第十二章第二节逆变换与逆矩矩阵的特征向量

第十二章第二节逆变换与逆矩矩阵的特征向量
第十二章第二节逆变换与逆矩矩阵的特征向量

第十二章 第二节 逆变换与逆矩、矩阵的特征向量

课下练兵场

1.(2009·江苏高考)求矩阵A =????3 22 1的逆矩阵.

解:设矩阵A 的逆矩阵为????x y z w ,

则????3 22 1 ????x y z w =????1 00 1, 即??????3x +2z 3y +2w 2x +z 2y +w =???

?1 00 1, 故????? 3x +2z =1,

2x +z =0,?????

3y +2w =0,2y +w =1, 解得x =-1,z =2,y =2,w =-3,

从而A 的逆矩阵为A -1=????

??-1 2 2 -3. 2.若曲线C :x 2+4xy +2y 2=1在矩阵M =????

??1 a b

1的作用下变成曲线C ′:x 2-2y 2=1. (1)求a ,b 的值;

(2)求M 的逆矩阵M -1. 解:(1)??????x ′y ′=??????1 a b 1 ????

??x y =?????

???x +ay bx +y , 又曲线c ′:x 2-2y 2=1,所以

(x +ay )2-2(bx +y )2=1,整理得

(1-2b 2)x 2+(2a -4b )xy +(a 2-2)y 2=1,

由题意得????? 1-2b 2=1,2a -4b =4,

a 2-2=2,解得a =2,

b =0.

(2)M =??????1 20 1,故M -1=????

??1 -20 1. 3.已知矩阵A =????

??4 -16 -1,α=??????23,求A 100α. 解:A 的特征多项式f (λ)=(λ-1)(λ-2),

令f (λ)=0得A 的特征值为λ1=1,λ2=2,

(1)当λ1=1时,解????? 3x -y =06x -2y =0

得A 的特征向量ξ=??????k 3k (k ∈R 且k ≠0),取ξ1=??????13. (2)当λ2=2时,解????? 2x -y =06x -3y =0

得A 的特征向量ξ=??????k 2k (k ∈R 且k ≠0). 取ξ2=????

??12.∴令α=t 1ξ1+t 2ξ2, 即??????23=t 1??????13+t 2????

??12, 解得?

???? t 1=-1

t 2=3. 因此,A 100α=?????

???3×2100-13×2101-3. 4.(2010·厦门模拟)利用逆矩阵知识解方程组?????

2x +3y -1=0,x +2y -3=0. 解:x =????

??x y =1A B - =?????

??? 2 -3-1 2 ??????13=??????-7 5,

即?

???? x =-7,

y =5. 5.求矩阵A =????

??1 20 1的逆矩阵A -1及A -1的特征值. 解:由|A |=1,知1A -存在.即A -1=????

??1 -20 1. 1A -的特征多项式为f (λ)=??????λ-10 2λ-1=(λ-1)2,令f (λ)=0,得特征值为λ=1.

6.已知矩阵M =??????3 00

1,N =????????1 00 12,求矩阵MN 的逆矩阵. 解:()1MN -=11N M --

=??????1 00 2 ????????13 0 0 1=?????

???13 0 0 2. 7.求矩阵M =?????

???-1 2 52 3的特征值和特征向量. 解:矩阵M 的特征值λ满足方程?????

???λ+1 -2-52 λ-3=0, 即(λ+1)(λ-3)-(-52

)(-2)=0, λ2-2λ-8=0,

解得λ1=4,λ2=-2.

(1)设属于特征值λ1=4的特征向量为????

??x y , 则它满足方程(λ1+1)x +(-2)y =0,

即(4+1)x +(-2)y =0,

也就是5x -2y =0,则可取????

??25为属于特征值λ1=4的一个特征向量. (2)设属于特征值λ2=-2的特征向量为????

??x y ,

则它满足方程(λ2+1)x +(-2)y =0,

即(-2+1)x +(-2)y =0,

也就是x +2y =0,

则可取????

??-2 1为属于特征值λ2=-2的一个特征向量. 综上所述,M =?????

???-1 2 52 3有两个特征值λ1=4,λ2=-2, 属于λ1=4的一个特征向量为????

??25, 属于λ2=-2的一个特征向量为????

??-2 1.

8.设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.

(1)求矩阵M 的特征值及相应的特征向量;

(2)求逆矩阵1M -以及椭圆x 24+y 29

=1在1M -的作用下的新曲线的方程. 解:(1)由条件得矩阵M =????

??2 00 3, 它的特征值为2和3,对应的特征向量为??????10和????

