信息加密密码学原理

信息加密密码学原理
信息加密密码学原理

信息加密密码学原理

通过多年研究总结出一套适用于计算机的文件加密方法,它属于流密码加密但不需要线性反馈位移寄存器,那东西限制了普通计算机用户的应用,因为分组密码方式不但是自找麻烦而且限制了自己所以不被采用,又因为非对称密码的加密方式技术还不成熟速度太慢也不采用。本方法用户密码长度不受限制,但是用户密码不能过短,这是因为用户密码是完成加密的重要参数,如果信息量太少则不能形成千变万化的状态,那样就不能很好地隐藏秘密了。

第一节加密原理

信息加密技术实际是信息隐藏技术,好的加密能保护信息不被没有授权的人读懂。任何信息都可以用数字表示,所以信息加密一般落实到文件加密。所有各类文件都可以是加密对象。

加密原理很简单:

就是用未知数来隐藏被加密对象数字而已,设A是被加密对象一般称为明文,一个明文没什么用处,而明文数组则可能是文章或可执行程序或是媒体文件等等,一般文件都可以用字节作为元素。明文是有可能被看懂或识别的,例如字符文章等,也可能是乱码。B表示未知数,一般它和明文有相同的数字单位也就是字节,C表示加密结果的数字,这里用加法加密,当然也可以用别的运算符但必须有相应的逆运算存在。

A +

B = C

这是一个数字的加密,可见只知道C不知道B是无法知道A的,两个未知数一个方程无法求解。对于一组数字则有:

A1 + B1 = C1,A2 + B2 = C2,...An + Bn = Cn 这样明文数组A1,A2,...An被未知数组B1,B2,...Bn加密成了密文数组C1,C2,https://www.360docs.net/doc/223136064.html,。一般未知数组被称为密钥数组,解密是加密的逆运算。如果密钥数组只是用一次,并且密钥数组元素之间没有任何关系这样的加密是不可破解的。那为什么有的加密可以破解呢?

从上面可见密钥数组和明文数组是一样长的,如果文件长了就很不方便管理密钥数组。现在的常规方式是用户提供“用户密码”,加密程序根据这些数据用一些算法拓展这些数据制作一个密钥数组,密钥数组长度是密码数组的几千倍几十万倍或更多倍都是有可能的。由少量数据生成大量数据总是有漏洞的,根据这些漏洞理论上是能破解密钥数组的,破解者除了得到密文还可能得到加密软件甚至加密程序的源码。

所以加密者努力寻找好的算法避免缺陷被利用,解密者则努力寻找漏洞突破封锁。

第二节密钥数组的建立

鉴于文件是以字节为单位,密钥数组也是以字节为单位,我们知道字节是八位二进制数,数值从0 到 255,共计256个元素。我们要建造的密钥数组是:分布均匀的,数据之间毫无关联的。这样才能确保被加密数据的安全。

下面讨论几种建造密钥数组的方法,它们的加密强度和易用性都是不同的:a)用一个随机函数;随机函数要求能通过各项测试,周期很大,这样由用户密码计算出一个种子,就可以由此点向后取值,做模256后就形成了字节数组,这样的数组数据之间是有关联的,因为它们来自同一随机函数,在保密性要求不

高的情况下可以用它,并且使用时每项再乘一个系数加上一个系数,这两个系数也是由用户密码计算出来。

b)用多个随机函数;和a)类似这里用多个随机函数的值的运算结果做密钥,这样的密钥之间的关系就不好被利用破解了,所以这个加密强度比a)高些。

c)构造密钥数组;字节数组的基本元素就是256个,要建造 N个数据的密钥数组,为了分布均匀,设k为一个整数,让256×k大于等于N并且256×(k-1)小于N,这样每种元素取 k个,做成一个长度为256×k的数组,我们要将这些数据搅拌均匀,最后取N个即可。数组最初的状态是什么样都没关系,顺序排列的比较好形成,这样我们就有了原始数组。

上面建立了元素绝对均匀的原始数组,现在我们设法将其变为乱码数组,并且数组成员之间是没有关系的,我们采用随机排序的方法,来打乱数组的秩序,随机排序就是让数组内的元素位置随机的交换,一般可以用循环来完成,例如256×k的长度的数组,用一个循环变量i,从头到尾的循环,另外随机的在256×k 中选择一个位置,用这个位置的元素和第i个元素进行交换,这样循环一次每个元素都被交换了,交换完成后新的顺序建立了,生成了新的数组。从256×k中随机的选择位置的操作可以用随机函数来完成,也可以拼凑一些随机性较强的变数来完成,让随机函数值和一些变量经代数运算生成一个大数据,用此数据模256×k,就可以得到随机位置了。一遍随机排序不理想可以进行多遍,一般借助于优秀的随机函数一遍就足够了。我们这样控制随机排序,由用户密码的计算值做成随机函数的种子,这里只做最简单的叙述,实际应用时,你可以搞得很复杂,例如将数组分成若干段分别处理,也可以使用多个随机函数参与运算...,这些完成后你将得到一个长度为256×k的乱码数组,从中取 N个就达到目的了。

