DriveWizard Plus 诊断工具在传动控制系统中的应用解析

DriveWizard Plus 诊断工具在传动控制系统中的应用解析
DriveWizard Plus 诊断工具在传动控制系统中的应用解析

DriveWizard Plus 诊断工具在传动控制系统中的应

用解析

来源:网络转载更新时间:2012/5/14

[摘要]本文通过实例解析详细说明了DriveWizardPlus诊断工具强大功能在传动控制系统中的应用。

关键词:诊断监控解析

[Abstract]The paper,by examples and analysis,illustrats the stong functions of the DriveWizard Plus diagnostic tool in the drive and control system in detail.

Keyword: diagnosis, monitoring , analysis

0 前言

在电气控制系统中,为了便于监控传动运行状态,参数设置的有效性及响应的快速性,故障信息的显示及运行曲线的查看分析,一般都应用于相关的系统诊断工具用于过程控制分析。DriveWizard Plus 就是一种可以方便的应用于传动系统中的诊断工具,其特点是可以同时用于多种主/副传动控制系统,实现对传动系统的参数设置、程序备份、数字信号、图形曲线、传动设备的实际状态、故障信息报警功能、远程连接等多种功能的控制。

1 DriveWizard Plus的组成及功能

DriveWizard Plus是Yaskawa Electric公司开发的应用于现代重型工业领域传动系统的诊断工具,主要用于调试和维护系统,应用RS-232或者以太网通讯协议进行通讯,可以运行于WindowsXP、WindowsVista或者Windows7等多种操作系统环境下。

1.1硬件组成

一台配置较高的计算机是必须的以外,若单独连接一台H1000系列安川变频器,只需一根USB

电缆;若连接多台变频器硬件需配置上位机控制器(MP2000系列)、MECHATROLINK-II通讯电缆。

1.2DriveWizard Plus主要功能

DriveWizard Plus诊断工具主要实现利用有用帮助信息编辑参数、显示驱动器运行状态(I/O

信号、内部状态信息等)以及相关产品信息、排查故障特性包含可能引起故障的原因和其他帮助选项、驱动器和应用程序的试运行(手动和模式化操作)、优化参数设置的自动调节特性和示波器功能。

1.3DriveWizard Plus通讯连接

对于单台H1000系列安川变频器来说,只需USB线缆即可,但是在安装驱动程序时要注意安装路径,否则无法正常驱动。正确的安装驱动路径为:D:\ProgramFiles\Driver\USB\x86(安装DriveWizardPlusVer3.07位置在D盘)

如果是多台H1000系列安川变频器,通讯连接方式有两种,一种是以太网连接;另一种是上位机控制器MP2100/MP2100M通讯连接。

2 DriveWizardPlus应用实例解析

我们通过实例应用进一步解析DriveWizard Plus强大功能。通过在线诊断,我们可以将维护工作效率极大提高。

2.1 在线H1000系列变频器产品信息读取

由于控制柜设计结构紧凑,安装后的变频器产品信息在侧面,可能无法看到。通过在线,DriveWizard Plus轻松读取。

2.2 在线H1000系列变频器内部参数的编辑设定

在对在线变频器参数进行编辑时,必须要让变频器在准备状态,有的参数在运行时无法修改。所有变频器参数包括A1、A2环境设定参数,B应用程序参数,C调谐参数,D指令参数,E电机参数,F有关选购卡参数,H端子功能选择参数,L保护功能参数,N特殊调整参数,O与操作器相关参数,QDriveWorksEZ 参数,RdriveWorksEZ连接参数。

其实这么多参数里,大部分参数还是选择缺省值,我们只是根据电机和变频器类型修改一部分参数。这些修改的参数也是最重要的参数。单独放在一栏里,正如图2里“Modified Parameters”,它们的设定参数与缺省值不同,所以以浅蓝色字体显示,以示区分。如果我们在编辑某一参数,它的参数背景色为绿色,如果你编辑的参数超出最小与最大值范围,它的参数背景色为红色,以示提醒。当然我们也可以直接编辑参数。

2.3 在线H1000系列变频器全面监控

它不仅可以对所有参数进行在线监控,还可以根据用户设定重要参数进行监控。它不仅可以对输入输出监控,还可以对状态监控。

图3左列就是对所有参数在变频器运行状态下的监控画面,所有监控参数很多,对于分析重要参数变化过程比较分散。右列就是用户根据自己实际要求对重要参数监控画面,参数集中,便于观察。

图4左列是对运行的变频器输入输出信号的采集监控画面,右列是运行变频器状态的监控画面。这些信息反馈对分析故障很重要。对于下定诊断结论,提供了可靠依据。

图5的监控是对动态参数以仪表数显的形式呈现出变化态势,更加直观。这样省去了很多麻烦。我们不需要用钳形表去测量。还有一些无法测量的数据都可以直观的读出来。更加快捷地分析出故障源。

2.4 在线H1000系列变频器调试运行

在安装变频器后,调试是很重要的一步。其中对电机的自动调谐很关键。自动调谐就是电机和变频器参数的匹配,使之最优化,实现电机在变频器的控制下更加稳定可靠运行。不通过操作面板,直接在PC的DriveWizardPlus主画面下就可以手动调谐。

我们也可以手动设定一个频率正反向点动。也可以设定模式,时间增设来完成某曲线化调试。

另外,DriveWizard Plus还有故障诊断功能,在运行着的变频器它可以实时监控运行状态,万一出现故障,它会及时作出报警,并且可以查询故障历史,为分析故障原因提供可靠依据。下图就是在正常运行情况下的故障诊断。

3 结束语

利用DriveWizard Plus的强大功能,在传动控制系统的调试过程中,为调试和维护人员提供强大的技术支持,加快了调试进度,更好的优化系统参数,保证了调试质量,提高了系统的稳定性;更为以后的日常维护提供了极大地方便。

参考文献

[1]DriveWizard Plus诊断工具指导手册[Z].