??01; (2)1M -=??????12 00 13,设P (x 0,y 0)为椭圆上任一点,在M -1作用下变为(x ′,y ′)则有??? x ′=12x 0y ′=13y 0即?????

x 0=2x ′y 0=3y ′ ∵点P 在椭圆x 24+y 29

=1上, ∴x ′2+y ′2=1.

即椭圆x 24+y 29

=1在M -1的作用下的新曲线的方程为x 2+y 2=1.

用矩阵的初等变换求逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求 A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即 211211111111 12112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=? 11121m R R R A E ---= 111121m R R R A ----= ()()122n n n n A E E A -???????→ 1*1A A A -=()()()1111A A E A A A E E A ----==111121m A R R R ----= ()()111121m R R R A E E A ----=

用矩阵的初等变换求逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃) 二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理对mxn矩阵A,施行一次初等行变换,相当于在A的左边乘以相应m阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理的推论A可逆的充要条件为A可表为若干初等矩阵之积。即 4.推论 A可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A可逆,构造分块矩阵(A︱E),其中E为与A同阶

的单位矩阵,那么 (2) 由(1)式代入(2)式左边, 上式说明分块矩阵(A︱E)经过初等行变换,原来A的位置变换为单位阵E,原来E的位置 A ,即 变换为我们所要求的1 三,讲解例题 1. 求逆矩阵方法的应用之一 例 解: 四,知识拓展 2.求逆矩阵方法的应用之二 利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A︱E)经过初等行变换,原来A的位置不能变换为单位阵E,那么A不可逆。

考研数学:用初等变换求逆矩阵及乘积的方法

考研数学:用初等变换求逆矩阵及乘积的方法 来源:文都教育 在考研数学线性代数中,初等变换是一种非常重要的方法,被广泛地用于很多题型的求解之中,如行列式的计算、矩阵的求逆、线性方程组的求解、矩阵秩的计算、化二次型为标准型等。初等变换包括初等行变换和初等列变换,具体说有三种:互换两行(列)、某行(列)乘以一个非零数、某行(列)乘以一个数加到另一行(列)。下面我们对初等变换在矩阵求逆及乘积中的应用做些分析总结,供各位考研的学子参考。 一、用初等变换求逆矩阵及乘积的方法 1、用初等行变换求逆矩阵1A -:对(,)A E 作初等行变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1(,)(,)r A E E A -→,由此即求得1A -; 2、用初等列变换求逆矩阵1A -:求1A -也可用初等列变换,对A E ?? ??? 作初等列 变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1c A E E A -???? → ? ????? , 由此即求得1A -; 3、用初等行变换求1A B -:对(,)A B 作初等行变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1 A B -,即1(,)(,)r A B E A B -→,由此即求得1A B -; 4、用初等列变换求1BA -:对A B ?? ??? 作初等列变换,将其中的A 变为单位矩阵 E ,这时矩阵B 就变为1 BA -,,即1c A E B BA -???? → ? ????? ,由此1BA -此即求得1BA -.

上面的1)和2)实际上是3)和4)的特殊情况,只要取B E =即得1)和2)。 下面只要证明3)和4)即可。 证:3)由于作一次初等行变换相当于左乘一个初等矩阵,所以对A 作一系列的初等行变换得到单位矩阵E 相当于A 左乘一个可逆阵P ,使PA E =,这时 1 P A -=,1 (,)(,)(,)(,B)P A B PA PB E PB E A -===,即1(,)(,)r A B E A B -→; 4)同3)类似,由于作一次初等列变换相当于右乘一个初等矩阵,所以对A 作一系列的初等列变换得到单位矩阵E 相当于A 右乘一个可逆阵P ,使A P E =, 这时1 P A -=,1A AP E P B BP BA -??????== ? ? ??????? ,即1c A E B BA -???? → ? ?????. 二、典型实例 例1.设011111112A -?? ? =- ? ?--?? ,求1A -. 解:作初等行变换: 011100111010(,)111010011100112001021011r r A E --???? ? ?=-→-→ ? ? ? ?----???? 11110101003120111000 10111(,)0012110 1 211r r E A -----???? ? ?→--→-= ? ? ? ?----??? ? ,故1312111211A --?? ?=- ? ?-?? . 例2.解矩阵方程211113210432111X -?? -?? ?= ? ??? ?-?? .