第三节文件的加密和解密

有了密钥数组应用加密原理中的方法就可以加密或解密了,这里是流密码加密方式,被加密文件是以字节为单位的信息流一般称为明文流,在得到用户密码后用第二节中的方法生成以字节为单位的密钥数组这是密钥流,用它们依次做加密操作则得到密文流可以保存于文件中这就是密文。密文可以保存或公开传播。密文可以在加密软件的帮助下,应用你掌握的用户密码,让软件将密文还原为明文这就是解密。

第四节安全性问题

加密算法是公开的、加密软件也是公开的安全性取决于你的密钥数组的质量,如果你的密钥数组各项是完全独立的(第二节方法c)则解密是做不到的。有人可能想若用穷举法长时间计算理论上就能破解,穷举法不是万能的,本方法用户密码不受限制如果密码长一些穷举攻击是徒劳的,你可以这样组织用户密码,它有固定不变的较长的前缀或后缀这样便于记忆和变化的部分,这样就又长又好记了。并且加密软件不检测用户密码的正误,因为任何检测都能帮助破解者,这样穷举攻击必须自己判定结果,这既费时又容易出错。另外还有专门对付穷举攻击的方法就不多说了。

密码学

密码学 ——信息战中的一把利剑 中文摘要:密码技术是保障信息安全的核心技术。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。Abstract:Cryptographic techniques to protect the information security of the core technology. Cryptography is the practice of encoding and decoding of the struggle gradually developed, and along with the application of advanced science and technology has become a comprehensive cutting-edge technological sciences. 中文关键字:密码学密码技术信息安全 Keyword:Cryptology Crytography Security 第一章引言 密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 一般来讲,信息安全主要包括系统安全及数据安全两方面的内容。系统安全一般采用防火墙、病毒查杀、防范等被动措施;而数据安全则主要是指采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。 密码技术是保障信息安全的核心技术。密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

现代密码学课后题答案

《现代密码学习题》答案 第一章 判断题 ×√√√√×√√ 选择题 1、1949年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 填空题: 5、1976年,和在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 判断题: ×√√√ 选择题: 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码

北航电信院学术型博士研究生培养方案(2017版)

电子信息工程学院 网络空间安全(0839) 博士研究生培养方案 一、适用学科 网络空间安全学科(0839) 二、培养目标 1、坚持党的基本路线,热爱祖国,遵纪守法,品行端正,诚实守信,身心 健康,具有良好的科研道德和敬业精神。 2、在网络空间安全方面具有坚实宽广的的基础理论和系统深入的专门知识 ,全面了解学科的发展现状、趋势和研究前沿;熟练地掌握一门外语, 能够熟练阅读外文资料,具有良好的科技论文写作能力和进行国际学术 交流的能力;具有从事本学科和相关学科领域的科学研究或独立担负专 门技术工作的能力,对本学科相关领域的重要理论、方法与技术有透彻 了解和把握,能够进行领域高水平基础研究和应用基础研究,善于发现 前沿性问题,并能够探索新的理论、技术和方法来解决问题;能够胜任 网络空间安全领域中大型复杂系统的设计、开发或管理工作,并做出创 新性的成果。 三、培养方向 1、密码学及应用 密码学是网络空间安全学科的重要基础,可为网络空间安全学科提供密码学基础理论和应用工具方面的重要支撑。培养方向包括密码学理论及应用。其中,密码理论主要研究新型密码体制和安全协议的设计、分析及其应用;密码应用主要研究密钥管理技术、认证技术、以及密码在各类信息系统的应用等。 2、系统安全 系统安全是网络安全和应用安全的核心和基础。系统安全指综合应用各种安全技术来保证网络空间中单元计算系统的安全和可信。培养方向包括可信计算、操作系统安全、虚拟化技术及安全、软件逆向分析与安全漏洞挖掘、移动系统安全、工控系统安全、系统安全测评和信息安全工程、软件安全性验证理论及工具