制作一根通讯线。下面是图纸:

打开变频器设置软件。

取下变频器操作面板,用通讯线连接变频器与电脑并给变频器上电。在软件上选择从变频器→电脑,

确认以后,变频器将会把参数传送到电

气压传动系统的设计

第二篇气压传动系统的设计 第一章 气压传动的特原理、组成及特点 (一)原理 气压传动以压缩气体为工作介质,靠气体的压力传递动力或信息的流体传动。传递动力的系统是将压缩气体经由管道和控制阀输送给气动执行元件,把压缩气体的压力能转换为机械能而作功;传递信息的系统是利用气动逻辑元件或射流元件以实现逻辑运算等功能,亦称气动控制系统。 但气压传动速度低,需要气源。气压传动的特点是:工作压力低,一般为0.3~0.8兆帕,气体粘度小,管道阻力损失小,便于集中供气和中距离输送,使用安全,无爆炸和电击危险,有过载保护 (二)组成 气压传动由气源、气动执行元件、气动控制阀和气动辅件组成。气源一般由Link title压缩机提供。气动执行元件把压缩气体的压力能转换为机械能,用来驱动工作部件,包括气缸和启动马达。气动控制阀用来调节气流的方向、压力和流量,相应地分为方向控制阀、压力控制阀和流量控制阀。气动辅件包括:净化空气用的分水滤气器,改善空气润滑性能的油雾器,消除噪声的消声器,管子联接件等。在气压传动中还有用来感受和传递各种信息的气动传感器。 (三)特点 1.气压传动的优点 (1)由于气压传动的工作介质是空气,它取之不尽用之不竭,用后的空气可以排到大气中去,不会污染环境。(2)气压传动的工作介质粘度很低,所以流动阻力很小,压力损失小,便于集中供气和远距离输送。(3)动作迅速、反应快; (4)工作环境适应性好,气动元件采用相应的材料后,能够在在易燃、易爆、多尘埃、强磁、强辐射、强振动、强腐蚀等恶劣工作环境中正常工作;(5)成本低,使用安全,无爆炸和电击危险,过载能自动保护; (6)压缩空气的工作压力较低,因此,对气动元件的材质要求较低; (7)气动系统维护简单,管道不易堵塞,也不存在介质变质、补充、更换等问题。

第十三章 控制系统工具箱

第十三章控制系统工具箱 控制系统工具箱是建立在MATLAB对控制工程提供的设计功能的基础上,为控制系统的建模、分析、仿真提供了丰富的函数与简便的图形用户界面。 在MATLAB中,专门提供了面向系统对象模型的系统设计工具:线性时不变系统浏览器(LTI Viewer)和单输入单输出线形系统设计工具(SISO Design Tool)。利用这些工具,可以更加方便地研究和设计系统。控制系统工具箱允许使用经典控制理论和现代控制理论,对连续控制系统和离散控制系统进行仿真分析。 13.1 线性时不变系统浏览器—LTI Viewer 13.1.1 LTI Viewer简介 LTI Viewer可以提供绘制浏览器模型的主要时域和频域响应曲线,可以利用浏览器提供的优良工具,对各种曲线进行观察分析。 在MATLAB命令窗口输入命令ltiview,即可进入LTI Viewer窗口。 13.1.2 LTI Viewer命令菜单及窗口设置 1、File菜单 【New Viewer】—建立一个新的LTI Viewer窗口。 【Import】—导入系统对象模型。 【Expot】—将当前LTI Viewer窗口中的指定系统的对象模型保存到工作空间(Workspace)或者以.mat 文件的形式保存在磁盘上。 【Toolbox Preferences】—对新建立或重新启动的LTI Viewer窗口属性进行设置,对当前窗口无效。这些属性包括坐标单位、对系统指示参数的描述(如调节时间的定义、上升时间的定义等)、坐标颜色、坐标字体大小等,Toolbox Preferences对话框如图13.1.1所示。 图13.1.1 Toolbox Preferences对话框图13.1.2 Plot Configurations对话框 2、Edit菜单 【Plot Configurations】—对显示窗口及显示内容进行配置,可以选择LTI Viewer所绘制曲线的布局以及不同绘制区域曲线的响应类型选择,其中响应类型主要有Step、Impulse、Bode、Nyquist、Nichols、Pole/Zero 等,Plot Configurations对话框如图13.1.2所示。 230

国家开放大学电大《电气传动与调速系统》《机电控制工程基础》网络课形考网考作业(合集)答案

国家开放大学电大《电气传动与调速系统》《机电控制工程基础》网络课形考网考作业(合集)答案 《电气传动与调速系统》网络课答案 形考任务1 一、选择题(每小题5分,共40分) 题目1 电气传动系统做旋转运动时,其运动方程为()。 选择一项: 题目2 如图所示的旋转运动系统(箭头方向表示转矩的实际方向),系统的运动状态是()。 选择一项: A. 匀速 B. 加速 C. 静止 D. 减速 题目3 如图所示的负载机械特性属于()。 选择一项: A. 恒功率负载机械特性 B. 位能性恒转矩负载机械特性 C. 反抗性恒转矩负载机械特性 D. 直线型负载机械特性 题目4 如图所示的电动机机械特性(曲线1)与负载机械特性(曲线2)相交的交点分别为A和B,以下说法正确的是()。选择一项: A. A点是稳定运行点,B点是稳定运行点 B. A点是稳定运行点,B点不是稳定运行点 C. A点不是稳定运行点,B点不是稳定运行点

