非线性数值分析

非线性数值分析
非线性数值分析

作者:黄象鼎出版日期:2000年12月第1版页数:243

SS号:10475325

内容提要:本书介绍非线性数值分析的理论与方法,内容包括解非线性方程组的理论与方法(如Newton型方法、同伦延拓法、单纯形算法等)和带参数的非线性问题的解法。

仅30页后即看不到。

(1)

数值分析教案 ShandongUniversity

数值分析教案土建学院 工程力学系 2014年2月

一、课程基本信息 1、课程英文名称:Numerical Analysis 1 2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。 2 A 算法 B误差 典型例题

汽车轮胎二维稳态温度场的数值分析(1)

2002年MSC.Software中国用户论文集 汽车轮胎二维稳态温度场的数值分析 李杰魏建华赵旗 (吉林大学汽车动态模拟国家重点实验室) 摘要: 通过对滚动轮胎进行合理假设,在MSC.Patran系统中建立了国产9.00-2012PR尼龙斜交轮胎二维稳态温度场有限元分析模型,用MSC.Nastran热分析求解器计算了轮胎的温度场分布,计算结果反映了轮胎的温度分布。通过拟合得到最高温升与车速的基本线性关系,该公式可以用来简单预测轮胎不同车速稳态的最高稳升,对轮胎结构设计与使用有一定的指导意义。 关键词:轮胎斜交轮胎有限元温度场 MSC.Patran 1 前言 对轮胎生热及其温度场的研究有试验法和数值计算法[1-3]。试验法是通过试验直接测量轮胎温度场的分布,这种方法有一定的局限性。随着有限元技术和计算机技术的发展,越来越多的研究者采用数值计算法获得轮胎温度场的分布,以便在设计之初就能优化轮胎结构和进行配方设计,提高轮胎的使用寿命。 本文应用MSC.Patran系统对汽车轮胎二维稳态温度场进行数值分析,通过计算得到轮胎达到生热与散热平衡时的温度场,以便为轮胎寿命预测提供依据。 2 汽车轮胎二维稳态温度场的有限元建模 *高等学校博士学科点专项科研基金及高等学校骨干教师资助计划资助项目

2.1 汽车轮胎二维稳态温度场的基本假设 汽车轮胎温度场分析是一个非常复杂的课题,为了简化计算,对轮胎温度场模型提出如下假设: (1)轮胎形状是轴对称,不计花纹的影响。 (2)轮胎滚动过程中,其周向方向不存在温度梯度,任一微元体从地面所吸收的功,被均匀分配到整个圆周上,即周向无温 度梯度假设。 (3)轮胎在定载和定压状态下工作,由橡胶组成,且材料为各向同性。 (4)轮胎在连续行驶一段时间后,达到热平衡状态,可看作稳态热传导问题。 (5)忽略接触摩擦生热和辐射换热。 根据上述假设,可将汽车轮胎温度场分析问题简化为通过对称轴的一个子午线平面来计算模拟轮胎内部温度分布的二维平面问题。 2.2 MSC.Nastran的热分析功能 MSC.Patran系统中链接的求解器MSC.Nastran具有较强的传热分析能力,提供了一维、二维、三维、轴对称等传热分析单元,可求解各种形式的传热问题:传导、对流和辐射,可以进行稳态或瞬态传热分析,线性和非线性传热分析。它提供的材料热属性有:导热率,比热,密度,热容等,对于线性稳态热分析,用到只是导热率。

