电力系统抗差状态估计研究综述

电力系统抗差状态估计研究综述
电力系统抗差状态估计研究综述

蒙特卡洛法在电力系统可靠性评估中的应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

电力系统分析之短路电流计算讲课稿

电力系统分析之短路电流计算 电力系统是由生产、输送、分配、及使用电能的发电机、变压器、电力线路和用户组成一个整体,它除了有一次设备外还应有用于保护一次设备安全可靠运行的二次设备。对电力系统进行分析应包括正常运行时的运行参数和出现故障时的故障参数进行分析计算。短路 是电力系统出现最多的故障,短路电流的计算方法有很多,而其中以“应用运算曲线”计算短路电流最方便实用。应用该方法的步骤如下: 1、 计算系统中各元件电抗标幺值; 1)、基准值,基准容量(如取基准容量Sj=100MV A ),基准电压Uj 一般为各级电压的平均电压。 2)系统中各元件电抗标幺值计算公式如下: 发电机 ? Cos P S X X e j d d /100%' '"* ? = 式中" *d X 为发电机次暂态电抗百分值 变压器 e j d b S S U X ?=100%* 式中U d %为变压器短路电压的百分值 线路 20*e j j U S L X X ? = 式中X 0为每仅是电抗的平均值(架空线为0.4欧/公里) 电抗器 2*3100%j j e e k k U S I U X X ??= 式中X k %为电抗器的短路电抗百分值 系统阻抗标幺值 Zh j x S S X = * S Zh 断路器的遮断容量 2、 根据系统图作出等值电路图, 将各元件编号并将相应元件电抗标幺值标于元件编号 下方; 3、 对网络化简,以得到各电源对短路点的转移电抗,其基本公式有: 串联 X 1 X 2X 3 X 3 =X 1+X 2 并联 X 1 X 2 X 3 2 12 1213//X X X X X X X +?= =

含微电网的配电网可靠性评估综述

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:电力系统可靠性教师:谢开贵 姓名:甘国晓学号:20121102039t 专业:电气工程类别:学术 上课时间:2013 年 3 月至2013 年 4 月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

含微电网的配电网可靠性评估综述 摘要:微电网的接入影响了配电网可靠性的同时,也会给配电王的可靠性评估带来新的问题。本文从微电网的可靠性评估模型和可靠性评估指标两方面分析了微电网可靠性评估的研究现状,总结了微电网可靠性评估的两种主要方法:解析法和模拟法。在此基础上,指出了含微电网的配电系统可靠性评估可能发展的研究方向。 关键词:分布式发电;微电网;可靠性评估;评估方法 1.引言 随着人类面临的能源紧缺、环境恶化等问题日趋严重,世界各国纷纷将目光投向一种清洁、环保、经济的能源——分布式电源。分布式发电(distributed generation, DG)指靠近用户,为满足某些终端用户的需求,功率为从几千瓦到50MW的小型模块式、与环境兼容的独立电源,主要包括风力发电场、燃料电池、微型燃气轮机、光伏电池、地热发电装置、储能装置等。 随着DG及其系统集成技术日趋成熟,单位千瓦电能生产价格的不断下降以及政策层面的有力支持,分布式发电技术正得到越来越广泛的应用。但是,随着分布式发电渗透率的增加,各种DG的并网发电对电力系统的安全稳定运行提出了新的挑战,要实现配电网的功率平衡与安全运行,并保证用户的供电可靠性和电能质量也有很大困难[1]。为此,有学者提出了微电网的概念。微电网将DG、负荷、储能装置及控制装置等有机结合并接入到电网中[2];微电网一般接入到配电系统中,它既可与电网联网运行,也可在电网故障或需要时与主网断开单独运行,它的灵活运行方式可以实现DG的接纳及与电网的互相支撑,同时也极大地影响了配电系统的可靠性,增加了配电网可靠性评估的复杂性。 本文将总结含微网的新型配电系统可靠性评估的研究进展,列举微电网可靠性评估的主要方法,并在此基础上指出含微电网的配电系统可靠性评估可能发展的研究方向。 2.含微电网的配电网可靠性评估研究现状 微电网是一个完整的发、配电子系统,随着微电网接入配电网,配电网将由传统的单电源辐射状变成一个遍布电源和负荷的新型配电网,增加了配电网潮流的不确定性,从而对系统的运行和控制产生了一系列的影响,配电系统可靠性的评估理论与方法也将发生变化。目前,含微电网的配电网可靠性评估的研究刚刚起步,现有研究的进展有以下方面[3]。