D. A点不是稳定运行点,B点是稳定运行点 题目5 直流电动机的换向器与电刷配合,可将电枢绕组内的()变换为电刷上的直流电势。 选择一项: A. 交流电势 B. 直流电势 C. 恒定电压 D. 不变电势 题目6 如图所示为他励直流电动机的机械特性曲线组,表示的是()的人为机械特性。 选择一项: A. 减弱磁通 B. 降低电源电压 C. 电枢回路串电阻 D. 增大磁通 题目7 如图所示为他励直流电动机的工作特性曲线,下述表达正确的是()。 选择一项: A. 曲线1是转速特性,曲线2是效率特性,曲线3是转矩特性 B. 曲线1是转矩特性,曲线2是效率特性,曲线3是转速特性 C. 曲线1是效率特性,曲线2是转速特性,曲线3是转矩特性 D. 曲线1是转速特性,曲线2是转矩特性,曲线3是效率特性 题目8 如图所示他励直流电动机机械特性与负载机械特性曲线的交点a,b,c,d,下述表达正确的是()。 选择一项: A. 从a点到b点是属于调速运行,从c点到d点属于调速运行 B. 从a点到c点是属于调速运行,从c点到d点属于调速运行 C. 从a点到c点是属于调速运行,从b点到d点属于调速运行 D. 从a点到b点是属于调速运行,从b点到d点属于调速运行 二、判断题(每小题5分,共40分) 题目9 当传动系统做旋转运动时,作用在电动机轴上的电磁转矩T和负载转矩TL之差,即T-TL=△T称为动态转矩,当△T>0,即dn/dt > 0时,系统处于加速运行状态。()

气压传动系统实例

项目六气压传动系统实例 (结合公共实训基地及友嘉机电设备展开)任务一气动机械手气压传动系统 气动机械手是机械手的一种,它具有结构简单,重量轻,动作迅速, 平稳可靠,不污染工作环境等优点。在要求工作环境洁净、工作负载较小。自动生产的设备和生产线上应用广 泛,它能按照预定的控制程序动作。图1为一种简单的可移动式气动机械手的结构示意图。它由A、B、 C、D四个汽缸组成,能实现手指夹持、手臂伸缩。立柱升降。回转四个动作。 图2为一种通用机械手气动系统工作原理图(手指部分分为真空吸 头,既无A气缸部分),要求工作循环为:立柱上升-伸臂-立柱顺时 三个气缸均有三位四通双电控换向阀1、2、7和单向节流阀3、4、 5、6组成换向、调速回路。各气缸的行程位置均有电气行程开关进行控制。表1为该机械手在工作循环中各电磁铁的动作顺序表。 图1气动机械手的结构示意图 f A * 图2 为一种通用机械手气动系统工作原理图

面结合表来分析它的工作循环: 按下它的启动按钮,4YA通电,阀7处于上位,压缩空气进入垂直气缸C下腔,活塞杆上升。 当缸C活塞上的挡块碰到电气行程开关a1时,4YA断电,5YA通电, 阀2处于左位,水平气缸B活塞杆伸出,带动真空吸头进入工作点并吸取工作。 当缸B活塞上的挡块电气开关b1时,5YA断电,1YA通电,阀1 处于左位,回转缸D顺时针方向回转,使真空吸头进入下料点下料。 当回转缸D活塞杆上的挡块压下电气行程开关c1时,1YA断电,2YA通电, 阀1处于右位,回转缸b复位。 回转缸复位时,其上挡块碰到电气行程开关cO时,6YA通电,2YA断电, 阀2处于右位,水平缸B活塞杆退回。 水平缸退回时,挡块碰到bO,6YA断电,3YA通电,阀7处于下位,垂直缸 活塞杆下降,到原位时,碰上电气行程开关aO,3YA断电,至此完成一个工作循 环,如再给启动信号。可进行同样的工作循环。 根据需要只要改变电气行程开关的位置,调节单向节流阀的开度, 即可改变各气缸的运动速度和行程。 任务二数控加工中心气动换刀系统 图3为某数控加工中心气动换刀系统原理图。该系统在换刀过程中实现主轴定位、主轴送刀、拔刀、向主轴锥孔吹气和插刀动作。 具体工作过程如下:当数控系统发出换刀指令时,主轴停止旋转,同时4YA 通电,压缩空气经气动三联件1、换向阀4、单向节流阀5进入主轴定位缸A的 右腔,缸A的活塞左移,使主轴自动定位。定位后压下无触点开关,使6YA通

气压传动系统的工作原理及组成

气压传动系统的工作原理及组成 一、气压传动系统的工作原理 气压系统的工作原理是利用空气压缩机将电动机或其它原动 机输出的机械能转变为空气的压力能,然后在控制元件的控制和辅助元件的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外作功。 二、气压传动系统的组成 典型的气压传动系统,如图10.1.1所示。一般由以下四部分组成: 1.发生装置它将原动机输出的机械能转变为空气的压力能。 其主要设备是空气压缩机。