研究、软件可信性分析、度量和验证、硬件安全、现场可编程门阵列安全性、安全芯片设计等。 3、网络安全 网络安全是指保证连接计算机的网络自身安全和传输信息安全。培养方向包括网络安全体系结构、网络安全防护、通信对抗、异构网络安全接入与融合、安全事件挖掘、发现和跟踪、策略自动化、Web 安全、社交网络安全、网络动态防御体系、自组织网络攻击与防御、协议分析与识别、流量分析与控制、访问控制与授权技术、信任模型与管理、网络的可生存性与可用性等。 4、网络内容安全 网络内容安全是网络空间安全的重要保障,本方向面向国家安全需求,在信息获取、传输、处理和分析环节涉及安全的相关技术开展研究。形成数字内容安全、视频图像分析与敏感内容检测和网络舆情分析三方面的学科优势方向。 5、网络空间安全治理 网络空间安全治理是网络空间安全的重要组成部分,以网络空间安全法治化为核心的网络空间安全治理刻不容缓。本方向包括网络空间安全立法研究、网络信息安全事件应急处理机制研究、以及网络安全治理与战略规划研究。 四、培养模式及学习年限 本学科博士研究生主要按一级学科培养,鼓励开展国际联合培养,实行导师或联合导师负责制,负责制订研究生个人培养计划、指导科学研究和学位论文。 遵循《北京航空航天大学研究生学籍管理规定》。本学科直接攻博研究生学制为4年;其它类型博士研究生学制为3年,实行弹性学习年限。 博士研究生实行学分制,在攻读学位期间,要求在申请博士学位论文答辩前,依据培养方案,获得知识和能力结构中所规定的各部分学分及总学分。 鼓励研究生从入学起就开始学位论文相关的研究工作;博士研究生文献综述与开题报告至申请学位论文答辩的时间不少于1年。 五、知识和能力结构 网络空间安全学科博士生应掌握坚实宽广的网络空间安全基础、密码学及应用、系统安全、网络安全、应用安全、信息内容安全

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

现代密码学小论文

目录 现代密码学的认识与应用 (1) 一、密码学的发展历程 (1) 二、应用场景 (1) 2.1 Hash函数 (1) 2.2应用场景分析 (2) 2.2.1 Base64 (2) 2.2.2 加“盐” (2) 2.2.3 MD5加密 (2) 2.3参照改进 (3) 2.3.1 MD5+“盐” (3) 2.3.2 MD5+HMAC (3) 2.3.3 MD5 +HMAC+“盐” (3) 三、总结 (4)

现代密码学的认识与应用 一、密码学的发展历程 密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。 20世纪60年代计算机与通信系统的迅猛发展,促使人们开始考虑如何通过计算机和通信网络安全地完成各项事务,从而使得密码技术开始广泛应用于民间,也进一步促进了密码技术的迅猛发展。 二、应用场景 2.1 Hash函数 Hash函数(也称杂凑函数、散列函数)就是把任意长的输入消息串变化成固定长度的输出“0”、“1”串的函数,输出“0”、“1”串被称为该消息的Hash值(或杂凑值)。一个比较安全的Hash函数应该至少满足以下几个条件: ●输出串长度至少为128比特,以抵抗攻击。对每一个给定的输入,计算 Hash值很容易(Hash算法的运行效率通常都很高)。 ●对给定的Hash函数,已知Hash值,得到相应的输入消息串(求逆)是计 算上不可行的。 ●对给定的Hash函数和一个随机选择的消息,找到另一个与该消息不同的 消息使得它们Hash值相同(第二原像攻击)是计算上不可行的。 ●对给定的Hash函数,找到两个不同的输入消息串使得它们的Hash值相同 (即碰撞攻击)实际计算上是不可行的Hash函数主要用于消息认证算法 构造、口令保护、比特承诺协议、随机数生成和数字签名算法中。 Hash函数算法有很多,最著名的主要有MD系列和SHA系列,一直以来,对于这些算法的安全性分析结果没有很大突破,这给了人们足够的信心相信它们是足够安全的,并被广泛应用于网络通信协议当中。

密码学及其研究现状(2014年)

密码学及其研究现状(2014年) {摘要}: 密码系统的两个基本要素是加密算法和密钥管理。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。{关键词}:密码技术安全网络密匙管理 密码技术是信息安全的核心技术。如今,计算机网络环境下信息的保密性、完 整性、可用性和抗抵赖性,都需要采用密码技术来解决。密码体制大体分为对称密 码(又称为私钥密码)和非对称密码(又称为公钥密码)两种。公钥密码在信息安全中 担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这 些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早 期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据 等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的 应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信 息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府 现用的密码编制及破译手段都具有高度的机密性。 进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它 们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照 规定的图形和线路,改变明文字母或数码等的位置成为密文;代替--用一个或多 个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码 组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作 为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单 独使用,也可混合使用,以编制出各种复杂度很高的实用密码。 当前,公钥密码的安全性概念已经被大大扩展了。像著名的RSA公钥密码算法、 Rabin公钥密码算法和ElGamal公钥密码算法都已经得到了广泛应用。但是,有些公

计算机软件与理论(081202)