(完整版)数值分析教案

§1 插值型数值求积公式 教学目的 1. 会求插值型数值求积公式及Gauss 型数值求积公式并会讨论它们的代数精度; 2. 理解复化梯形数值求积公式及复化Simpson 数值求积公式和余项的推导的基础上掌握它们; 3. 理解数值微分公式推导的基础上掌握一阶、二阶数值微分公式及余项; 4. 了解外推原理。 教学重点及难点 重点是插值型数值求积公式及Gauss 型数值求积公式的求解及它们代数精度的讨论;难点是Gauss 型数值求积公式节点的求解方法的推导及求解方法。 教学时数 12学时 教学过程 1.1一般求积公式及其代数精度 设)(x ρ是),(b a 上的权函数,)(x f 是],[b a 上具有一定光滑度的函数。用数值方逑下积分 ?b a dx x f x )()(ρ 的最一般方法是用)(x f 在节点b x x x a n ≤<<≤≤Λ10上函数值的某种线性组合来近似 ?∑=≈b a n i i i x f A dx x f x 0 )()()(ρ 其中n i A i ,,0,Λ=是独立于函数)(x f 的常数,称为积分系数,而节点n i x i ,,1,0,Λ=称为求积节点。 我们也可将(1.2)写成带余项的形式 ][)()()(0 f R x f A dx x f x b a n i i i +=?∑=ρ (1.2)和(1.3)都称之为数值求积公式或机械求积公式。更一般些的求积公式还可以包含函数)(x f 在某些点的低阶导数值。 在(1.3)中余项][x R 也称为求积公式的截断误差。 一个很自然的想法是数值求积公式要对低次多项式精确成立这就导出了求积公式数精度的概念。 定义1 若求积公式(1.2)对任意不高于m 次的代数多项式都精确成立,而对1 +m x 不能精 确成立,则称该求积公式具有m 次代数精度。 一个求积公式的代数精度越高,就会对越多的代数多项式精确成立。 例1 确定求积公式 )]1()0(4)1([3 1 )(1 1 f f f dx x f ++-≈?-

数值分析讲义线性方程组的解法

数值分析讲义 第三章线性方程组的解法 §3.0 引言 §3.1 雅可比(Jacobi)迭代法 §3.2 高斯-塞德尔(Gauss-Seidel)迭代法 §3.3 超松驰迭代法§3.7 三角分解法 §3.4 迭代法的收敛性§3.8 追赶法 §3.5 高斯消去法§3.9 其它应用 §3.6 高斯主元素消去法§3.10 误差分析 §3 作业讲评3 §3.11 总结

§3.0 引言 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题. 分类:线性方程组的解法可分为直接法和迭代法两种方法. (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高. (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b ) 1 基本思想: 与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2 问题: (a) 如何建立迭代格式? (b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析: 考虑解方程组??? ??=+--=-+-=--2.453.82102 .72103 21321321x x x x x x x x x (1) 其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式: ??? ??++=++=++=84.02.01.083.02.01.072 .02.01.02 13312321x x x x x x x x x (2) 据此建立迭代公式: ?????++=++=++=+++84 .02.01.083.02.01.072.02.01.0)(2)(1)1(3 )(3 )(1)1(23)(2)1(1k k k k k k k k k x x x x x x x x x (3) 取迭代初值0) 0(3 )0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

《数值分析》教案

1.7.2 三次样条插值的基本原理 三次样条插值也是一种分段插值方法,用分段的三次多项式构造成一个整体上具有函数、一阶和二阶导函数连续的函数,近似地替代已知函数)(x f ,“样条”一词源于过去绘图员使用的一种绘图工具样条,它是用于富于弹性、能弯曲的木条(或塑料)制成的软尺,把它弯折靠近所有的基点用画笔沿着样条就可以画出连续基点的光滑曲线。 假设已知函数)(x f 在区间],[b a 上的)1(+n 个节点b x x x x x a n n =<<<<<=-1210 及其对应的函数值 i i y x f =)(,),,2,1,0(n i =,即给出)1(+n 组样本点数据),(,),,(),,(1100n n y x y x y x ,可以构造一个定义在],[b a 上的函数)(x S , 满足下述条件。 ① i i y x S =)(,),,2,1,0(n i = ② )(x S 在每个小区间],[1+i i x x )1,,2,1,0(-=n i 上,都是一个三次多项式: 3 32210)(x a x a x a a x S i i i i i +++= (1-42) ③ )(),(),(x S x S x S '''在],[b a 上连续。 可见,)(x S 是一个光滑的分段函数,这样的函数称为三次样条(Spline )插值函数。 构造的函数)(x S 是由n 个小区间上的分段函数组成,根据条件②,每个小区间上构造出一个三次多项式,第 i 个小区间上的三次多项式为 332210)(x a x a x a a x S i i i i i +++=,共有n 个多项式,每个多项式有4个待定系数。要确定这n 个多项式,就需要确定 4 n 个系数