电力系统可靠性综述

P 本文简要介绍了电力系统中各子系统可靠性的基本概念以及相应的可靠性指标、可靠性指 标计算方法等。对文献中提出的相应的子系统可靠性评估方法进行评述,分析了它们在电力系统 可靠性分析中应用的特点以及存在的主要问题,以促进该研究领域的进一步发展。 电力系统可靠性综述 ■广东工业大学自动化学院鄂飞程汉湘 产 经 电力系统可靠性[1]是指电力系统按可接 受的质量标准和所需数量不间断地向电力 用户供应电力和电能量的能力的量度,包 括充裕度和安全性两个方面。充裕度是指 电力系统维持连续供给用户总的电力需求 和总的电能量的能力,同时考虑到系统元 件的计划停运及合理的期望非计划停运, 又称为静态可靠性,即在静态条件下电力 系统满足用户电力和电能量的能力;安全 性是指电力系统承受突然发生的扰动,如 突然短路或未预料到的失去系统元件的能 力,也称为动态可靠性,即在动态条件下 电力系统经受住突然扰动且不间断地向用 户提供电力和电能量的能力。 电力系统可靠性是通过定量的可靠性 指标来量度的。一般可以是故障对电力用 户造成的不良后果的概率、频率、持续时 百分数备用法和偶然故障备用法。这两种 方法均缺乏应有的科学分析,目前已逐渐 被概率性可靠性指标所代替。 概率法常用的可靠性指标有:电力不 足概率(LOLP)、频率及持续时间(F&D)、 电量不足概率(L O E P )、电力不足期望 (LOLE)。国际上曾一度采用LOL(loss of load probability)作为发电系统可靠性 指标,但该方法过于粗略,评估误差较大, 且无法计算有关电量指标。后来人们又提 出了更为详细的计算电力不足概率的指标 和方法,即电力不足小时期望值LOLH(h/ a)。该方法以每天24h的实际负荷变化情 况为负荷曲线模型,计算出电力不足小时 期望值。 国际上关于发电系统可靠性计算的另 一个常用的指标为电量不足期望值EENS [2] 间、故障引起的期望电力损失及期望电能 (expected energy not supplied), 量损失等,不同的子系统可以有不同的可 靠性指标。 电力系统规模很大,习惯上将电力系 统分成若干子系统,根据这些子系统的功 能特点分别评估各子系统的可靠性。 发电系统可靠性 发电系统可靠性是指统一并网的全部 发电机组按可接受标准及期望数量满足电 力系统的电力和电能量需求的能力的量度。 发电系统可靠性指标可以分为确定性 和概率性两类。过去曾广泛应用确定性可 靠性指标来指导电力系统规划和运行,如 其意义为在某一研究周期内由于供电不足 造成用户减少用电量的期望值。该指标能 同时反映停电的概率与停电的严重程度, 而且更便于把可靠性与经济性挂钩,因此 EENS指标日益受到重视。文献[3]针对我国 电力系统的特点,以LOLH 和EENS作为可靠性指标, 计算了全国统一的指标参 数,并绘出了综合最优发 电系统可靠性指标曲线, 对我国的电源规划及发电 系统可靠性研究有重要的 参考价值。其他可靠性指 标虽有应用,但不普遍。 2006 年第 3 期 5

电力系统可靠性作业二

电力系统可靠性第二次作业 电卓1501 杨萌201554080101 1.什么是电力系统可靠性 电力系统可靠性是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能能力的度量。包括充裕度和安全性两个方面。 2.什么是充裕性 充裕度( adequancy,也称静态可靠性),是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑系统元件的计划停运及合理的期望非计划停运 3.什么是安全性 安全性( security,也称动态可靠性),是指电力系统承受突然发生的扰动的能力。 4.电力系统可靠性包括哪几大类 发电系统可靠性,发输电系统可靠性,输电系统可靠性,配电系统可靠性及发电厂变电所电气主接线可靠性。 5.可靠性的经典定义 指一个元件或一个系统在预定时间内和规定条件下完成其规定功能的能力。 6.元件 是构成系统的基本单位 7.系统 是由元件组成的整体,有时,如果系统太大,又可分为若干子系统。 8.电力系统可靠性的评价 通过一套定量指标来量度电力供应企业向用户提供连续不断的、质量合格的电能的能力,包括对系统充裕性和安全性两方面的衡量。 9.不可修复元件的寿命 不可修复元件的寿命是指从使用起到失效为止所经历的时间。 10.故障率 假设元件已工作到t时刻,则把元件在t以后的△t微小时间内发生故障的条件概率密度定义为该元件的故障率。 11.可靠度与不可靠度