2.控制元件是用来控制压缩空气的压力、流量和流动发向,以保证执行元件具有一定的输出力和速度并按设计的程序正常工作。如压力阀、流量阀、方向阀和逻辑阀等。 3.控制元件是将空气的压力能转变成为机械能的能量转换装置。如气缸和气马达。 4.辅助元件是用于辅助保证空气系统正常工作的一些装置。如过滤器、干燥器、空气过滤器、消声器和油雾器等。 10.2 气压传动的特点 一、气压传动的优点 1. 以空气为工作介质,来源方便,用后排气处理简单,不污染环境。 2. 由于空气流动损失小,压缩空气可集中供气,远距离输送。 3. 与液压传动相比,启动动作迅速、反应快、维修简单、管路不易堵塞,且不存在介质变质、补充和更换等问题。 4. 工作环境适应性好,可安全可靠地应用于易燃易爆场所。 5. 气动装置结构简单、轻便、安装维护简单。压力等级低,固使用安全。 6. 空气具有可压缩性,气动系统能够实现过载自动保护。

二、气压传动的特点 1. 由于空气有可压缩性,所以气缸的动作速度易受负载影响。 2. 工作压力较低(一般为0.4Mpa-0.8Mpa),因而气动系统 输出力较小。 3. 气动系统有较大的排气噪声。 4. 工作介质空气本身没有润滑性,需另加装置进行给油润滑。

气压传动系统的基本组成

第三章气动传动系统的基本组成【课程性质】 理论课 【教学目标】 1、掌握气压传动的工作就原理及组成 2、了解气压传动的特点 【教学重点】 掌握气压传动的工作就原理及组成 【教学难点】 掌握气压传动的工作就原理及组成 【教学课时】 4课时 【教学策略】 采用多媒体动画的教学方式,进行直观教学 【教学方法】 讲授法,多媒体教学法 【教学过程】 环节教学内容师生互动设计意图 导入 一、气压传动及其应用 气压传动简称气动,是指以压缩空气为工作介质来传递动力和控制信号,控制和驱动各种机械和设备,以实现生产过程机械化、自动化的一门技术。因为以压缩空气为工作介质具有防火、防爆、防电磁干扰,抗振动、冲击、辐射,无污染,结构简单,工作可靠等特点,所以气动技术与液压、机械、电气和电子技术一起,互相补充,已发展成为实现生产过程自动化的一个重要手段,在机械工业、冶金工业、轻纺食品工业、化工、交通运输、航空航天、国防建设等各个部门已得到广泛的应用。

新课 新课 二、气压传动系统的工作原理 气压传动系统的工作原理是利用空气压缩 机将电动机或其它原动机输出的机械能转变为 空气的压力能,然后在控制元件的控制和辅助元 件的配合下,通过执行元件把空气的压力能转变 为机械能,从而完成直线或回转运动并对外作 功。 三、气压传动系统的组成 典型的气压传动系统,一般由以下部分组成: 1 气压发生装置它原动机输出的机械能转变为空气 的压力能。其主要设备是空气压缩机。 2.控制元件是用来控制压缩空气的压力、流量和流 动方向,以保证执行元件具有一定的输出力和速度,并 按设计的程序正常工作。如压力阀、流量阀、方向阀和 逻辑阀等。 3.执行元件是将空气的压力能转变为机械能的能量 转换装置 四、气压传动的特点 1. 空气随处可取,取之不尽,节省了购买、贮存、 运输介质的费用和麻烦;用后的空气直接排入大气,对 环境无污染,处理方便,不必设置回收管路,因而也不 存在介质变质、补充和更换等问题。 2. 因空气粘度小(约为液压油的万分之一),在 管内流动阻力小,压力损失小,便于集中供气和远距离 输送。即使有泄漏,也不会像液压油一样污染环境。 3. 与液压相比,气动反应快,动作迅速,维护简 单,管路不易堵塞。 4. 气动元件结构简单,制造容易,适于标准化、 系列化、通用化。 气源装置的组成和布置示意图 1—空气压缩机2—后冷却器 3—油水分离器 4、7—贮气罐5—干燥器6— 过滤器8—加热器9—四通阀 图中,1为空气压缩机,用以 产生压缩空气,一般由电动机带 动。其吸气口装有空气过滤器, 以减少进入空气压缩机内气体的 杂质量。2为后冷却器,用以降温 冷却压缩空气,使气化的水、油 凝结起来。3为油水分离器,用以 分离并排出降温冷却凝结的水 滴、油滴、杂质等。4为贮气罐, 用以贮存压缩空气,稳定压缩空 气的压力,并除去部分油分和水 分。5为干燥器,用以进一步吸收 或排除压缩空气中的水分及油 分,使之变成干燥空气。6为过滤 器,用以进一步过滤压缩空气中 的灰尘、杂质颗粒。7为贮气罐。 贮气罐4输出的压缩空气可用于 一般要求的气压传动系统,贮气 罐7输出的压缩空气可用于要求 较高的气动系统(如气动仪表及