数值分析非线性方程求根实验

实验报告 一、实验目的 1.迭代函数对收敛性的影响。 2.初值的选择对收敛性的影响。 二、实验题目 1.用简单迭代法求方程01)(3=--=x x x f 的根。 分别化方程为如下等价方程: 31+=x x ;13 -=x x ;x x 11+=;213-+=x x x 取初值5.10=x ,精度为4 10-,最大迭代次数为500,观察其计算结果并加以分析。 2.①用牛顿法求方程01)(3=-+=x x x f 在0.5附近的根, 分别取初值1000,100,2,1,5.0,5.0,1,2,100,10000-----=x 观察并比较计算结果,并加以分析。 ②用牛顿法求方程0)(3=-=x x x f 所有根。 三、实验原理 简单迭代法程序,牛顿迭代法程序。 四、实验内容及结果

五、实验结果分析 (1)实验1中用简单迭代法求方程01)(3=--=x x x f 的根: 取初始值5.10=x 的时候,等价方程2和4是不收敛的。等价方程1的迭代次数为6,近似值为1.324719474534364。等价方程3的迭代次数为7,近似值为1.324718688942791。说明不同的等价方程得到的结果以及迭代的次数是不一样的。 (2)实验2中用牛顿迭代法求方程01)(3=-+=x x x f 在0.5附近的根: 通过结果可知,当初始值越接近真实值时,迭代的次数就越少。 (3)实验3中用牛顿法求方程0)(3=-=x x x f 所有根: 可知该方程的根为01=x ,12=x ,13-=x ,由于方程是无重根的,所以可以直接用牛顿迭代法做,而不需要使用牛顿迭代加速法做。

数值分析实验2_求解线性方程组直接法

一 实验目的 1.掌握求解线性方程组的高斯消元法及列主元素法; 2. 掌握求解线性方程组的克劳特法; 3. 掌握求解线性方程组的平方根法。 二 实验内容 1.用高斯消元法求解方程组(精度要求为610-=ε): 1231231 233272212240x x x x x x x x x -+=??-+-=-??-+=? 2.用克劳特法求解上述方程组(精度要求为610-=ε)。 3. 用平方根法求解上述方程组(精度要求为610-=ε)。 4. 用列主元素法求解方程组(精度要求为610-=ε): 1231231 233432222325x x x x x x x x x -+=??-+-=??--=-? 三 实验步骤(算法)与结果 1. 程序代码(Python3.6): import numpy as np def Gauss(A,b): n=len(b) for i in range(n-1): if A[i,i]!=0: for j in range(i+1,n): m=-A[j,i]/A[i,i] A[j,i:n]=A[j,i:n]+m*A[i,i:n] b[j]=b[j]+m*b[i] for k in range(n-1,-1,-1): b[k]=(b[k]-sum(A[k,(k+1):n]*b[(k+1):n]))/A[k,k]

print(b) 运行函数: >>> A=np.array([[3,-1,2],[-1,2,-2],[2,-2,4]],dtype=np.float) >>> b=np.array([7,-1,0],dtype=np.float) >>> x=Gauss(A,b) 输出: 结果:解得原方程的解为x1=3.5,x2=-1,x3=-2.25 2 程序代码(Python3.6): import numpy as np A=np.array([[3,-1,2],[-1,2,-2],[2,-2,4]],dtype=float) L=np.array([[1,0,0],[0,1,0],[0,0,1]],dtype=float) U=np.array([[0,0,0],[0,0,0],[0,0,0]],dtype=float) b=np.array([7,-1,0],dtype=float) y=np.array([0,0,0],dtype=float) x=np.array([0,0,0],dtype=float) def LU(A): n=len(A[0]) i=0 while i