可靠度:表示元件能执行规定功能的概率,通常用可靠度函数R(t)表示,在给定环境条件下时刻t前元件不失效的概率:R(t)=P[T>t],R(t)=1-F(t) 不可靠度:F(t)只元件的损坏程度,称为元件的故障函数或不可靠函数。 R(t)=e^(-λt) F(t)=1- e^(-λt) 12.什么是可修复元件 指投入运行后,如损坏,能够通过修复恢复到原有功能而得以再投入使用。 13.元件描述修复特性指标有哪些? 修复率、未修复率、修复度、平均修复时间 14.元件修复率 表明可修复元件故障后修复的难易程度及效果的量成为修复率。 通常用表示,其定义是:元件在t时刻以前未被修复,而在t时刻后的△t 微小时间内被修复的条件概率密度: 15.元件未修复率 元件为修复率定义式: 即实际修复时间大于预定修复时间的概率。 16.元件平均修复时间与修复率之间的关系 元件修复度: 元件平均修复时间MTTR:当元件的修复时间Tu呈指数分布时,其平均修复时间MMTR=

高等电力系统分析第二章

1. 什么是电力系统状态估计和可观察性。 电力系统状态估计:对给定的系统结构及量测配置,在量测量有误差的情况下,通过计算得到可靠地并且位数最少的状态变量值----各母线上的电压相角与模值及各元件上的潮流。 当收集到的量测量通过量测方程能够覆盖所有母线的电压幅值和相角时,则通过状态估计可以得到这些值,称该系统是可观测的,每一时刻的测量量维数至少应该与状态量的维数相等。 2. 电力系统状态估计的作用。 提高数据精度,去除不良数据 计算出难以测量的电气量,相当于补充了量测量。 状态估计为建立一个高质量的数据库提供数据信息,以便于进一步实现在线潮流、安全分析及经济调度等功能。 3. 运行状态估计必须具备什么基本条件? 实现状态估计需要的条件: 1.量测冗余度:量测冗余度是指量测量个数m 与待估计的状态量个数n 之间的比值m/n 。系统冗余度越高,对状态估计采用一定的估计方法排除不良数据以及消除误差影响就越好。冗余量测的存在是状态估计可以实现提高数据精度的基础。 2. 分析系统可观性:当收集到的量测量通过量测方程能够覆盖所有母线的电压幅值和相角时,则通过状态估计可以得到这些值,称该系统是可观测的。 4. 状态估计与常规潮流计算的区别和联系? 潮流计算方程式的数目等于未知数的数目。而状态估计的测量向量的维数一般大于未知状态向量的维数,即方程数的个数多于未知数的个数。其中,测量向量可以是节点电压、节点注入功率、线路潮流等测量量的任意组合。 两者求解的数学方法也不同。潮流计算一般用牛顿-拉夫逊法求解 个非线性方程组。而状态估计则是根据一定的估计准则,按估计理论的方法求解方程组 状态估计中的“估计”不意味着不准确,相反,对于实际运行的系统来说,不能认为潮流计算是绝对准确的,而状态估计的值显然更准确。 状态估计可认为是一种广义潮流,而常规潮流计算是一种狭义潮流,及状态估计中m=n 的特例。 5. 数学期望,测量误差,状态估计误差和残差的概念? 数学期望:统计数据的平均值。 状态估计误差:状态量的估计值与真值之间的误差。 6. 电力系统的配置。 ? 状态估计的误差为,可得?-x x []1?()()()T --=-∑-x x x H x R z h x ?测量误差:v = z -h (x ) ? 残差:量测量与量测估计值之差。?-z z