计算机软件与理论(081202) 一、专业概况及培养目标 1、专业概况: 计算机软件与理论专业2004年设置,经过十五年的建设和发展,在人工智能云技术、智能信息处理与应用软件等方面取得了丰硕的成果。近年来承担了多项国家级自然科学基金项目、863计划重大项目、国家科技支撑计划项目、国家发改委CNGI专项、教育部重大科技项目、北京市科研项目等,成功培育了一批批优秀毕业生,继续从事计算机软件与理论相关研究、开发、传播或管理事业。 2、培养目标: 计算机软件与理论专业特色是培养传媒科技领域科研与技术人才,促进通信、网络、多媒体信息交叉,形成传媒科技领域知识创新优势学科,主要围绕传媒科技领域的人工智能云技术、智能信息处理与应用软件展开教学与科研工作。既重视硕士生的理论知识,也重视编程实现能力,培养传媒科技领域创新型、复合型的高层次人才。 二、研究方向和内容 1、人工智能云技术方向 人工智能云技术方向,旨在培养掌握人工智能、云计算理论知识和专业技能,能从事基于云的软件服务、云安全的管理与维护,具备独立研究、开发或维护,甚至自主创业的高素质人才。 本方向主要研究内容包括:有限元云计算系统研发及安全加固;高级持续威胁入侵方法和技术研究;大数据媒体信息分析技术;基于FPGA与人工智能技术的图像处理技术研究;云系统可靠性形式化验证技术等。 2、智能信息处理与应用软件方向 智能信息处理与应用软件方向旨在培养学生掌握计算机科学、智能信息科学、应用软件设计与开发方面的基本理论和技术方法。培养学生综合运用人工智能技术处理媒体信息的能力,使学生具备在广播电视、互联网等传统或新兴融媒体领域从事创造性科学研究和技术开

密码学基础教学大纲完整版

《密码学基础》课程教学大纲 (课程代码:07310620) 课程简介 密码学基础是信息安全专业的一门技术基础课程,该课程的学习将为后续的信息安全课程打下基础,同时也为将来从事信息安全研究和安全系统的设计提供 必要的基础。该课程主要讲授流密码(古典密码学)分组密码学、公钥密码学、 密钥分配与管理、信息认证和杂凑算法、数字签名以及网络加密与认证等几个部分,在其中将学习各种加解密、散列函数、单向函数、签名模式及伪随机发生器 等多种密码学工具,以及如何应用这些工具设计一个实现基本信息安全目标的系 统(目前学时不够,没有安排)。基本密码学工具的掌握和应用这些工具构造安 全服务就是本课程的基本目标。 本课程具有如下特点: (一)依赖很强的数学基础 本课程需要数论、近世代数、概率论、信息论、计算复杂性等数学知识作为 学习的基础。这些数学基础的讲解既要体现本身的体系性,同时还要兼顾密码学背景。 (二)可扩展性强 各种具体方法的学习不是本课程的最终目标,背后的基本原理以及应用这些原理设计新工具的能力才是本课程的最终目标。 (三)课程内容复杂且涉及面广 由于密码学内容丰富,且包含许多复杂的知识点,所以本课程的讲授以线为主,即在基本主线的勾勒基础上对授课内容及复杂程度做出取舍。 本课程先修课程有:数据结构、近世代数、概率论、高等数学、高级语言程 序设计等。后续课程有信息安全扫描技术、PKI技术、病毒学等专业课程。 课程教材选用国内信息安全优秀教材杨波编著的《现代密码学》(清华大学出版社),同时参考国外优秀教材:《经典密码学与现代密码学》,Richard Spillman,清华大学出版社、Douglas R. Stinson著,冯登国译的《密码学原理和实践》,电子工业出版社,2003年2月第二版。另外还向学生推荐国内的一些具有特色的操作系统教材如胡向东编写的《应用密码学教程》(电子工业出版社)等。 实验教材选用自编的实验指导书,同时参考上海交大的“信息安全综合实验系统实验指导书”,除了这些教材之外,学校的图书馆为师生提供了相关的学术 期刊和图书。 课程教学体系:理论课程(34学时)课程实验(16学时)。达到从算法 验证、综合设计、到创新应用知识的逐步提高、全面培养的目的。相应的教学 材料由教学大纲、实验大纲、实验指导书等。实践环节的实验条件有:计算机 科学技术系的实验中心(实施课程实验)。 课程教学安排 序号内容课时数备注 一密码学概述 2 二古典密码学算法(一) 2