电气传动及控制A卷

电气传动及控制 ( A卷 ) 一、单项选择题(本大题共40分,共 20 小题,每小题 2 分) 1. 某单闭环直流调速系统的开环放大系数为19时,额定负载下电动机转速降落为8r/min,如果开环速降不变,要使闭环速降降为4r/min,则开环放大系数应为()。 A. 19 B. 29 C. 39 2. 调速系统的稳态性能指标包括调速范围和()。 A. 超调量 B. 静差率 C. 恢复时间 3. 恒Eg/ω1调速系统,最大电磁转矩()。 A. 与ω1无关 B. 随ω1增大而增大 C. 随ω1增大而减小 4. 转速、电流双闭环系统,采用PI调节器,稳态运行时, ASR的输出量取决于()。 A. 负载电压 B. 电源频率 C. 负载电流 5. 正弦波脉宽调制的英文缩写是() A. PID B. PWM C. SPWM D. PD 6. 静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则静差率( ) A. 越小 B. 越大 C. 不变 D. 不确定 7. 在典型I型系统中,当时间常数T已知时,随着放大系数K减小,超调量()。 A. 减小 B. 增大 C. 不变 8. 转速、电流双闭环调速系统中的两个调速器通常采用的控制方式是 ( ) A. PID B. PI C. P 9. 双闭环无静差V-M调速系统中,增加反馈系数β,系统稳定后转速反馈电压()。 A. 增加 B. 不变 C. 减小 10. 在转速负反馈单闭环有静差直流调速系统中,突增负载后又进入稳定运行状态,此时晶闸管整流装置的输出电压Ud较负载变化前是()了。 A. 增加 B. 不变 C. 减小 11. SPWM技术中,调制波是频率和期望波相同的() A. 正弦波 B. 方波 C. 等腰三角波

控制系统工具箱

Control System Toolbox 设计和分析控制系统 产品概览1:56 Control System Toolbox?为系统地分析、设计和调节线性控制系统提供行业标准算法和工具。您可以将您的系统指定为传递函数、状态空间、零极点增益或频率响应模型。通过交互式工具和命令行函数(如阶跃响应图和波特图),您可以实现时域和频域中系统行为的可视化效果。可以使用自动PID 控制器调节、波特回路整形、根轨迹方法、LQR/LQG 设计及其他交互式和自动化方法来调节补偿器参数。您可以通过校验上升时间、超调量、稳定时间、增益和相位裕度及其他要求来验证您的设计。 Control System Toolbox Design and analyze control systems Product Overview1:56 Control System Toolbox? provides industry-standard algorithms and tools for systematically analyzing, designing, and tuning linear control systems. You can specify your system as a transfer function, state-space, pole-zero-gain, or frequency-response model. Interactive tools and command-line functions, such as step response plot and Bode plot, let you visualize system behavior in time domain and frequency domain. You can tune compensator parameters using automatic PID controller tuning, Bode loop shaping, root locus method, LQR/LQG design, and other interactive and automated techniques. You can validate your design by verifying rise time, overshoot, settling time, gain and phase margins, and other requirements. 简介 Control System Toolbox?为系统地分析、设计和调节线性控制系统提供行业标准算法和工具。您可以将您的系统指定为传递函数、状态空间、零极点增益或频率响应模型。通过交互式工具和命令行函数(如阶跃响应图和波特图),您可以实现时域和频域中系统行为的可视化效果。可以使用自动PID 控制器调节、波特回路整形、根轨迹方法、LQR/LQG 设计及其他交互式和自动化方法来调节补偿器参数。您可以通过校验上升时间、超调量、稳定时间、增益和相位裕度及其他要求来验证您的设计。 主要功能 ●线性系统的传递函数、状态空间、零极点增益和频率响应模型 ●线性模型的串联、并联、反馈连接和一般框图连接

液压气压传动及系统的组成

液压传动 液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。 液压传动系统的组成 液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。 1、动力元件(油泵) 它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。2、执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。 3、控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。 4、辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。 5、工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。编辑本段液压传动的优缺点 1、液压传动的优点 (1)体积小、重量轻,例如同功率液压马达的重量只有电动机的10%~20%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击;(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达1:2000(一般为1:100)。(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;(6)操纵控制简便,自动化程度高;(7)容易实现过载保护。(8)液压元件实现了标准化、系列化、通用化、便于设计、制造和使用。 2、液压传动的缺点 (1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作,一般工作温度在-15℃~60℃范围内较合适。(5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统效率较低。 编辑本段液压元件分类 动力元件- 齿轮泵、叶片泵、柱塞泵、螺杆泵...... 执行元件-液压缸:活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸液压马达-齿轮式液压马达、叶片液压马达、

Matlab控制工具箱(网络软件)

Matlab控制工具箱的应用 ——基于Matlab R2010a(7.10.0) 1.线性时不变系统浏览器LTI Viewer 在Matlab的command Window中,建立LTI对象,之后使用LTI Viewer可以绘制LTI 对象的单位阶跃响应曲线(Step)、单位脉冲响应曲线(Impulse)、波特图(Bode)、零输入响应(Initial Condition)、波特图幅值图(Bode Magnitude)、奈奎斯特图(Nyquist)、尼科尔斯图(Nichols)、奇异值分析(Singular Value)以及零极点图(Pole/Zero)等。 注意:必须是线性时不变系统,对非线性系统需进行线性近似; LTI对象有三种:tf对象(传递函数模型)、zpk对象(零极点模型)、ss对象(状态空间模型),命令如下: 连续系统离散系统 传递函数模型Sys=tf(num,den) Sys=tf(num,den,TS) 零极点模型Sys=zpk(z,p,k) Sys=zpk(z,p,k,TS) 状态空间模型Sys=ss(A,B,C,D) Sys=ss(A,B,C,D,TS) 1)在Matlab的command Window中输入“ltiview”,弹出LTI Viewer界面如下:

2)在Matlab的command Window中输入LTI对象模型; 3)在LTI对话框中,将在workspace中的LTI对象模型导入: 4)之后进行分析,点击鼠标右键,可选择生成的各种曲线:

每种曲线,可快速获得系统响应信息:

5)设置: 通过File→Toolbox Preferences或Edit→Viewer Preferences可进行LTI Viewer图形窗口的设置; 在系统响应曲线绘制窗口中单击鼠标右键,选择弹出菜单中的Propertise可针对某一曲线进行设置; 通过Eidt→Plot Configurations可改变曲线绘制布局; 6)非线性系统的线性近似: 利用Simulink系统模型窗口中的菜单命令Tools→Control Design→Linear Analysis,可对非线性系统进行线性分析。在利用Simulink对系统进行线性分析时,会同时调出LTI Viewer。