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统的供电可靠性研究

电力系统的供电可靠性研究 发表时间:2017-04-25T17:16:46.930Z 来源:《电力设备》2017年第3期作者:李孟朱晓林 [导读] 摘要:眼下我国社会经济发展迅速,科技水平不断提高,随之而来对于电力的需求也在逐年增长,在这种社会环境下,供电系统的供电能力成了重要问题,经受着来自社会各界的巨大考验。 (国网天津市电力公司检修公司) 摘要:眼下我国社会经济发展迅速,科技水平不断提高,随之而来对于电力的需求也在逐年增长,在这种社会环境下,供电系统的供电能力成了重要问题,经受着来自社会各界的巨大考验。供电指标是用来判断供电能力是否满足社会需求的重要参数,要想使得供电指标能够得到有效提高,供电系统的供电可靠性是一项重要因素,因此供电企业必须要加强管理,优化每一生产环节,规范相关操作,保证供电的可靠性和安全性,在提高供电质量的同时满足社会用电需求。本文对此做了深入研究,首先分析了影响供电能力的各种因素,随后提出了几点有效的解决措施。 关键词:电力系统;供电能力;可靠性 引言 眼下社会的用电需求日益加大,这样提高供电能力是供电企业眼下最重要的问题。配电线路是供电系统中不可或缺的重要组成部分之一,覆盖范围较大,线路多且长,因此在输送电过程中难免会出现跳闸现象,给周围群众的和企业都造成了一定的不良影响。因此,供电企业对此必须要予以高度重视,完全按照国家相关制度规范企业生产,合理分配用电额度,减少安全隐患的存在,提高供电可靠性。 一、影响供电可靠性的相关因素 经过一系列的时间分析可知,影响电力系统供电可靠性的因素有三点,分别是用户分布密度、除了设备原因之外导致的停电、配电线路出现故障。具体如下: 1.用户的分布密度 用户的分布密度指的就是在一定范围内用户的数量。从我国目前的情况来看,我国用电用户主要呈现“东多西少”的局势分布,而内陆和沿海相比较沿海地区分布较多,造成这种现象主要的是因为各地区的经济发展存在差异使得密度不均衡。在这种情况下,供电企业为了提高供电的可靠性,通常都是不同的地区采取不同的接线方式,密度高的地区和密度低的地区分开供电。以便保证在出现故障时候,不至于影响到其他地区的正常供电。 2.除设备故障外导致的停电 除了设备出现故障导致停电外,自然灾害、雷电、线路检修、电网改造等也会导致不同时间的停电。眼下全国各地区的电网都在进行全面的改造,使得电网的质量得到明显提高,反而正常原因的停电也有所减少。但是在经济发展比较落后的地区,由于临时检修和设备维护等导致的临时停电还是时常发生的。除此之外,因自然灾害原因导致的停电也是不能避免的,但是随着电网的不断改造,抗灾害能力越来越强,停电现象也会越来越少。 3.配电线路的故障 基本上所有的配电线路都是在户外运行的,由于露天运作,因此天气、自然灾害等的变化都会导致配电线路出现故障,主要是集中线路老化、绝缘、天气变化导致线路损坏等方面。除了这些自然因素外,线路的使用材料也是影响线路故障的主要原因之一,质量越好发生的故障概率就越低。一旦配电线路出现问题导致故障自然就会影响到供电的可靠性。 二、加强电力系统供电可靠性的有效措施 1.技术方面 从技术方面来看,主要需要做的就是保证供电线路质量和设备工作效率。 (1)在铺设和维护电网的过程中,必须要按照相关标准选择电线,根据实际需要选择合适的供电设备,合理配置电网,保证电线和设备的质量满足实际要求同时方便维修。 (2)定期对对电网和供电设备进行检查,根据实际情况调整线路负荷,避免超负荷使用导致线路出现故障。一旦发现设备出现问题必须要及时维修,保证设备的使用寿命。 (3)加强配电线路和主接线的可靠性的控制。 (4)根据实际情况强化配电系统的结构,同时赋予环网等开关一定的远程操控能力,保证设备可以实现稳定运行,避免其受到外界因素的不良影响。 (5)适当引进先进的供电技术,例如红外检测技术等,可以有效加强供电能力。 2.管理方面措施 针对供电系统的管理方面也要加强改革和控制,全面分析存在的相关问题,根据实际情况选择针对性的措施加以解决,确保供电质量满足国家相关标准,增加供电的可靠性以及安全性。具体措施如下: (1)从根本源头抓起,建立科学合理的内部管理制度,并根据实际情况予以改进和完善。上到管理层下到员工全部都要严格执行该制度,杜绝违规操作现象发生。加强管理力度,合理制定发展目标,定期做好检查和维修,最大限度降低存在的安全隐患。 (2)加强日常检查和维护力度。强化责任意识,定期对供电线路和供电设备进行严格的检查,保证可以及时解决安全隐患,避免其继续扩大造成不良影响。对于易于出现故障的部位要加强管理,尤其是计量箱、变压器等,将其危险因素消灭在萌芽中。这样才能有效防止非设备故障导致的停电现象。 (3)完善配电网络,使用高质量的电路产品,确保设备型号符合供电要求,根据实际情况适当调整配电模式,避免出线路出现超负荷的情况,以防止电路出现故障,降低停电的发生几率。 (4)适当将计算机技术应用在供配电中,实现供电自动化,可以有效提高企业供电管理效率,保证供电的可靠性和安全性。 三、结束语 综上所述,社会在发展时代在进步,随着科技的发展各行业对实际供电提出了更高的要求,为了保证供电的可靠性和安全性供电企业必须要加强各方面的管理,引进新技术,投入新设备,针对存在的问题要多方面考虑,采取有效的措施,从根本上实现电网的稳定运行,

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

电力系统基本概述

电力系统基本概述 一、电力系统与电网 发电厂将一次能源转变成电能,这些电能需要通过一定方式输送给电力用户,在由发电厂向用户供电过程中,为了提高其可靠性和经济性,广泛通过升、降压变电站,输电线路将多个发电厂用电力网连接起来并联工作,向用户供电。这种由发电厂、升压和降压变电站、送电线路以及用电设备有机连接起来的整体,称为电力系统。发电机的原动机、原动机的力能部分、供热和用热设备,则称为动力系统。在电力系统中,由升压和降压变电站和各种不同电压等级的送电线路连接在一起的部分称为电网。 二、电力生产的特点 电能的生产与其它工业生产有着显然不同的特点。 1.电能不能大量储藏 电力系统中发电厂负荷的多少,决定于用户的需要,电能的生产和消费时时刻刻都是保 持平衡的。电能的生产、分配和消费过程的同时性,使电力