公钥密码学的理论基础

公钥密码学的理论基础—单向函数 1976年,Diffie W.和Hellman M.E.在他们的《密码学的新方向》一文中提出了公钥密码的概念。随后,在1978年,Rivest R.L.,Shamir A.和Adleman L.M.在其文《实现数字签名和公钥密码体制的一种方法》中最先提出了一种可行的实现方法,这就是我们现在广泛使用的RSA 体制。RSA体制的提出真正使得互不相识的通信双方在一个不安全 的信道上进行安全通信最终成为可能,也是我们今天CA服务的源泉。然而,人们很少关心当前幸福生活的背后有一位默默的奉献者—单向函数。 单向和陷门单向函数的概念是公钥密码学的核心,可以说公钥密码体制的设计就是陷门单向函数的设计。那么什么是单向函数?什么是陷门单向函数?他们的密码学意义何在?本文试图作一个初浅的 介绍。 1 单向函数 给定任意两个集合X和Y。函数f:X Y 称为单向的,如果对每一个x属于X,很容易计算出函数f(x)的值,而对大多数y属于Y,要确定满足y=f(x)的x是计算上困难的(假设至少有这样一个x存在)。注意,不能将单向函数的概念与数学意义上的不可逆函数的概念混同,因为单向函数可能是一个数学意义上可逆或者一对一的函数,而一个不可逆函数却不一定是单向函数。

目前,还没有人能够从理论上证明单向函数是存在的。单向函数存在性的证明将意味着计算机科学中一个最具挑战性的猜想P=NP,即NP完全问题的解决,而关于NP完全性的理论却不足以证明单向函数的存在。有幸的是,现实中却存在几个单向函数的“候选”。说他们是“候选”,是因为他们表现出了单向函数的性质,但还没有办法从理论上证明它们一定是单向函数。 一个最简单的、大家熟知的“侯选”单向函数就是整数相乘。众所周知,不管给定两个多大的整数,我们很容易计算出它们的乘积,而对于一个300位左右的十进制整数,即使已知它是两个大小差不多(150位左右的十进制数)的素数之积,用世界上计算能力最强的计算机,也没有办法在一个合理的时间内分解出构成这个整数的两个素数因子来。这里讲的“合理的时间”是指一个可度量的相当长的时间,比如人类或者地球的寿命等。 另一个单向函数的侯选就是固定基数和模数的模指数运算。设n 和a是整数,而且1 2 陷门单向函数 显然,单向函数不能直接用作密码体制,因为如果用单向函数对明文进行加密,即使是合法的接收者也不能还原出明文了,因为单向函数的逆运算是困难的。与密码体制关系更为密切的概念是陷门单向函数。一个函数f:X Y 称为是陷门单向的,如果该函数及其逆函数的计算都存在有效的算法,而且可以将计算f的方法公开,即使由计

密码学原理与应用复习大纲

密码学原理与应用复习大纲 第一部分古典密码 1.1 密码学的五元组(明文,密文,密钥,加密算法,解密算法)及各部分的含义 1.2 密码体制 什么是密码体制? 完成加密和解密的算法。通常,数据的加密和解密过程是通过密码体制(cipher system) +密钥(keyword)来控制的。密码体制必须易于使用,特别是应当可以在微型计算机使用。密码体制的安全性依赖于密钥的安全性,现代密码学不追求加密算法的保密性,而是追求加密算法的完备,即:使攻击者在不知道密钥的情况下,没有办法从算法找到突破口。 1.3 代替密码体制:(单表代替密码多表代替密码) 就是明文中的每一个字符被替换成密文中的另一个字符。接收者对密文做反响替换就可以恢复出明文。(在这里具体的代替方案称为密钥) 单表代替密码 明文的相同字符用相应的一个密文字符代替。(移位密码,乘数密码,仿射密码,多项式密码,密钥短语密码) 单表代替密码的特点: ▲密钥空间K很大,|K|=26!=4×1026 ,破译者穷举搜索计算不可行,1微秒试一个密钥,遍历全部密钥需要1013 年。

▲移位密码体制是替换密码体制的一个特例,它仅含26个置换做为密钥空间。密钥π不便记忆。 ▲针对一般替换密码密钥π不便记忆的问题,又衍生出了各种形式单表替代密码。 单表代替密码的弱点: ▲密钥量很小,不能抵抗穷尽搜索攻击 ▲没有将明文字母出现的概率掩藏起来,很容易受到频率分析的攻击 ▲不具备雪崩效应▲加解密数学表达式简单多表代替密码 是以一系列(两个以上)代换表依次对明文消息的字母进行代换的方法。(维吉尼亚Vigenere密码,Hill密码,Playfair密码)多表代替密码的特点:使用了两个或两个以上的替代表。 Vegenere密码算法(分析类)15分,参考第一讲课件 第二部分对称密码体制 2.1 对称密码体制(分组密码,序列密码)的概念 对称密钥密码体制,对于大多数算法,解密算法是加密算法的逆运算,加密密钥和解密密钥相同,同属一类的加密体制。拥有加密能力就意味着拥有解密能力,反之亦然。对称密码体制保密强度高,但开放性差,它要求发送者和接收者在安全通信之前,需要有可靠的密钥信道传递密钥,而双方用户通信所用的密钥也必须妥善保管。2.2 分组密码

