,y b=(x,y 则 a-b=(x-x,y-y. 4、数乘向量实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。 当>0时,a与a同方向; 当<0时,a与a反方向; 当=0时,a=0,方向任意。 当a=0时,对于任意实数,都有a=0。 注:按定义知,如果a=0,那么=0或a=0。 实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。当∣∣>1时,表示向量a的有向线段在原方向(>0或反方向(<0上伸长为原来的∣∣倍;

知识梳理_平面向量的数量积及应用_提高

平面向量的数量积及应用 编稿:李霞 审稿:孙永钊 【考纲要求】 1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际问题. 【知识网络】 【考点梳理】 考点一、向量的数量积 1. 定义: 已知两个非零向量a 和b ,它们的夹角为θ,我们把数量||||cos θa b 叫做a 和b 的数量积(或内积),记作?a b ,即||||cos ?=θa b a b . 规定:零向量与任一向量的数量积为0. 要点诠释: (1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与余弦值决定 . (2)在运用数量积公式解题时,一定注意两向量夹角范围0?≤θ≤180?.此外,由于向量具有方向性,一定要找准 θ是哪个角. 2. 平面向量的数量积的几何意义 我们规定||cos θb 叫做向量b 在a 方向上的投影,当θ为锐角时,||cos θb 为正值;当θ为钝角时, 平面向量数量积及应用 平面向量的数量积 平面向量的应用 平面向量的坐标运算

||cos θb 为负值;当θ=0?时,||cos ||θ=b b ;当θ=90?时,||cos 0θ=b ;当θ=180?时,||cos ||θ=-b b . ?a b 的几何意义:数量积?a b 等于a 的长度||a 与 b 在a 方向上的投影||cos θb 的乘积. 要点诠释: b 在a 方向上的投影是一个数量,它可正、可负,也可以等于0. 3. 性质: (1) 0⊥??=a b a b (2) 当a 与b 同向时,||||?=a b a b ;当a 与b 反向时,||||?=-a b a b . 特别地2 2 ||||?==,即a a a a a (3) cos |||| ?θ= a b a b (4) ||||?≤a b a b 4. 运算律 设已知向量a 、b 、c 和实数λ,则向量的数量积满足下列运算律: (1) ?=?a b b a (交换律) (2) ()()()λ?=λ?=?λa b a b a b (3) ()+?=?+?a b c a c b c 要点诠释: ①当0≠a 时,由0?=a b 不一定能推出0=b ,这是因为对任何一个与a 垂直的向量b ,都有 0?=a b ;当0≠a 时,?=?a b a c 也不一定能推出=b c ,因为由?=?a b a c ,得()0?-=a b c ,即a 与()-b c 垂直.也就是向量的数量积运算不满足消去律. ②对于实数,,a b c ,有()()a b c a b c ?=?,但对于向量来说,()()??=??a b c a b c 不一定相等,这是因为()??a b c 表示一个与c 共线的向量,而()??a b c 表示一个与a 共线的向量,而a 与c 不一定共线,所以 ()??a b c 与()??a b c 不一定相等. 5. 向量的数量积的坐标运算 ①已知两个非零向量11(x ,y )=a ,22(x ,y )=b ,那么1212x x y y ?=+a b ;

2019年人教版及高中数学平面向量知识点易错点归纳

§5.1 平面向量的概念及线性运算 三角形法则 3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD → 且AB 与CD 不共线,则AB ∥CD ; 若AB →∥BC → ,则A 、B 、C 三点共线.

失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. §5.2 平面向量基本定理及坐标表示 1.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=x 21+y 2 1. (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ?x 1y 2-x 2y 1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法 判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范 1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况. 2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1 y 2 ,因为x 2,y 2有可能等 于0,所以应表示为x 1y 2-x 2y 1=0.