系统的各个环节形成了一个紧密 的有机联系的整体,其中任一台发、供、用电设备发生故障,都将影响电能的生产和供应。 2.电力系统的电磁变化过程非常迅速 电力系统中,电磁波的变化过程只有千分之几秒,甚至百万分之几秒;而短路过程、发 电机运行稳定性的丧失则在十分之几秒或几秒内即可形成。为了防止某些短暂的过渡过程对 系统运行和电气设备造成危害,要求能进行非常迅速和灵敏的调整及切换操作,这些调整和 切换,靠手动操作不能获得满意的效果,甚至是不可能的,因此必须采用各种自动装置。 3.电力工业和国民经济各部门之间有着极其密切的关系 电能供应不足或中断,将直接影响国民经济各个部门的生产,也将影响人们的正常生活, 因此要求电力工业必须保证安全生产和成为国民经济中的

先行工业,必须有足够的负荷后备 容量,以满足日益增长的负荷需要。 三、电力系统的运行要求 为了保证为用户提供电能,电力系统的运行必须满足下列基本要求。 1.保证对用户供电的可靠性 在任何情况下都应该尽可能的保证电力系统运行的可靠性。系统运行可靠性的破坏,将 引起系统设备损坏或供电中断,以致造成国民经济各部门生产停顿和人民生活秩序的破坏,甚至发生设备和人身事故。 电力用户,对供电可靠性的要求并不一样,即使一个企业中各个部门或车间,对供电持 续性的要求也有所差别。根据对供电持续性的要求,可把用户分为三级。

电力系统短路故障的分析计算.doc

电力系统短路故障的分析计算 电力系统短路故障的分析计算2010-09-1508:241-1作出无阻尼绕组同步电机在直轴方向的等值电路图并写出求取暂态电抗Xd'及 1、时间常数Td'的表达式再作出有阻尼绕组同步电机在直轴及交轴方向的等值电路图并写出求取Xd"及Xq"的表达式。 2、比较同步机下列的时间常数Ta、Td'、Td"、Tq"的大小以及汽轮发电机的下列电抗的大小以及及汽轮发电机及水轮发电机的下列电抗的大小并为它们按由大到小的次序重新排列Xd、Xd'、Xd"、Xq、Xq"、Xσ(定子漏抗)。 3、列出无阻尼绕组同步发电机在端点发生三相短路,定子及转子绕组中出现的各种电流分量并指出这些电流分量随时间而变化的规律及其衰减时间常数。(16) 1-5在电力系统暂态分析中,1.为什么要引入同步电机暂态电势Eq'?2.暂态电势Eq'的大小如何确定?3.在哪些情况下需要使用暂态电势Eq'?(10分)(科大92) 1-6简要论述下列问题:(24分) 1、试根据无阻尼绕组同步机的磁链及电压方程(略去电阻),推导出用同步机暂态电势和暂态电抗的电压方程式: uq=Eq'-idXd'ud=iqXq2、上述方程式应用于同步机的什么运行情况?为什么?解决什么问题?式中id、iq是什么电流? 3、试利用(1)的结果论证:三相短路电流实用计算中,无阻尼绕组同步机机端短路时一相的起始暂态电流(用标么值表示)的计算公式为: I'=Eq'/Xd' 4、根据基本原理,并利用(1)推导出的方程,证明同步机机端三相短路整个暂态过程中Eq'及Eq之间的关系为:Eq/Eq'=Xd/Xd' (重大83) 1-7无阻尼绕组同步发电机发生突然三相短路,在短路瞬刻及暂态过程中,其气隙电势Eqδ是如何变化的?(6分) (重大84)