计算机数值方法教案

第O 章 绪论 一、教学设计 1.教学内容:数值计算方法这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点:算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。 3.教学目标:了解数值计算方法的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。 4.教学方法:介绍与讨论 二、教学过程 §1。1引论 1.课程简介: 数学科学的一个分支,它研究数值计算方法的设计、分析和有关的理论基础与软件实现问题。另外,有一个较常用的名词“数值分析”,其包含的内容属于计算数学的一个部分。 2.历史沿革: ①数学最初导源于计算,计算曾经是古代数学的最重要的组成部分。 ②各个时期的大数学家,在发展基础数学的同时也都对计算方法作出了重要贡献。例如:牛顿、拉格朗日、高斯、秦九韶等。 ③直到20世纪40年代,由于技术手段和计算工具条件的不足,发展比较缓慢,作用也比较有限。 3.计算方法的形成: ①20世纪下半叶,计算机极大地扩展了数学的应用范围与能力。如:天气预报 ②计算能力的提高与所用计算方法的效能密切相关。 ③以原来分散在数学各分支的计算方法为基础的一门新的数学科学“计算数学”开始形成并迅速发展。 4.作用与意义: 科学实验、科学理论、科学计算已成为人类进行科学活动的三大方法。这是伽利略、牛顿以来在科学方法论方面取得的重大进展。 5.计算方法的任务: ①将计算机不能直接计算的运算,化成在计算机上可执行的运算。 例:!!212n x x x e n x ++++≈ , h x y h x y x y )()()(-+≈' ②针对数值问题研究可在计算机上执行且行之有效的新系列计算公式。 例:解线性方程组,已有Cram 法则,但不可行。(几十万年) ③误差分析,即研究数值问题的性态和数值方法的稳定性。 6.计算机数值方法的研究对象:(与科学计算有关的数学问题是多种多样的,最基本类型有:) 利用计算机解决科学计算问题的全过程大致如下: 实际问题――>构造数学模型――>设计数值计算方法――>程序设计――>上机求 出结果――>回到实际问题。 数学模型举例: 例1:鸡兔同笼:(共10只,34只脚)导致方程组; 例2:曲边梯形的面积。 相应地,本课程主要研究的数值问题有:函数的插值与逼近方 法;微分与积分计算方法;线性方程组与非线性方程组计算方 法;微分方程数值解等。 7.主要特点 既有纯数学的高度抽象性与严密科学性的特点,同时又具 有应用广泛性与数值试验的高度技术性。(要求先掌握基本数 学知识,以及计算机的基本操作)

温度场数值计算练习

应用ABAQUS进行焊接温度场模拟 课程纲要: z ABAQUS简介 z ABAQUS分析过程简介 z建立有限元模型 z执行ABAQUS程序 z使用结果后处理功能 ABAQUS是由美国Hibbitt、Karlsson & Sorensen (HKS)公司所发展的有限元软件。它的应用范围相当广泛,从大型线性结构分析到极度非线性的材料变形行为等各种力学问题,都可以用ABAQUS解决。特别是它的非线性力学分析功能具有世界领先水平,受到世界上许多著名公司、大学和研究部门的青睐。这个软件在发展之初即以能在生产中解决实际的问题为目标,所以除了多方面的先进功能外,使用的容易度、可靠性、扩充性、计算效率等,特别是允许使用者附加子程序的功能,都受到广泛的重视。 本课程将以一个简单的焊接热过程模拟实例,介绍ABAQUS的基本功能,循序讲述如何建立一个焊接过程有限元分析模型、模型的计算,以及结果的处理分析等。

ABAQUS分析过程简介

例子: 问题描述: SUS301不锈钢板表面MIG堆焊,如下图所示: 这是一个最简单的三维问题 在ABAQUS CAE里我们会依次用到下面几个Module(模块) Part (画几何图形创建部件) Property(赋予材料性能) Assembly(多个部件按位置组装在一起,如果需要的话)Step(创建分析步:焊接步、散热步…) Load(创建载荷,热输入也是一种载荷) Mesh(画网络) Job(提交任务) 一、首先我们创建几何体Part 启动ABAQUS/CAE,在出现的对话框内 选择Create Model Database。 2、从Module 列表中选择Part,进入Part 模块 3、选择Part→Create 来创建一个新的部件。 4、CAE 弹出一个如右图的对话框。将这个部件 命名为Plane(名字随意),Modeling Space(3D)、 Type(Deformable)即三维、可变形体 和BaseFeature (Solid,Extrusion拉伸,即通过截面拉伸获得三维实体模型)选项如右图。 5、输入200(这个尺寸大约为模型最大尺寸的4倍,并无 固定限制)作为Approximate size 的值。 点击Continue。 出现画草图界面,并显示栅格。这时需要我们画出三维体的一个 二维截面。