电气传动及控制基础 复习思考题

复习思考题1(最新版) 1、什么叫制动状态? 什么叫电动状态? 2、电气传动系统稳定运行时电磁转矩的值由什么决定? 3、如何判断电气传动系统是否能稳定运行? 4、电气传动系统的动态特性由哪三要素决定?写出动态方程式,写出制动过程转速随时间变化的动态特性方程式。 5、它励直流电动机的额定参数为220V 、40A 、1000r/min ,电枢电阻Ra=0.5Ω。电动机带反抗性恒转矩负载,负载为额定负载。电动机原来以1000r/min 运行,现在要求在300r/min 的速度稳定运行,分别求出不同实现方法及其机械特性的表达式。 如果负载为50%额定负载,分别求出不同实现方法及其机械特性的表达式。 如果要求在500r/min 的速度稳定运行,分别求出不同实现方法及其机械特性的表达式。 如果要求在500r/min 的速度稳速下降运行,分别求出不同实现方法及其机械特性的表达式。 复习思考题2 1、设计带电流截止负反馈的转速闭环系统(图2.45)的调节器参数和电流截止环节的稳压管参数。 已知参数:电动机:10KW 、220V 、55A 、1000r/min 、0.5Ω, 变流器:,V-M 系统电枢回路总电阻 测速发电机:23.1W 、110V 、0.21A 、1900r/min 要求:D = 10 、S ≤ 5% 2、分别分析单闭环有静差调速系统(图2.36)电网扰动(电压增大)时和励磁电流扰动(励磁电流减小)时系统的自动调节过程。 3、比例调节器构成的转速闭环系统为什么有静差? 4、试列写带电流正反馈的电压负反馈调速系统的静特性方程式。什么情况下可以实现电流正反馈的全补偿? 晶闸管相控电源在电流连续和电流断续时的传递函数有什么区别?为什么? 复习思考题3 1、试分析比较有环流可逆调速系统、可控环流可逆调速系统、逻辑无环流可逆调速系统的优缺点。 2、有环流可逆调速系统是如何实现 α= β 配合控制的?该系统的制动过程有哪几个阶段? 3、可控环流可逆调速系统是如何实现环流可控的? 4、逻辑无环流可逆调速系统中无环流逻辑切换的条件是什么? 无环流逻辑控制器的四个环节分别起什么作用? 复习思考题4 1、采用工程设计法作动态设计时,如何确定校正后开环传函是典型I 型还是典型II 型? 2、小惯性环节和大惯性环节近似处理的条件和方法是什么? 1.0R =Ω 44S K =

气动系统典型实例教材

第九章气压系统典型实例 第一节工件夹紧气压传动系统 工件夹紧气压传动系统是机械加工自动线和组合机床中常用的夹紧装置的驱动系统。图9-1为机床夹具的气动夹紧系统,其动作循环是:当工件运动到指定位置后,气缸A活塞杆伸出,将工件定位后两侧的气缸B和C的活塞杆同时伸出,从两侧面对工件夹紧,然后再进行切削加工,加工完后各夹紧缸退回,将工件松开。 图9-1机床夹具气动夹紧系统 1—脚踏阀2—行程阀3、5—单向节流阀4、6—换向阀 具体工作原理如下:用脚踏下阀1,压缩空气进入缸A的上腔。使活塞下降定位工件;当压下行程阀2时,压缩空气经单向节流阀5使二位三通气控换向阀6换向(调节节流阀开口可以控制阀6的延时接通时间),压缩空气通过阀4进入两侧气缸B和C的无杆腔,使活塞杆前进而夹紧工件。然后钻头开始钻孔,同时流过换向阀4的一部分压缩空气经过单向节流阀3进入换向阀4右端,经过一段时间(由节流阀控制)后换向阀4右位接通,两侧气缸后退到原来位置。同时,一部分压缩空气作为信号进入脚踏阀1的右端,使阀1右位接通,压缩空气进入缸A的下腔,使活塞杆退回原位。活塞杆上升的同时使机动行程阀2复位,气控换向阀6也复位(此时主阀3右位接通),由于气缸B、C的无杆腔通过阀6、阀4排气,换向阀6自动复位到左位,完成一个工作循环。该回路只有再踏下脚踏阀1才能开始下一个工作循环。

第二节数控加工中心气动系统 图9-2所示为某数控加工中心气动系统原理图,该系统主要实现加工中心的自动换刀功能,在换刀过程中实现主轴定位、主轴松刀、拔刀、向主轴锥孔吹气排屑和插刀动作。 图9-2 数控加工中心气动系统原理图 具体工作原理如下:当数控系统发出换刀指令时,主轴停止旋转,同时4YA通电,压缩空气经气动三联件1、换向阀4、单向节流阀5进入主轴定位缸A的右腔,缸A的活塞左移,使主轴自动定位。定位后压下开关,使6Y A通电,压缩空气经换向阀6、快速排气阀8进入气液增压器B的上腔,增压腔的高压油使活塞伸出,实现主轴松刀,同时使8YA通电,压缩空气经换向阀9、单向节流阀11进入缸C的上腔,缸C下腔排气,活塞下移实现拔刀。由回转刀库交换刀具,同时1Y A通电,压缩空气经换向阀2、单向节流阀3向主轴锥孔吹气。稍后1YA断电、2YA通电,停止吹气,8YA断电、7YA通电,压缩空气经换向阀9、单向节流阀10进入缸C的下腔,活塞上移,实现插刀动作。6Y A断电、5Y A通电,压缩空气经阀6进入气液增压器B的下腔,使活塞退回,主轴的机械机构使刀具夹紧。4YA断电、3Y A通电,缸A的活塞在弹簧力的作用下复位,回复到开始状态,换刀结束。 第三节气动机械手气压传动系统 气动机械手是机械手的一种,它具有结构简单,重量轻,动作迅速,平稳可靠,不污染工作环境等优点。在要求工作环境洁净、工作负载较小、自动生产的设备和生产线上应用广泛,它能按照预定的控制程序动作。图9-3为一种简单的可移动式气动机械手的结构示意图。它由A、B、C、D四个气缸组成,能实现手指夹持、手臂伸缩、立柱升降、回转四个