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用 知识梳理: 平面向量的夹角及表示: (1).平面向量的夹角的定义 (2).范围: 表示方法: 当夹角为0或错误!未找到引用源。时,则称a与b ,记作: ; 当夹角为9错误!未找到引用源。时,则称a与b ,记作: ; 2.向量的数量积定义: 3.数量积几何意义与投影的概念: 4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。是a与e的夹角, 则 ①错误!未找到引用源。= ;②a错误!未找到引用源。b时,a错误!未找到引用源。b错误!未找到引用源。③错误!未找到引用源。同向量,错误!未找到引用源。 ④错误!未找到引用源。反向量,错误!未找到引用源。⑤错误!未找到引用源。|错误!未找到引用源。=错误!未找到引用源。 特别地:错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。+2a错误!未找到引用源。b 错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。-2a 错误!未找到引用源。b (a+b)错误!未找到引用源。(a-b)=错误!未找到引用源。-错误!未找到引用源。 ⑥数量积的运算律: 交换律:;结合律:;分配律: ⑦数量积的坐标运算:; ⑧两向量垂直叛定:;

⑨两向量夹角公式: ; ⑩向量的模及两点间的距离: ; 二、题型探究 探究一:平面向量的数量积运算 例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。,求: ○1错误!未找到引用源。 ○2错误!未找到引用源。 ○3错误!未找到引用源。-错误!未找到引用源。 ; ○4(2a-b )错误!未找到引用源。(a+3b ) (答案:-10;21;9;-48) 探究二、数量积的综合应用 例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ?-)2(= 例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ; (2)若1||>++c b a k )(R k ∈,求k 的取值范围. 解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,

平面向量的数量积知识点整理

平面向量的数量积 一、平面向量数量积的含义 1. 平面向量数量积的运算 1.已知2,5,(1)||a b a b ==若; (2) a b ⊥;(3) a b 与的夹角为030,分别求. 2.△ABC 中,3||=?→?AB ,4||=?→?AC ,5||=?→ ?BC ,则=?_________ 3.在ABC ?中,已知7=AB ,5=BC ,6=AC ,则________ 2.夹角问题 1.已知|a |=4,|b|=3, a ·b=6,求a 与b 夹角 2.已知,a b 是两个非零向量,且a b a b ==-,则与的夹角为____ 3.已知3||=→a ,5||=→b ,且12=?→→b a ,则向量→a 在向量→b 上的投影为_____ 4.若1,2,a b c a b ===+,且c a ⊥,则向量a 与向量b 的夹角为 5.已知向量、不共线,且||||=,则+与-的夹角为 __________ 6.在ABC ?中=,= ,=,则下列推导正确的是__ _ ① 若0

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

平面向量的数量积及其应用定稿1

平面向量的数量积及其应用 【考试要点】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 【教学过程】 活动一心动入境

(5)(a+b)2=a2+2a·b+b2. (6)(a-b)2=a2-2a·b+b2. 课前活动二[归纳反思] (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? (3) 若向量a,b,c满足a·b=a·c(a≠0),是否能有b=c? (4)若向量a,b,c满足(a·b)c≠a(b·c),是否有(a·b)c=a(b·c)? (5) 正三角形ABC中,与的夹角应为多少度? 热身训练1.平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于() A.13+6 2 B.25 C.30 D.34 2.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________. 3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 4.已知e1,e2是互相垂直的单位向量,若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________. 考点一平面向量的数量积及在平面几何中的应用 探究实践1 【例1】如图,在△ABC中,AB=3,AC=5,∠BAC =60°,D,E分别是AB,AC的中点,连接CD,BE 交于点F,连接AF,取CF的中点G,连接BG,则AF → ·BG → =________. (2)在直角梯形ABCD中,∠A=90°,AD∥BC,BC