电力系统概述

第一章电力系统概述 第一节本厂在系统中的地位和作用 一、华中电网现状 2002年底华中地区装机容量为52142MW。其中水电装机17985MW,火电装机34157MW。分别占全部装机的34.5%、65.5%。统调装机容量39140MW,其中水电12294MW,火电26845MW。 2002年华中地区发电量221.9TW·h。其中水电发电量64.2TW·h,火电发电量157.7TW·h,分别占全部发电量的28.9%、71.1%。统调发电量168.1TW h,其中水电发电量45.3TW h,火电发电量122.8TW·h。 2002年华中地区全社会用电量为220.3TW·h。统调用电最高负荷30790MW,比上年增长14.72%。 二、湖南省电力系统现状 1.电源现状 2002年底湖南省装机容量为11110.86MW。其中水电装机6135.28MW,火电装机4975.58MW。分别占全省装机的55.2%、44.8%。2002年统调装机容量为7424.65MW,其中水电装机3419.65MW、火电装机4005MW。 2002年湖南省发电量45.387TW·h。其中水电发电量25.329TW·h、火电发电量20.05785TW·h,分别占全省发电量的55.8%、44.2%。 湖南省电网电源主要分布在湖南西部,全省最大火力发电厂为华能岳阳电厂(725MW)。最大水电站为五强溪水电站(1200MW)。 2.网络现状 湖南省电力系统是华中电力系统的重要组成部分,处于华中系统的南部,目前全网分为14个供电区。 湖南电网经两条联络线即葛洲坝~岗市500kV线路及汪庄余~峡山220kV线路与华中电网联系,贵州凯里电厂通过凯里~玉屏~阳塘220kV线路向湖南送电。目前省内已建成五强溪~岗市~复兴~沙坪~云田~民丰~五强溪500kV环网,并且岗市与云田间另有一回500kV线路直接相联。 2002年底湖南省共有500kV变电所5座,变电容量4,250MV A(云田(株洲)2,750MV A,民丰(娄底)1,750MV A,岗市(常德)1,500MV A,复兴(益阳)1,750MV A,沙坪(长沙)1,750MV A)220kV公用变电所54座,变电容量10,590MV A,拥有500kV线路8条894.3km ,220kV线路136条6666km。 2002年底湖南电网共装有无功补偿设备7630.7Mvar,其中电容器6180.2Mvar,并联电抗器1280.1Mvar,调相机50.4Mvar,其他165Mvar。 3.供用电现状

浅谈电力系统可靠性

浅谈电力系统可靠性 随着电力工业引入市场机制,市场条件下的电力系统可靠性和系统运营经济性之间的矛盾便逐渐显现出来,如何在电力市场的运营过程中保证系统运行的可靠性已成为研究的热点。本文简单论述了电力系统的可靠性以及在电力市场环境下电力系统可靠性的发展、所面临的问题、挑战等。 标签:电力系统可靠性发展挑战 1 基本概念 1.1 可靠性可靠性是指元件、设备、系统等在规定的条件下和预定的时间内完成其额定功能的概率。 1.2 电力系统可靠性电力系统可靠性包括两方面的内容:即充裕度和安全性。前者是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的稳态性能,后者是指电力系统在事故状态下的安全性和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 2 电力系统可靠性的重要性 向用户提供源源不断、质量合格的电能是电力系统的主要任务。因为电力系统设备很复杂,包括发电机、变压器、输电线路、断路器等一次设备及与之配套的二次设备,这些设备都可能发生不同类型的故障,从而影响电力系统正常运行和对用户的正常供电。如果电力系统发生故障,将对电力企业、用户和国民经济,都会造成不同程度的经济损失。社会现代化速度越来越快,生产和生活对电源的依赖性也越来越强,停电造成的损失以及给人们带来的不便也将日益显现。因此,要求电力系统应有很高的可靠性。 3 电力市场环境下的可靠性 现如今人们普遍思索的问题是怎样揭示电力系统可靠性背后所隐含的经济意义。一些新的研究成果有:怎样将客户的可靠性需求货币化、如何评价发输电系统的可靠性以及新的适应电力市场需求的可靠性指标怎样设定等。这些研究仍面临一个普遍问题:即使人们已经认识到可靠性是一种稀缺的资源,并感觉到其背后所蕴涵的经济意义,但在对可靠性的价值研究时,却往往摆脱不了对可靠性进行“收费”的思想。我们应当在市场的环境中使电力系统的可靠性发挥作用。为此就要去探索如何利用市场的供给需求机制实现统一可靠性和经济性的目的。有些资料中提到了可靠性价值的概念,但并没有就在市场条件下的可靠性的供给和需求关系以及这种关系对系统可靠性带来的影响展开讨论,而这些也正是电力市场环境下可靠性研究面临的新挑战。