机械传动装置

机械传动装置 发动机的转动轴带着工作机的轴一起转动,也就是转动必须由发动机传递到工作机上来.这种转动的传递可以用各种不同的方式来实现.常见的三种机械传动方式是皮带传动、摩擦传动和齿轮传动. 在皮带传动里,发动机和工作机的轴上各装一个皮带轮,轮上紧套着一圈(或并列的几圈)皮带(图1).发动机轴上的皮带轮A 叫做主动轮,工作机轴上的皮带轮B 叫做从动轮.主动轮转动时,依靠摩擦作用,使皮带运动,皮带的运动又带动从动轮转动.在转动时,一般不允许皮带打滑,这时两个皮带轮边缘上的各点线速度相同.因此,如果两个皮带轮的直径不同,它们的角速度或转速也就不同,且角速度或转速跟两皮带轮的直径成反比: 2 112d d n n 比值1 2n n 叫做传动速度比.从上式可知,工作机轴上的皮带轮的直径越小,它的轴的转速就越大. 实际上常用的传动速度比一般不大于5.这是因为传动速度比越大,从动轮的直径就越小,它跟皮带接触的圆弧就越短,带动它的摩擦力也就越小. 图1的两皮带轮转动方向相同,图2的两皮带轮转动方向相反. 在摩擦传动中,两个轮互相紧压着(图3).当主动轮向一个方向转动时,由于两轮之间的摩擦作用,从前轮也发生转动,它的转动方向跟主动轮相反.

在皮带传动和摩擦传动中,对从动轮来说摩擦力是动力,必须设法使它增大,因此要用摩擦因数比较大的材料如皮革、橡胶、填充石棉的铜丝等包在轮缘上,还要增大压力. 如果所传递的功率是P ,那么由fv P =和dn v π=,可求出作用在轮缘上的摩擦力: dn P f π=, 作用在轮缘上使轮转动的摩擦力矩: 2d f M =. 一般说来,摩擦传动只能在功率不大(15千瓦以下)的情况下使用,如果所传递的功率较大,两轮就会发生滑动.为了提高所传递的功率,必须保证两轮不发生滑动,因此在两轮的轮缘上做出许多齿,使一个轮的每个齿能够嵌入另一个轮的两齿之间.这样,在转动时就不断地互相啮合,不会发生滑动.这种轮叫做齿轮.齿轮传动时,两齿轮的齿距就必须相 等.这样,两轮的转速就跟它们的齿数成反比. 齿轮传动装置在生产技术上应用非常广泛,它可以传递几万千瓦的功率.当主动轮和从动轮所在的两轴互相平行时,采用圆柱形齿轮(图4中A 和B );当两轴成90°时,采用截锥形齿轮(图4中C 和E ).利用齿轮、齿条传动,还可以把转动改变成平动,或把平动改变为转动(图4中D ).此外,我们还常见到用链条来传动的,这实际上也是齿轮传动的一种变形. 各种机床、汽车、拖拉机等用来调节速度用的机械变速箱,一般都是用齿轮来传动的.

电气基础自动化及电气传动

电气基础自动化及电气传动 6.3.1 主要电气控制项目 6.3.1.1概述 当板坯进入加热炉区的上料台架后,经过台架装置的移动,将坯料送到受料辊道上,并进入测长辊道,对坯料的进行测长、测温。 确认坯料合格后,将钢坯通过过渡辊道送到加热炉尾的装料辊道上。对坯料进行炉宽方向的定位。 定位完成后,在加热炉满足装钢条件时,装料炉门开启,装钢机按照计算好的行程将板坯推入炉内固定梁的预定位置上,然后装钢机退回原始位置,炉门关闭; 放进炉内的钢坯根据轧线系统对生产节奏的要求,通过炉内步进梁的正循环动作,板坯依次通过炉子的预热段、加热段及均热段,并被充分的加热到予期的出炉温度。 当出钢侧的激光检测到有钢信号,步进梁停止前进,等待出钢;当轧线发出出钢请求时,出料炉门开启,出钢机根据计算好的行程,伸入炉内预定位置,将已加热好的板坯托起,抽出放在出炉辊道中心线上,然后出钢机返回到原始位等待下次动作。 加热好的钢坯放到出炉辊道上后,辊道启动前进,将钢坯送出至轧机。 在上述上料、装出钢及炉内步进的过程中,所有电控设备的运转状态、电气故障、设备故障均通过电控系统进行在线监控,对重故障、轻故障报警分类,并以声、光报警方式提示、打印,记录报警类型。 6.3.1.2 电气基础自动化的控制项目及控制功能 加热炉电气基础自动化系统的硬件、软件的配备,是根据钢坯的输送和加热炉机械设备的动作要求而设置的。整个炉区需要具备如下控制功能: 6.3.1.2.1 上料台架的控制 本系统分两组上料台架,分别由两组液压缸驱动,通过PLC完成各种动作,使得坯料顺利落到受料辊道(A1或A2)上。 操作地点:装钢操作台;装料侧HMI。 传动方式:阀控液压传动。 台架上坯料检测元件:冷金属检测器(CMD)共4个