平面向量数量积的性质及其运算-高中数学知识点讲解

平面向量数量积的性质及其运算1.平面向量数量积的性质及其运算 【知识点的知识】 1、平面向量数量积的重要性质: →→→→→→ 设?,?都是非零向量,?是与?方向相同的单位向量,?与?和夹角为θ,则: →(1)??→ ?= → ? ? →→ ?= |?|cosθ; →(2)?⊥→→ ??? ? → ?= 0;(判定两向量垂直的充要条件) →→→(3)当?,?方向相同时,??→→→→→→ ?= |?||?|;当?,?方向相反时,?? →→→ ?=― |?||?|; →特别地:??→→→ ?= |?|2 或|?| =→? ? → ?(用于计算向量的模) (4)cosθ= →→ ??? (用于计算向量的夹角,以及判断三角形的形状)→→ |?||?| →(5)|??→→→?|≤|?||?| 2、平面向量数量积的运算律 →(1)交换律:??→ ?= → ? ? → ?; →→→ (2)数乘向量的结合律:(λ?)??=λ(??→ ?)= →→ ??(??); →(3)分配律:(??→→ ?)?? ≠ →→ ??(? ? → ?) 【平面向量数量积的运算】 →→ 平面向量数量积运算的一般定理为①(?±?)2 =→→→ ?2±2??? + →→ ?2.②(? ― →→ ?)(?+ → ?)= → ?2 ― →→→→ ?2.③??(??? ) →→→ ≠(???)??,从这里可以看出它的运算法则和数的运算法则有些是相同的,有些不一样.【例题解析】 例:由代数式的乘法法则类比推导向量的数量积的运算法则: 1/ 3

→①“mn=nm”类比得到“??→ ?= → ? ? → ?” → ②“(m+n)t=mt+nt”类比得到“(?+→→ ?)?? = → ? ? → ?+ → ? ? → ?”; →→③“t≠0,mt=nt?m=n”类比得到“?≠0,??→ ?= → ? ? →→ ???= → ?”; →④“|m?n|=|m|?|n|”类比得到“|??→→→ ?|=|?|?|?|”; → ⑤“(m?n)t=m(n?t)”类比得到“(??→→ ?)?? = →→ ??(? ? → ?)”; ??⑥“ ?? = → ? ? ? → ?”类比得到 ? ? → ? → ? = → ? → ? .以上的式子中,类比得到的结论正确的是①②. 解:∵向量的数量积满足交换律, →∴“mn=nm”类比得到“??→ ?= → ? ? → ?”, 即①正确; ∵向量的数量积满足分配律, →∴“(m+n)t=mt+nt”类比得到“(?+→→ ?)?? = → ? ? → ?+ → ? ? → ?”, 即②正确; ∵向量的数量积不满足消元律, →→∴“t≠0,mt=nt?m=n”不能类比得到“?≠0,??→ ?= → ? ? →→ ???= → ?”, 即③错误; →∵|??→→→ ?|≠|?|?|?|, → ∴“|m?n|=|m|?|n|”不能类比得到“|??→→→ ?|=|?|?|?|”; 即④错误; ∵向量的数量积不满足结合律, →∴“(m?n)t=m(n?t)”不能类比得到“(??→→ ?)?? = →→ ??(? ? → ?)”,

平面向量的数量积及应用

富县高级中学集体备课教案 年级:高三科目:数学授课人: 课题第三节??平面向量的数量积及应用 第 1 课时 三维目标(1)考查两个向量的数量积的求法;(2)利用两个向量的数量积求向量的夹角、向量的模;(3)利用两个向量的数量积证明两个向量垂直. 重点(1)理解数量积的意义,掌握求数量积的各种方法; (2)理解数量积的运算性质。 中 心 发 言 人 难点利用数量积解决向量的几何问题. 教具多媒体课型复习课课时安排 2 课时教法引导点拨学法合作探究个人主页 教学过程一.知识梳理 1.平面向量的数量积 若两个__________向量a与b,它们的夹角为θ,则数量_____________叫做a与b的数量积(或内积),记作______. 规定:零向量与任一向量的数量积为______. 两个非零向量a与b垂直的充要条件是______,两个非零向量a与b平行的充要条件是__________________________. 2.平面向量数量积的几何意义 数量积a·b等于a的长度|a|与b在a方向上的投影_________的乘积. 3.平面向量数量积的重要性质 (1)e·a=a·e=__________________; (2)非零向量a,b,a⊥b? __________________; (3)当a与b同向时,a·b=__________; 当a与b反向时,a·b=____________,a·a=________,|a|=____________;(4)cosθ=__________________; (5)|a·b|______|a||b|. 4.平面向量数量积满足的运算律 (1)a·b=____________(交换律); (2)(λa)·b=λ(a·b)=__________(λ为实数); (3)(a+b)·c=__________________. 5.平面向量数量积有关性质的坐标表示 设向量a=(x1,y1),b=(x2,y2),则a·b=__________,由此得到:

空间向量的数量积(人教A版)(含答案)

空间向量的数量积(人教A版) 一、单选题(共10道,每道10分) 1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),,若向量分别与,垂直,则向量的坐标为( ) A.(1,1,1) B.(-2,-1,1) C.(1,-3,1) D.(1,-1,1) 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 2.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设,则与夹角的余弦值为( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 3.(上接试题2)若向量与互相垂直,则实数k的值为( ) A.或2 B.或2 C.2 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 4.向量,若,且,则的值为( ) A.-2 B.2 C.-1 D.1

答案:C 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 5.已知空间向量,若与垂直,则( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 6.若向量,且与夹角的余弦值为,则λ等于( ) A.4 B.−4 C. D. 答案:C 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 7.如图,在长方体ABCD-A1B1C1D1中,设AD=AA1=1,AB=2,则( ) A.1 B.2 C.3 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的数量积 8.如图,棱长为a的正四面体ABCD中,( )

向量的数量积及其应用教案

平面向量的数量积及其应用 讲师:王光明 一、复习目标 深刻理解平面向量数量积的定义及其几何意义。能应用向量数量积解决有关向量垂直问题,向量的长度、夹角的问题,能将其它章节某些问题转化为可用向量数量积解决的问题,培养学生的创新精神和应用能力。 二、基础知识知识点回顾 1、两个向量的夹角是如何规定的?两个向量的夹角的取值范围是什么? 如下图,已知两个非零向量和作=,=,则∠AOB =θ(0°≤θ≤180°)叫做向量与的夹角,记作〈,〉. 2、平面向量数量积的定义是什么?其几何意义是什么? 如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ 叫做a 与b 的数量积(或内积或点积),记作:a ?b ,即a ?b =a b cos q 。规定:零向量与任一向量的数量积是0. 注意数量积是一个实数,不再是一个向量 a ? b 的几何意义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。b 在a 上的投影为||cos b θ =b a a ,它是一个实数,但不一定大于0 3、平面向量数量积有哪些性质? 设e 是单位向量,〈a ,e 〉=θ. (1)e ·a =a ·e =|a |cos θ. (2)当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |, 特别地,a ·a =|a |2 ,或|a (3)a ⊥b ?a ·b =0.(a 、b 都是非零向量) 注意:零向量的方向是任意的,因此可以和任意向量平行,但却不可以与任何向量垂直

(4)cos θ= ×a b |a ||b | . (5)|a ·b |≤|a ||b |. 4. 平面向量数量积运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c 思考讨论 ()()a b c a b c 与是否相等? 5.向量数量积的坐标运算: 设a =(x 1,y 1),b =(x 2,y 2),则 (1)a ·b =x 1x 2+y 1y 2; (2)|a (3)cos 〈a ,b 〉 (4)a ⊥b Ta ·b =0Tx 1x 2+y 1y 2=0. 三、双基训练 1.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |等于 A.7 B.10 C.13 D.4 解析:|a +3b |= 960cos 1161+????+=13. 答案:C 2.已知a =(λ,2),b =(3,—6),且a 与b 的夹角为钝角,则λ的取值范围是 解析:a 与b 的夹角为钝角,cos < 0且cos≠-1, 又cos =()(),11,4λ∈-∞-?- 3.已知,,为非零的平面向量. 甲:, :,a b a c b c ?=?= 乙则 ( )