了解网络安全之密码学的基础知识

了解网络安全之密码学的基础知识 密码学要实现的基本功能 数据加密的基本思想是通过变换信息的表示形式来伪装需要保护的敏感信息,使非授权者不能了解被保护信息的内容。网络安全使用密码学来辅助完成在传递敏感信息的的相关问题,主要包括: (I)机密性(confidentiality) 仅有发送方和指定的接收方能够理解传输的报文内容。窃听者可以截取到加密了的报文,但不能还原出原来的信息,及不能达到报文内容。 (II)鉴别(authentication) 发送方和接收方都应该能证实通信过程所涉及的另一方,通信的另一方确实具有他们所声称的身份。即第三者不能冒充跟你通信的对方,能对对方的身份进行鉴别。 (III)报文完整性(message intergrity) 即使发送方和接收方可以互相鉴别对方,但他们还需要确保其通信的内容在传输过程中未被改变。 (IV)不可否认性(non-repudiation) 如果我们收到通信对方的报文后,还要证实报文确实来自所宣称的发送方,发送方也不能在发送报文以后否认自己发送过报文。 加密算法 加密技术根据其运算机制的不同,主要有对称加密算法、非对称加密算法和单向散列算法。其中各有优缺点,他们之间协合合作,共同实现现代网络安全应用。 对称密码算法 对称密码体制是一种传统密码体制,也称为私钥密码体制。在对称加密系统中,加密和解密采用相同的密钥。 (I) 凯撒密码Casesar cipher: 将明文报文中的每个字母用字母表中该字母后的第R个字母来替换,达到加密的目的。 (II) DES,3DES和AES DES(Data Encryption Standard) 算法是美国政府机关为了保护信息处理中的计算机数据而使用的一种加密方式,是一种常规密码体制的密码算法,目前已广泛使用。该算法输入的是64比特的明文,在64比特密钥的控制下产生64比特的密文;反之输入64比特的密文,输出64比特的明文。64比特的密钥中含有8个比特的奇偶校验位,所以实际有效密钥长度为56比特。 1997 年RSA数据安全公司发起了一项“DES 挑战赛”的活动,志愿者四次分别用四个月、41天、56个小时和22个小时破解了其用56bit DES算法加密的密文。即DES加密算法在计算机速度提升后的今天被认为是不安全的。 3DES 是DES算法扩展其密钥长度的一种方法,可使加密密钥长度扩展到128比特(112比特有效)或192比特(168比特有效)。其基本原理是将128比特的密钥分为64比特的两组,对明文多次进行普通的DES加解密操作,从而增强加密强度。 AES(Advanced Encryption Standard)是2001年NIST宣布的DES后继算法。AES处理以128bit数据块为单位的对称密钥加密算法,可以用长为128,192和256位的密钥加密。 NIST估计如果用能在1秒钟内破解56bitDES算法的计算机来破解128位的AES密密钥,要用大约149 亿万年时间。 对称算法最主要的问题是:由于加解密双方都要使用相同的密钥,因此在网络安全中,发送、接收数据之前,必须完成密钥的分发。因而,密钥的分发便成了该加密体系中的最薄弱因而风险最大的环节。各种基本的手段均很难保障安全、高效地完成此项工作。在对称算

密码学课程实验指导书

密码学课程实验指导书 一、密码学课程实验的意义 当前,重视实验与实践教育是各国高等教育界的发展潮流,实验与实践教学与理论教学是相辅相成的,具有同等重要的地位。它是在开放教育的基础上,为配合理论教学、培养学生分析问题和解决问题的能力以及加强训练学生专业实践能力而设置的教学环节;对于完成教学计划、落实教学大纲,确保教学质量,培养学生分析问题、解决问题的能力和实践操作技能更具有特别重要的意义。 密码学是信息安全与保密技术的核心,是一门实践性非常强的课程,实践教学是培养密码技术应用性人才的重要途径,实践教学质量的好环,实际上也决定了应用型人才培养质量的高低。因此,加强密码学课程实践教学环节,提高实践教学质量,对培养高质量的应用型人才至关重要。 二、实验的目的与要求 本实验指导书并不给出一些非常具体的实验步骤,让学生们照着做一遍的实验“指导书”。这样的实验无法发掘这群充满活力的人群的智慧和创造性。本书中的每个实验都是按照这种模式编写的:先给出有关的理论介绍,然后抛砖引玉地给出几范例,再给出一个简单的实验要求。同时,希望每个实验都完成准备-预约-实验-答辩4个环节。 实验内容包含对称密码和公钥密码二个方面,以DES和RSA为代表通过具体实验使学生掌握这二类密码的结构、特性、攻击方法以及实际应用技术。 第一部分数据加密标准DES 1.实验目的 (1)掌握DES中各加密函数对其性能影响; (2)DES的特性分析,包括互补性和弱密钥; (3)DES的实际应用,包括各种数据类型的加/脱密、DES的短块处理。 2.实验原理 信息加密根据采用的密钥类型可以划分为对称密码算法和非对称密码算法。对称密码算法是指加密系统的加密密钥和解密密钥相同,或者虽然不同,但是可