铝合金压铸模具温度场数值分析

第21卷第4期 2007年4月常熟理工学院学报(自然科学版)Journal of Changshu I nstitute of Technol ogy (Natural Sciences )Vol .21No .4Ap r .,2007 收稿日期:2007-03-02 作者简介:韩雄伟(1982—),男,内蒙五原人,西华大学材料科学与工程学院硕士研究生,研究方向:计算机在材料成型中 的应用。 铝合金压铸模具温度场数值分析 韩雄伟,吴 卫 (西华大学材料科学与工程学院,四川成都 610039) 摘 要:采用PROCAST 对铝合金压铸用模具在压铸过程中的温度场进行了数值模拟,对压铸边 界条件和传热系统的潜热采用热焓法进行了处理,分析了在不同时刻模具的温度场分布,分析了在 不同的浇注温度和不同的模具预热温度情况下对模具温度场的影响,并且预测了热应力集中的位 置,对压铸工艺参数的优化提出了见解,分析了冷却水管的作用,为压铸模具的热应力分析奠定基 础。 关键词:铝合金;压铸模具;温度场;PROCAST 中图分类号:TG249.2 文献标识码:A 文章编号:1008-2794(2007)04-0080-04 压铸过程是利用高压力、高速度迫使浇入压铸机的熔融或半熔融状态的金属在极短时间内充满压铸模的型腔。在这样的充填条件下,虽然金属压铸模的导热性很高,蓄热能力很强,但要求在压铸模型腔内获得形状完整、轮廓清晰、尺寸精度高的铸件,必须得选用合理的模具结构和压铸工艺,而压铸模具的尺寸精度和使用寿命在很大程度上取决于其在压铸过程中热应力和其产生的变形。而实际测量模具的热应力难度大、成本高,故采用有限元数值模拟的方法,预测铸件和模具在工作中的温度场的分布,通过温度梯度的分析预 测应力集中的部位,并预测裂纹可能出现的位置,从而为优化模具结构和压铸工艺提供依据[1]。 本文通过对铝合金压铸模具的温度场模拟,分析了不同压铸工艺时模具的温度场分布,为确定压铸工艺参数提供参考,为进一步模拟模具的应力场分布打下了基础。 1 模拟的压铸件和模具 选用的压铸件平均壁厚为5mm ,压铸过程中蓄热量较大,模具温度场效果明显,适于温度场模拟。模拟部分包括铸件、动模和定模。 压铸件材料为:YZ A lSi10Mg;液相线温度为616℃,固体相线温度为556℃,热导率、密度和焓都是随温度变化的函数。 模具的材料为:Steel -H13;密度为7360Kg/m 3;热导率和比热容都是随温度变化的函数,热导率不高, 热膨胀系数较大,易产生热疲劳。 模具与铸件间的传热系数为1000W /(m 2K );模具与模具间的传热系数为1500W /(m 2K );模具与冷却 水管间的传热系数为500W /(m 2K )[2]。

数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值计算方法教案数值积分(20200511215237)

计算方法课程中学习数值积分内容的心得和体会 计算方法又称 数值分析”。是为各种数学问题的数值解答研究提供最有效的算法。主要内容为函数逼 近论,数值微分,数值积分,误差分析等。常用方法有迭代法、差分法、插值法、有限元素法等。现代的 计算方法还要求适应电子计算机的特点。 数值分析即 计算方法”下面来谈谈学习了计算方法中学习数值积 分内容的心得与体会。 首先了解一下数值积分的内容: b c (1)针对定积分 I 二 f xdx ,若 f x =x 5 ,a=0,b=1,即有 I 二 L a *■ 0 f x = Sin -x , f x 二sinx 2 , ........ ,时,很难找到其原函数。 x (2)被积函数并没有具体的解析形式,即 f x 仅为一数表。 b 定积分I f x dx 的几何意义为,在平面坐标系中I 的值即为四条曲线所围图形的面 a 积,这四条曲线分别是y = f x ,y=0, x=a ,x=b b 二 a f x dx : b -a f - 以及梯形公式I = [ f (x )dx 化七卫f (a )+ f (b )] 梯形公式的几何意义是,用以下梯形面积替代曲边梯形的面积: 1 6 1 5门 X x dx =— 6 1 J ,但当 0 6 其几何意义为用以下矩形面积替代曲边梯形面积 a b 2