向量知识点题型归纳

专题--平面向量 1.向向量的相关概念、、 2.向量的线性运算 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面 内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。如 (1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______ (答:13 22 a b -); (2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213(2,3),(,)24 e e =-=- (答:B ); (3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____ (答:2 433 a b +); (4)已知ABC ?中,点D 在BC 边上,且?→ ??→ ?=DB CD 2,?→ ??→ ??→ ?+=AC s AB r CD ,则s r +的值是 (答:0) 四.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下: ()()1,2a a λλ=当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ =0时,0a λ=,注意:λa ≠0。 五.平面向量的数量积: 1.两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠= ()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ= 2 π 时,a ,垂直。 2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:?,即?=cos a b θ。规定:零向量与任一向量的数量积是0,注 意数量积是一个实数,不再是一个向量。如 (1)△ABC 中,3||=?→ ?AB ,4||=?→ ?AC ,5||=?→ ?BC ,则=?_________ (答:-9); (2)已知1 1(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为 4 π ,则k 等于___(答:1); (3)已知2,5,3a b a b ===-,则a b +等于____ 23; (4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30) 3.在上的投影为||cos b θ,它是一个实数,但不一定大于0。如 已知3||=→ a ,5||=→ b ,且12=?→ →b a ,则向量→ a 在向量→ b 上的投影为______ (答:5 12 ) 4.a ?b 的几何意义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。 5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥??=;

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

向量向量的数量积及应用

《向量》——向量的数量积及应用 1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|c s |o ||a b θ叫a 与b 的数量积,记作a ?b ,即有||cos ||a b a b θ=, (0θπ≤≤)。 即:cos a b a b θ= = 注意:向量的夹角必须同起点! 规定: 2.向量数量积的运算律 (1)a·b =b·a ; (2)(λa )·b =λ(a·b )=a·(λb ); (3)(a +b )·c =a·c +b·c . 3.归纳: 7、“投影”的概念:作图 定义:cos b θ叫做向量b 在a 方向上的投影 8、与三角形“四心”相关的向量问题 三角形的内心(内切圆圆心) 三角形的外心(外接圆圆心) 三角形的垂心 三角形的重心 内心性质:三角形的内心到三角形三边的距离相等 外心性质:三角形的外心到三角形三个顶点的距离相等 垂心性质:三角形的垂心与顶点的连线垂直于该顶点的对边. 重心性质:(1)重心G 到顶点的距离与重心到对边中点的距离为:2AG GD = (2)重心和三角形3个顶点组成的3个三角形面积相等。 (3)重心坐标:123123 ( .)33 x x x y y y ++++ (4)重心向量表达:0GA GB GC ++=

附:角平分线的性质:如右图:AB BD AC CD = 三角形各心的向量表示: 1、 O 是ABC ?的重心0=++?OC OB OA ; 2、 O 是ABC ?的垂心?=?=??; 3、 O 是ABC ?的外心||||||==?(或2 2 2 ==); 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)两个向量的夹角的范围是? ???0,π 2.( ) (2)向量在另一个向量方向上的投影为数量,而不是向量.( ) (3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (4)若a ·b =a ·c (a ≠0),则b =c .( ) 2.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =________. 3.已知向量a =(3,-2),b =(1,0),向量λa +b 与a -2b 垂直,则实数λ的值为________. 4.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是________________. 考点1:平面向量的数量积的运算 例1.(1) (2018·常州调研)已知向量e 1=????cos π4,sin π6,e 2=????2sin π4,4cos π 3,则e 1·e 2=____. 考点2:平面向量夹角与模等问题(高频考点) 例2(1)已知向量BA →=????1 2, 32,BC →=????32,12,则∠ABC =________. (2)已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,求向量a +b +c 与向量a 的夹角. 训练:已知非零向量a 、b 、c 满足a +b +c =0,向量a 、b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________. [例3] (1)(2017·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =______. B A C D

相关文档
最新文档