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

向量空间与线性变换

第7章向量空间与线性变换 7-1.下列向量组中,哪些是向量空间4R 的基,为什么? (1)T )1,1,1,1(1=α,T )0,1,1,1(2=α,,)0,0,1,1(3T =αT )0,0,0,1(4=α; (2)T )1,0,0,1(1=α,T )0,1,2,0(2-=α,,)0,0,1,0(3T -=αT )1,0,3,1(4--=α; (3)T )1,0,0,1(1=α,T )0,1,1,0(2-=α,,)0,2,0,0(3T =αT )1,1,1,1(4=α; (4)T )0,0,0,1(1=α,T )0,1,1,0(2-=α,,)0,2,0,0(3T =αT )1,0,0,0(4=α.7-2. 把向量组T ),,(1101=α,T )1,0,1(2=α,T )0,1,1(3=α化为3R 的标准正交基.7-3.已知T )1,1,1(1=α,T )0,1,1(2-=α,T )0,0,1(3-=α是向量空间3R 的基,求向 量T )1,3,2(--=η在该基下的坐标. 7-4.已知T )1,0,1(1-=α,T )0,1,1(2-=α,T )0,0,3(3=α与(),0,0,11T =ε(),0,1,02T =ε()T 1,0,03=ε都是向量空间3R 的基,求基321,,ααα到基321,,εεε的过渡矩阵.7-5.在向量空间3R 中取两组基 T )1,2,1(1=α,T )0,1,3(2-=α,T )0,0,1(3=α与 (),3,0,11T =β(),1,1,12T =β()T 4,1,13-=β. (1)求基321,,ααα到基321,,βββ的过渡矩阵; (2)设ξ在基321,,ααα下的坐标是T )1,3,2(-,求ξ在基321,,βββ下的坐标.7-6.令][3x F 表示数域F 上一切次数3≤的多项式连同零多项式所组成的向量空间. (1)求这个向量空间的一个基和维数; (2)证明微分运算D 是一个线性变换. 7-7.在上一题中,求微分运算D 在所取基下的矩阵.7-8.在3 R 中,T 表示向量投影到xOy 平面的线性变换,即()T xi yj zk xi yj ++=+ .

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

第七章 线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

关于初等变换求逆矩阵

初等变换求逆矩阵理论在课堂上讲过好几次了,在此不多赘述. 现在主要说说如何将一个矩阵(A E)通过行变换变为(E A -1),其关键是如何将A 变为E 即就是变为A 的行最简形(由于A 是可逆矩阵,故其行最简形为单位矩阵E )。具体做法有两种: 方法1:对(A E),通过合适的行变换使得a 11=1,观察a 11与第一列中a 11下方的元素之间的关系,施行相应行变换将a 11下方的元素变为0;通过合适的行变换使得a 22=1,观察a 22与第二列中a 22下方的元素之间的关系,施行相应行变换将a 22下方的元素变为0;……;通过合适的行变换使得a n-1,n-1=1,观察a n-1,n-1与第n-1列中a n-1,n-1下方的元素之间的关系,施行相应行变换将a n-1,n-1下方的元素变为0 。接着,反过来,通过合适的行变换使得a nn =1,观察a nn 与第n 列中a nn 上方的元素之间的关系,施行相应行变换将a nn 上方的元素变为0;观察a n-1,n-1与第n-1列中a n-1,n-1上方的元素之间的关系,施行相应行变换将a n-1,n-1上方的元素变为0;……;观察a 22与第二列中a 22上方的元素之间的关系,施行相应行变换将a 22上方的元素变为0,结束。此时矩阵形式为(E A -1)。比如,习题册Page19,四(2)具体做法如下: ()1331 2433201 1000123200 100221 01000221010012320010320110000121 000 101210 00 1123200101232 001002210100012100010495103004950121000 1r r r r r r A E ?-?-----???? ? ? ? ?=???→ ? ?----- ? ?????------?? ? ????→???→ ? - ???324342 3424 14 422210300221 10 0123200101232 0010012100010121 0001001110340011103400210 1020001 2 16101230421120012021611r r r r r r r r r r r r -+---+?? ? ? ?- ??? ------???? ? ? ? ????→???→ ? ? ---- ? ? -----???? ------???→()231312 23211 1200 11220100 0101001011360010 11360001216100001216101000112401000101001011360 001 21610112401011136216 10r r r r r r E A A -++------???? ? ? - ? ????→ ? ? ---- ? ? ----???? --?? ? - ? ???→= ?-- ? --??--?-∴=----? ? ? ? ???

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

用矩阵的初等变换求逆矩阵资料讲解

用矩阵的初等变换求 逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、 问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、 求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 1*1A A A -=

4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即 三,讲解例题 1. 求逆矩阵方法的应用之一 例 解: 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=? =?11121m R R R A E ---=1111 21m R R R A ----=()()122n n n n A E E A -???????→ 1112120,113A A -?? ?=- ? ???设求。112100120010113001A E ?? ?=- ? ??? ()2131r r r r +-112100032110001101?? ???→ ? ?-??110302030312001101?-? ??? →- ? ?-??132322r r r r --30211012010133001101??- ???→- ? ? ?-?? 313r ()()() 1111 A A E A A A E E A ----==111121m A R R R ----=()() 111121m R R R A E E A ----=

相关文档
最新文档