再来是辛普森公式 l=J f (x )dx RZ Wl? ] f (a )+4f |兰辿〕十f (b ) 」a 6 「 I 2丿 J 辛普生公式的几何意义为,阴影部分的面积为抛物线曲边梯形,该抛物线由 (a, f (a) > 1卑卫,f '卑卫j ,(b, f (b))三点构成。 I 2 I 2丿丿 b n 从而到处其一般公式为 f x dx A k f x k ,其中x k 称为节点,A 称为求积系数,或 a k=0 权。 衡量一个积分公式的好坏,要用具体的函数来衡量,寻找怎样的函数来衡量呢?简单的 多项式函数是一个理想的标准。若某积分公式对于x k (k=0,1,|H,m )均能准确成立,但对于x m41 不能准确成立。则称该公式具有m 次代数精度。代数精度只是衡量积分公式好坏的1种标准。 f x dx “ b - a f 口的代数精度及几何意义 I 2丿 b b 【解】当f x =x 0=1时,公式左边 f x dx 1dx=b-a ,公式右边二b-a ,左= a a 右; a a+ b b 2 ***研究中矩形公式

数值分析求解非线性方程根的二分法,简单迭代法和牛顿迭代法

实验报告一:实验题目 一、 实验目的 掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。 二、 实验内容 1、编写二分法、牛顿迭代法程序,并使用这两个程序计算 02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 4 10- ,比较两种方法收敛速度。 2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。 3、由中子迁移理论,燃料棒的临界长度为下面方程的根cot x =(x 2?1)/2x ,用牛顿迭代法求这个方程的最小正根。 4、用牛顿法求方程f (x )=x 3?11x 2+32x ?28=0的根,精确至8位有效数字。比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。 三、 实验程序 第1题: 02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。 画图函数: function Test1() % f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0 r = 0:0.01:1; y = r + exp(r) - 2 plot(r, y); grid on 二分法程序: 计算调用函数:[c,num]=bisect(0,1,1e-4) function [c,num]=bisect(a,b,delta) %Input –a,b 是取值区间范围 % -delta 是允许误差 %Output -c 牛顿迭代法最后计算所得零点值 % -num 是迭代次数

ya = a + exp(a) - 2; yb = b + exp(b) - 2; if ya * yb>0 return; end for k=1:100 c=(a+b)/2; yc= c + exp(c) - 2; if abs(yc)<=delta a=c; b=c; elseif yb*yc>0 b=c; yb=yc; else a=c; ya=yc; end if abs(b-a)

数值分析教学计划

《数值分析》教学计划 课程名称:《数值分析》 任课教师: 授课班级:2008计算机专业 授课时数:4节/周,全期共68学时。 一、课程概述 (一)教学目标与要求 “数值分析”是信息与计算科学、数学与应用数学本科专业必修的一门专业基础课。学生需在掌握数学分析、高等代数的基础知识之上,学习本课程。在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型与数学产生密切的联系,并以各种形式应用于科学和工程领域。而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,有时是不可能的,这就使得研究各种数学问题的近似解变得非常重要了,“数值分析”就是专门研究各种数学问题的近似解的一门课程。通过这门课程的教学,使学生掌握用数值分析方法解决实际问题的算法原理及理论分析,提高学生应用数学知识分析和解决实际问题的能力。 (二)教材及教学参考书 1、李庆扬等编.数值分析(第四版).北京:清华大学出版社,2001 2、李有法.数值计算方法.北京:高等教育出版社,1998 二、学时分配(见附表) 三、课程内容 第一章绪论 1、数值分析研究对象与特点 2、数值计算的误差 3、误差定性分析与避免误差危害 第二章插值法 1、引言 2、拉格朗日插值 3、均差与牛顿插值公式 4、差分与等距节点插值 5、埃尔米特插值 6、分段低次插值 7、第七节三次样条插值 第三章数值积分与数值微分 1、引言 2、牛顿—柯特斯公式 3、复化求积公式