现代密码学在网络安全中的应用策略

题目现代密码学在网络 安全中的应用策略 学院: 姓名: 学号: 时间:

现代密码学在网络安全中的应用策略 摘要 计算机网络飞速发展的同时,安全问题不容忽视。网络安全经过了二十多年的发展,已经发展成为一个跨多门学科的综合性科学,它包括:通信技术、网络技术、计算机软件、硬件设计技术、密码学、网络安全与计算机安全技术等。 在理论上,网络安全是建立在密码学以及网络安全协议的基础上的。密码学是网络安全的核心,利用密码技术对信息进行加密传输、加密存储、数据完整性鉴别、用户身份鉴别等,比传统意义上简单的存取控制和授权等技术更可靠。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。从技术上,网络安全取决于两个方面:网络设备的硬件和软件。网络安全则由网络设备的软件和硬件互相配合来实现的。但是,由于网络安全作为网络对其上的信息提供的一种增值服务,人们往往发现软件的处理速度成为网络的瓶颈,因此,将网络安全的密码算法和安全协议用硬件实现,实现线速的安全处理仍然将是网络安全发展的一个主要方向。 在安全技术不断发展的同时,全面加强安全技术的应用也是网络安全发展的一个重要内容。同时,网络安全不仅仅是防火墙,也不是防病毒、入侵监测、防火墙、身份认证、加密等产品的简单堆砌,而是包括从系统到应用、从设备到服务的比较完整的、体系性的安全系列产品的有机结合。 总之,网络在今后的发展过程中不再仅仅是一个工具,也不再是一个遥不可及仅供少数人使用的技术专利,它将成为一种文化、一种生活融入到社会的各个领域。 关键词:计算机;网络;安全;防范;加密

1.密码学的发展历程 密码学在公元前400多年就早已经产生了,正如《破译者》一书中所说“人类使用密码的历史几乎与使用文字的时间一样长”。密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。因此,我们可以说,密码学为战争的胜利立了大功。在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。 2.密码学的基础知识 密码学(Cryptogra phy)在希腊文用Kruptos(hidden)+graphein(to write)表达,现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。 在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。这些密码算法大都十分简单,现在已经很少在实际应用中使用了。由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的

《现代密码学》教学大纲

《现代密码学》教学大纲 课程编号:CE6209 课程名称:现代密码学英文名称:Modern Cryptography 学分/学时:2/32 课程性质:学院选修 适用专业:网络工程(含卓越班) 建议开设学期:5 先修课程:离散数学、信息安全数学基础、概率论、C语言等 开课单位:网络与信息安全学院 一、课程的教学目标与任务 本课程是网络与信息安全学院网络工程专业的学院选修课。 本课程的目标是全面介绍现代密码学的基本概念、基础理论和基本核心部件;研究和分析密码算法和安全协议的设计原理和思想;了解现代密码学的理论分析方法及技术。通过本课程的学习使学生系统地掌握密码学的基本概念和原理,掌握密码技术应用的基本要求,了解现代密码学的发展方向和新兴密码技术;具备进行密码学理论研究的基础知识;具备在信息安全中分析和应用密码技术的能力。 本课程以理论教学为主,并在各个环节注意加强学生实践能力的培养。注重密码学部件的正确应用,实践环节将针对各种不安全的密码协议进行分析,理论和实践攻击。通过本课程的学习,学生将全面了解密码技术的正确应用,并在使用中规避不安全的密码协议设计,分析和评估不同场景下密码部件应用的安全性,跟踪前沿的密码技术、标准,能充分运用并掌握先进的密码设计原理、分析方法、应用场景,为学生从事网络安全相关工作打下坚实的基础。 二、课程具体内容及基本要求 (一)密码学基础(4学时) 主要包括密码学基本概念,用途和发展历史,介绍古典密码学的一些简单实际应用和初等密码分析技术,从信息论角度分析密码安全。 1. 基本要求 (1)保密学的基本概念; (2)密码体制分类;