电力系统状态估计

状态估计的定义(课后题) 状态估计的作用和步骤(课后题) 状态估计与潮流计算的联系和区别(课后题) 各种状态估计模型和算法的特点(课后题) 相关的概念和定义(课后题) 电力系统状态估计的主要内容是什么?有哪些变量需要状态估计?(06B) 通常称能够表征电力系统特征所需最小数目的变量为电力系统的状态变量。电力系统的状态估计就是要求能在测量量有误差的情况下,通过计算以得到可靠的并且为数最小的状态变量值。 电力系统的测量量一般包括支路功率、节点注入功率、节点电压模值等;状态变量是各节点的电压模值和相角。 什么是状态估计? 环境噪声使理想的运动方程无法精确求解。测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。通过统计学的方法加以处理以求出对状态向量的估计值。这种方法,称为状态估计。按运动方程与以某一时刻的测量数据作为初值进行下一时刻状态量的估计,叫做动态估计,仅仅根据某时刻测量数据,确定该时刻的状态量的估计,叫做静态估计。 电力系统状态估计的必要性? 1)电力系统需要随时监视系统的运行状态; 2)需要提供调度员所关心的所有数据; 3)测量所有关心的量是不经济的,也是不可能的,需要利用一些测量量来推算其它电 气量; 4)由于误差的存在,直接测量的量不甚可靠,甚至有坏数据; 状态估计的作用和流程?(下图左) 1)降低量测系统投资,少装测点; 2)计算出未测量的电气量; 3)利用量测系统的冗余信息,提高量测数据的精度(独立测量量的数目与状态量数目 之比,成为冗余度)。 状态估计与潮流计算的关系?(上图右) 1)潮流计算是状态估计的一个特例; 2)状态估计用于处理实时数据,或者有冗余的矛盾方程的场合; 3)潮流计算用于无冗余矛盾方程的场合; 4)两者的求解算法不同; 5)在线应用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过 加工处理过的熟数据,作为潮流计算的原始数据。

电力系统灵活性及其评价综述

电力系统灵活性及其评价综述 摘要:为了解决可再生能源并网的问题,本文针对电力系统对短时间的响应能力,分析了电力系统电源的灵活性及其评价指标,在此基础上,提出了优化储能 分配的方法,它可用于解决网格连接问题和系统应对短期的响应能力。 关键词:电力系统;灵活性;评价 电能是现代社会各行各业发展不可或缺的重要能源,是人民日常生活起居和 社会发展不可缺少的一部分,中国作为世界人口的大国,随着社会的高速发展进步,对电能的需求量日益增加,不断新建电力工程,才能满足电能日益增加的需求,才能保证社会持续健康发展;所以,保证电力系统工程能够可靠、安全、经 济高效的运行,对电力系统设计进行科学、合理的规划,才能满足社会日益发展 的电能需求。 1 电力系统规划设计原则 1.1 安全性 在电力系统规划设计的过程中要秉承严谨科学的态度,安全性电力系统规划 设计中最重要的原则之一,设计成品要有严格的科学依据,条件允许或者实际需 要还应配备可以长期使用的检测功能。 1.2 节约成本 电力系统规划设计不仅要充分高效利用系统电能和功能,其次还要整体考虑 电力规划设计的造价成本,用最经济安全的方式,获取最大的经济效益,从而最 大节约投资。 1.3 周期性 电力系统规划设计需要在一个给定的期限内完成,规模越大,规划设计方案 越要全面,尽量在工期内完成,以减少对客户的影响。 2 电力系统规划设计注意事项 电力系统规划设计工作具有一定的复杂性,而电力系统的规划设计又关系到 民生建设与国家发展的问题,所以要求工作人员对此部分马虎不得,能够科学合 理的设计出最优的方案,以满足人们的用电需求。随着我国电网规模的加大,对 于电力系统的要求也就有了相应的提高,而要想电力系统能够稳定的运行,就要 首先进行科学合理的设计,而在具体的设计环节中,还有很多的问题,这就需要 设计人员能够掌握这些注意事项,促进电力系统规划设计工作的有效开展。 2.1 做好准备工作 为了更好的做好电力系统规划设计工作,必须要全面做好前期准备工作,为 电力系统规划设计打好基础。这就需要规划设计单位全面切实掌握可能会影响到 电力系统规划设计的种种因素,对该地区的电网实际情况及特征统计和分析,并 将征集与搜集到的相关资料,整理妥当之后,及时将该信息录入到数据库,为电 力系统规划设计工作提供必要的数据支持。 2.2 及时完善电力数据库 随着社会发展的日新月异,电厂、变电站、输电线路不断的建设者,电网在 不断的发展壮大,所以相关设计人员也要紧跟发展步伐,对我国电力系统发展情 况不断的了解,及时得到电力系统发展最新状况信息,并及时将资料更新到数据库,准确的把控区域范围内的发电厂、变电站和电力线路的分布情况,除此之外 还应对拟建地区未确定要实施尚未实施的规划进行资料搜集,保证电气计算结果 和设备选型的准确性,从而能保证电力系统规划设计能够顺利、有序、稳定进行。

matlab仿真电力系统短路故障分析毕业论文

本科生毕业设计(论文) 题目:运用Matlab仿真分析短路故障 学生: 系别:机电系 专业年级:电气工程及其自动化专业 指导教师: 2013年 6 月 20 日

摘要 本文先对电力系统的短路故障做了简要介绍,分析了线路运行的基本原理及其运行特点,并对短路故障的过程进行了理论分析。在深入分析三相短路故障的稳态和暂态电气量的基础上,总结论述了当今三相短路的的各种流行方案,分别阐述了其基本原理和存在的局限性。并运用派克变换及d.q.o坐标系统的发电机基本方程和拉氏运算等对其中的三相短路故障电流等做了详细的论述。并且利用Matlab中的simulink仿真软件包,建立了短路系统的统一模型,通过设置统一的线路参数、仿真参数。给出了仿真结果及线路各主要参数的波形图。最后根据仿真结果,分析目前自动选线法存在的主要问题及以后的发展方向。 关键词:短路故障;派克变换;拉氏运算;Matlab