MATLAB控制系统工具箱

>> help control system toolbox Control System Toolbox Version 6.0 (R14) 05-May-2004 General. ctrlpref - Set Control System Toolbox preferences. ltimodels - Detailed help on the various types of LTI models. ltiprops - Detailed help on available LTI model properties. Creating linear models. tf - Create transfer function models. zpk - Create zero/pole/gain models. ss, dss - Create state-space models. frd - Create a frequency response data models. filt - Specify a digital filter. lti/set - Set/modify properties of LTI models. Data extraction. tfdata - Extract numerator(s) and denominator(s). zpkdata - Extract zero/pole/gain data. ssdata - Extract state-space matrices. dssdata - Descriptor version of SSDATA.

电气传动控制系统

1 电气传动控制系统 1.1 电气传动自动控制系统优化设计方法研究概述 电气传动系统又称电力拖动系统,是以电动机作为原动机的机械系统的总称。其目的是为了通过对电动机合理的控制,实现生产机械的起动,停止,速度、位置调节以及各种生产工艺的要求。随着技术的进步及社会对环保、节能要求的日渐严格,电气传动系统在社会各方面的使用越来越广泛。如何优化、设计电气传动系统,以实现更低廉的成本、更好的性能就具有十分重要的意义。近年来许多新理论新策略应用于电气传动系统中,并获得了良好的效果。但对大部分系统而言,其基本的闭环控制结构、利用调节器对控制对象进行校正以使系统符合要求的方法基本未变。所以,我国电气传动系统设计领域的权威专家陈伯时教授总结出的调节器的“工程设计方法”,目前在实际设计中仍然是主流设计方法。如何设计出优秀的调节器依然是电气传动系统优化设计的主要内容。因此借鉴了“工程设计方法”的基本思想,以电气传动系统的优化设计为目的,在现有的调节器“工程设计方法”基础上,采用其采用少量典型系统、分步设计的基本设计思路,以系统闭环幅频特性峰值、调节时间最小为最优化原则,分别针对典型Ⅰ、Ⅱ、Ⅲ型系统研究出一套更能满足实际工程需要的设计方法。并总结出了便于设计者使用的参数、性能指标值计算公式及图表。针对交流电机矢量控制系统鲁棒性差的问题则进行了研究并提出了优化方案。利用MATLAB编程和SIMULINK仿真对所设计的系统进行验证,结果表明针对典型Ⅰ、Ⅱ型系统的设计方法所设计出的系统性能指标及设计灵活性均好于“工程设计方法”;针对典型Ⅲ型系统的设计方法则是“工程设计方法”所未涉及而又实际需要的,故填补了“工程设计方法”的空白;在交流电机矢量控制系统中引入复合磁链观测器及双层模糊控制器后,系统的鲁棒性及性能得到了提高。 1.2 信息化时代的电气传动技术 当前世界上正处于信息化的时代,而我国工业化尚未完成,以信息化带动工业化是我们的重要任务。电气传动是工业化的重要基础。正如人体,信息技术好

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样 周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下: 2)MPC状态空间模型转换为通用状态空间模型函数mod2ss()

电气传动自动控制系统第1章

电力传动自动控制系统2013-03-30 第1章电力传动系统基础 1.1 电力传动系统的目的、要求和分类 主要讨论电力传动系统的基本概念及其发展概况。 一.电力传动及其基本组成 1.传动 以原动机带动生产机械运行,完成一定的生产任务。 古代动力的来源是人力、畜力。后来出现了借助于风力、水力传动的生产机械。再以后,发明了热机(蒸汽机、内燃机、柴油机),就以高温蒸汽为动力。直到十九世纪出现了电能,就以电能为动力带动生产机械,从此,人类从繁重的体力劳动中解放出来。 气动、液压传动、电动(电力传动或电气传动) 电力传动 以电动机作为原动机,带动生产机械运行。 早期的机械能来源于水力、蒸汽。比如,水车、蒸汽机车等。电、电机出现以后,由于电能具有变换、传输、分配、使用和控制都非常方便、经济,而且易于大量生产、集中管理和实现自动控制的优点,就由电力传动代替了水力和蒸汽。在现代工业生产中,大量的生产机械采用电力传动,电力传动极为普遍,约占80%。如机床、汽车、电车等。 2.电力传动系统的基本组成 电力传动系统是电气与机械综合的系统。由以下四部分组成: 1)电动机及其供电电源——把电能转换成机械能 2)传动机构——把机械能转化成所需要的运动形式并进行传递与分配 3)工作机构——完成生产工艺任务(或称为执行机构) 4)电气控制装置——控制系统按照生产工艺的要求来工作,并对系统起保护作用或进行更高层次的自动化控制。 工作机械的运动形式是多种多样的。车床的主轴做旋转运动,龙门刨床的工作台做直线往复运动,吊车的卷扬机构做上下直线运动,冲剪床的执行机构做简谐运动。在电力传动系统中,原动机是电动机,一般做旋转运动。通过传动机构可获得各种不同形式的运动。 以车床为例的电力传动系统如图1-1所示。 图1-1 车床的电力传动系统示意图 绘成方框图如图1-2所示。 — 1 —

相关文档
最新文档