(3)古典密码:掌握凯撒密码,维吉尼亚密码等古典密码的原理、实现、应用和攻击; (4)初等密码分析:掌握密码分析的初等方法; 2. 重点、难点 重点:古典密码的应用和安全性分析,离散概率的各种定义和分析方法。 难点:古典密码的安全性分析。 3. 作业及课外学习要求: (1)掌握单钥体制与双钥体制的区别以及双钥体制产生的原因; (2)掌握古典密码中代换密码的工作原理; (3)分析维吉尼亚密码,掌握初等密码分析方法的分类以及分析方法具体细节。 (二)单钥体制——分组密码(2学时) 主要包括分组密码的基本概念、组件;DES与Feistel结构;穷举搜索攻击,差分密码分析和线性密码分析;分组密码的运行模式。 1. 基本要求 (1)熟悉分组密码的基本概念、了解代换和置换等基本组件及分组密码发展现状; (2)熟悉DES算法和Feistel结构; (3)了解分组密码的攻击方法:线性攻击,差分攻击,穷举搜索等; (4)了解分组密码的四种运算模式:ECB,CBC,CFB,OFB; 2. 重点、难点 重点:Feistel结构;DES算法结构和S盒。 难点:Feistel网络结构。 3. 作业及课外学习要求: (1)完成课堂练习; (2)DES算法的编程实现。 (三)双钥密码体制(6学时) 主要包括公钥密码的基本概念和原理,包括单向函数、陷门函数、密码学困难问题、RSA密码体制、Rabin密码体制、ElGamal密码体制及相关安全性分析。 1. 基本要求 (1)掌握公钥密码的基本概念原理,包括单向函数、陷门函数; (2)掌握密码学困难问题的有关概念,包含大整数分解困难问题和离散对数困难问题; (3)掌握Diffle-Hellman密钥交换协议及其安全性分析。

密码学基础教学大纲

密码学基础课程教学大纲 课程名称: 密码学基础课程编码: 英文名称: cryptography 学时: 32 学分:2 适用专业: 信息与计算科学课程类别: 选修 课程性质: 学科任选课 先修课程:高等代数、离散数学、计算机理论基础 教材:现代密码学,科学出版社,陈鲁生,2008.8 一、课程性质与任务 本课程为信息与计算科学专业的专业选修课。密码学基础是信息安全专业的核心课程之一,是信息安全专业其他课程如网络安全,密码系统设计,数字隐藏水印等的先行课程。通过这一课程的学习,要使学生理解信息安全服务的思想,掌握流行加密算法如DES、AES等的基本原理,掌握公钥密码体制的概念,掌握RSA,离散对数公钥体制的基本算法,以及数字签名等信息安全服务的原理和算法。密码学内容丰富,涉及领域广泛,培养学生的抽象思维、逻辑推理、科学计算和创新能力。本课程的设置,为将来从事信息通讯安全以及在今后相关领域的研究打下坚实的基础。 二、课程教学的基本要求: 本课程主要内容包括:密码学基本概念;古典密码学;分组加密算法;公钥密码学;序列密码;数字签名等。通过这一课程的学习,使学生掌握密码学的基本概念和原理,在此基础上,掌握常用的加密算法和数字签名算法。进一步的,对这些常用算法在通讯问题中的应用进行了初步探讨与分析。培养学生的分析问题解决问题的能力,培养创新能力,为本科生在今后相关领域的研究与应用打下良好的基础。 三、课程内容及教学要求: (一)密码学基本概念 教学基本内容:

明文、密文、密钥、加密、解密、密码体制、密码体制的分类、加密迅通模型、密码攻击和密码攻击的分类(按攻击方法分类、按可利用数据分类)、绝对不可破译和计算不可破译。 重点: 加密通讯模型、密码攻击的分类、计算不可破译。 难点: 密码攻击的分类、绝对不可破译和计算不可破译。 本章节主要教学要求: 1.理解明文、密文、密钥、加密、解密的概念和关系,了解密码体制的构成,理解对称密码体制和公钥密码体制的概念; 2.掌握加密通讯模型; 3.了解密码攻击的定义,能够根据密码分析者所获得的数据进行攻击的分类; 4.理解绝对不可破译和计算不可破译的概念和区别。 (二)古典密码学 教学基本内容: 古典密码体制的运算(单表密码体制、多表密码体制)、密钥量、凯撒密码体制、标准字头加密体制、playfair体制、Vigenere体制、Vernam体制、Hill体制。 重点: 凯撒密码体制、playfair体制、Vigenere体制、Hill体制。 难点: 古典密码体制的运算(单表密码体制、多表密码体制)和密钥量。 本章节主要教学要求: 1.了解古典密码体制的运算(单表密码体制、多表密码体制),会计算简单密码体制的密钥量。 2.掌握常用古典密码算法(凯撒密码体制、playfair体制、Vigenere体制、Hill体制); 3.了解标准字头加密体制和Vernam体制的加密算法。 (三)分组密码学 教学基本内容:

相关文档
最新文档