ABSTRACT This paper first on the three-phase short circuit of electric power system is briefly introduced, analyzed the basic principle of operation of three-phase circuit and its operation characteristic, and the three-phase short circuit fault process undertook theoretical analysis. In depth analysis of three-phase short circuit fault of steady state and transient electrical quantities based on the summary, the three-phase short circuit of various popular programs, respectively, expounds its basic principles and limitations. And the use of Peck transform and d.q.o coordinate system of the generator basic equation and Laplace operator on the three-phase short-circuit current in detail. And the use of Matlab in the Simulink simulation software package, to establish a unified model of three-phase short-circuit system, by setting the unified circuit parameters, the simulation parameters. The simulation results are presented and the main parameters of the waveform of line. Finally, according to the simulation results, analysis of the current automatic line selection method the main existing problems and the future direction of development. Keywords:Short-circuit failure ;Peck transform;The Laplace operator;M atlab

配电网可靠性定量分析研究综述

第36卷第3期继电器Vol.36 No.3 2008年2月1日 RELAY Feb. 1, 2008 配电网可靠性定量分析研究综述 汪穗峰,张勇军,任 倩,张 尧 (华南理工大学电力学院,广东 广州 510640) 摘要:主要对电力系统可靠性三大组成部分之一的配电网可靠性定量分析方面的情况进行了总结。首先对比了我国电力企业实际采用的统计性指标和定量计算采用的分析性指标;其次对现有定量分析方法进行分类,总结解析类和模拟类方法的特点及适用范围,提出其优缺点;最后给出目前配电网可靠性研究的发展方向。说明了进一步加强配电网可靠性研究工作的理论探索和时间应用的必要性。 关键词:配电网;可靠性;定量分析;综述 An overview of quantitative analysis of distribution system reliability WANG Sui-feng, ZHANG Yong-jun, REN Qian,ZHANG Yao (South China University of Technology, Guangzhou 510640,China) Abstract: This paper gives a systemic overview of the reliability quantitative analysis about distribution system. Difference between the indices used in quantitative analysis and the statistic ones used in electric company is compared at first. The existing research works about distribution system reliability analysis are classified into analytical method and simulation method. Each evaluation method’s feature, the excellence and the weakness are introduced carefully and the available qualification is explained in the following. The future working directions, such as benefit analysis, voltage sags and weather influence, are pointed out at last. Even many theories are established to solve the reliability problem, there still has mountains to climb over necessarily. Key words: distribution system; reliability; quantitative analysis; overview 中图分类号: TM732 文献标识码: A 文章编号: 1003-4897(2008)03-0079-05 0 引言 配电网指的是电力系统中直接向用户供电的末端网络。因其设备众多故障频发,引起了我国电力用户80%的停电事故[1]。据报道,作为国内配网可靠性最高的地区,上海2003年供电可靠率为99.921%,当年停电时间为6.89小时;而同年日本东京的供电可靠率达到99.999%, 一年只停电5分钟[2]。2005年上海供电可靠率提高到99.972%,当年停电时间为2.487小时[3]。可见,我国配电网可靠性水平同国际先进水平仍有较大差距。 随着我国信息产业通信、电子与信息技术的发展与应用,停电损失的不完全修复性对供电可靠性提出了极高的要求。提高供电可靠性已不仅仅是电力行业发展的大势所趋,而更是国民经济发展的强烈需要。为此,有必要从最初的设计规划阶段就引入定量分析以指导整个可靠性工作。1 配电网可靠性定量分析的指标 计算可靠性指标是配电网可靠性定量分析的目的。目前,我国配电网可靠性统计工作的通行规范是2003年由中国电力企业联合会电力可靠性管理中心颁布的《供电系统用户供电可靠性评价规程(DL/T836-2003)》。该规程主要给出了涉及的各可靠性术语的定义、各种系统状态的划分原则、可靠性统计指标及其计算公式,并附送应用报表软件一套。 规程中提及的可靠性主要指标,如RS-1、AIHC-1,和参考指标,如MIC、AENS,共计27个,涉及可体现可靠性的各个方面,但并非可靠性定量分析中常用的指标。按照这些指标的定义公式,其终归是统计指标,只有在事故切实发生之后才进行累计,只能回顾从有统计数据以来至今的可靠性情况。定量分析最初定义时并不是以统计为本的,而是以计算为本,在事故发生前即可通过解析的方法算出系统的可靠性,故定义了与规程中不同的指标。配电

相关文档
最新文档