4、龙贝格求积公式 5、高斯求积公式 6、数值微分 第四章解线性方程组的直接方法 1、高斯消去法 2、高斯主元素消去法 3、矩阵三角分解法 4、向量和矩阵的范数 5、误差分析 6、矩阵的正交三角化及其应用 第五章解线性方程组的迭代法 1、基本迭代法 2、迭代法的收敛性 3、分块迭代法 第六章非线性方程求根 1、方程求根与二分法 2、迭代法及其收敛性 3、迭代收敛的加速方法 4、牛顿法 5、弦截法与抛物线法 6、解非线性方程组的牛顿迭代法 第七章矩阵特征值问题计算 1、幂法与反幂法 2、豪斯霍尔德方法 3、QR方法 四、学习方式 教学手段:多媒体课堂教学与实践性上机教学结合教学环境:多媒体、网络实验室 五、课程考核 考核类型:专业必修课

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值计算方法教案

《计算方法》教案 课程名称:计算方法 适用专业:医学信息技术 适用年级:二年级 任课教师:张利萍 编写时间:2011年 8月 新疆医科大学工程学院张利萍

教案目录 《计算方法》教学大纲 (4) 一、课程的性质与任务 (4) 二、课程的教学内容、基本要求及学时分配 (4) 三、课程改革与特色 (5) 四、推荐教材及参考书 (5) 《计算方法》教学日历.................................. 错误!未定义书签。第一章绪论 .. (6) 第1讲绪论有效数字 (6) 第2讲误差……………………………………………………………………………… 第二章线性方程组的直接法 (14) 第3讲直接法、高斯消去法 (14) 第4讲高斯列主元消去法 (22) 第5讲平方根法、追赶法 (29) 第三章插值法与最小二乘法 (31) 第6讲机械求积、插值型求积公式 (32) 第7讲牛顿柯特斯公式、复化求积公式 (37) 第8讲高斯公式、数值微分 (42) 第9讲 第10讲 第12讲 第四章数值积分与数值微分 (48) 第11讲欧拉公式、改进的欧拉公式 (48) 第12讲龙格库塔方法、亚当姆斯方法 (52) 第13讲收敛性与稳定性、方程组与高阶方程 (56) 第14讲 第15讲 第五章微分常微分方程的差分方法 (59) 第16讲迭代收敛性与迭代加速 (60) 第17讲牛顿法、弦截法 (64) 第18讲 第19讲 第20讲 第六章线性方程组的迭代法 (67) 第21讲迭代公式的建立 (68)

第22讲 第23讲 第24讲向量范数、迭代收敛性 (71) 第25讲

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种) 1.求解不动点 function [k,p,err,P]=fixpt(g,p0,tol,max1) %求解方程x=g(x) 的近似值,初始值为p0 %迭代式为Pn+1=g(Pn) %迭代条件为:在迭代范围内满足|k|<1(根及附近且包含初值)k为斜率 P(1)=p0; for k=2:max1 P(k)=feval(g,P(k-1)); err=abs(P(k)-P(k-1)); relerr=err/(abs(P(k))+eps); p=P(k); if (err0 break; end max1=1+round((log(b-a)-log(delta))/log(2)); for k=1:max1 c=(a+b)/2; yc=feval(f,c); if yc==0 a=c; b=c; elseif yb*yc>0 b=c; yb=yc; else a=c; ya=yc; end

if b-a0 disp('Note:f(a)*f(b)>0'); end for k=1:max1 dx=yb*(b-a)/(yb-ya); c=b-dx; ac=c-a; yc=feval(f,c); if yc==0 break; elseif yb*yc>0 b=c; yb=yc; else a=c; ya=yc; end dx=min(abs(dx),ac); if abs(dx)

相关文档
最新文档