Null dust in canonical gravity

Null dust in canonical gravity
Null dust in canonical gravity

a r

X

i

v

:g r

-

q

c

/

9

7

4

5

3

v 1

1

8

A

p

r

1

9

9

7

Null dust in canonical gravity

Jiˇr ′?Biˇc ′a k ?

Department of Theoretical Physics,

Faculty of Mathematics and Physics,Charles University,V Holeˇs oviˇc k′a ch 2,18000Prague,Czech Republic Karel V.Kuchaˇr ?Department of Physics,University of Utah,Salt Lake City,UT 84112,U.S.A.We present the Lagrangian and Hamiltonian framework which incorporates null dust as a source into canonical gravity.Null dust is a generalized Lagrangian system which is described by six Clebsch potentials of its four–velocity Pfa?form.The Dirac–ADM decomposition splits these into three canonical coordinates (the comoving coordinates of the dust)and their conjugate momenta (appropriate projections of four–velocity).Unlike ordinary dust of massive particles,null dust therefore has three rather than four degrees of freedom per space point.These are evolved by a Hamiltonian which is a linear combination of energy and momentum densities of the dust.The energy density is the norm of the momentum density with respect to the spatial metric.The coupling to geometry is achieved by adding these densities to the gravitational super–Hamiltonian and supermomentum.This leads to appropriate Hamiltonian and momentum constraints in the phase space of the system.The constraints can be rewritten in two alternative forms in which they generate a true Lie algebra.The Dirac constraint quantization of the system is formally accomplished by imposing the new constraints as quantum operator restrictions on state functionals.We compare the canonical schemes for null and ordinary dust and emhasize their di?erences.I.INTRODUCTION Null dust has been widely used as a simple matter source both in classical and semiclassical gravity.Its equations of motion follow directly from the conservation of the energy–momentum tensor.However,the inclusion of null dust as a source into canonical gravity requires careful identi?cation of its own dynamical degrees of freedom.For this purpose,one needs to construct a spacetime action depending on appropriate Eulerian variables and bring it into canonical form by the Dirac–ADM (Arnowitt,Deser and Misner)procedure.The coupling to gravity,like that of other nonderivative systems,is then entirely straightforward.The ordinary dust of massive particles was treated in this manner by Brown and Kuchaˇr [1].Our goal is to develop a similar formalism for null dust.The main application which we have in mind is minisuperspace and midisuperspace quantization of canonical models which include null dust as a source.The speci?c models based on null dust are both numerous and simple.After the

discovery of Vaidya’s ‘radiating Schwarzschild metric’[2],there were found many other,more general exact solutions of Einstein’s equations with null dust as a matter source.Above all,such models have recently been used to clarify the formation of naked singularities during a spherical gravitational collapse,to describe mass in?ation inside black holes,and to model the formation and Hawking evaporation of black holes.We brie?y review these topics in Appendix B.Our formalism is designed for studying such issues in quantum rather than in classical or semiclassical contexts.Null dust is intimately connected with the behavior of zero–rest–mass ?elds in geometrical optics limit.The energy–momentum tensor of such ?elds takes in that limit the form of the energy-momentum tensor of null dust.One can then reinterpret some exact solutions of Einstein’s equations with null dust as spacetimes produced by zero–rest–mass (in particular,electromagnetic)?elds.Careful studies of the high–frequency limit of the gravitational radiation itself revealed that it also can be described by the energy–momentum tensor of null dust.Moreover,which is especially relevant for the present paper,such a connection can be established at the level of a variational principle.All of this indicates that null dust is much more closely related to fundamental ?elds than ordinary dust formed by phenomenological massive particles.We explain some of these connections in Appendix A.

We start our exposition by reviewing how the dynamics of incoherent dust follows from the conservation law of the energy–momentum tensor(Section2).This enables us to pinpoint at the very beginning the main di?erence between ordinary dust and null dust:The normalization of timelike four–velocity selects its parametrization by proper time, the null normalization of lightlike four–velocity leaves its parametrization arbitrary.This is of paramount importance both for the Lagrangian and Hamiltonian descriptions of null dust.

Since null geodesics are somewhat less intuitive than timelike geodesics,we brie?y summarize the basic properties of null congruences in Section3.We explain how to obtain an a?ne parametrization of such congruences,but stress its essential ambiguity which prevents the unique separation of mass distribution of null dust particles from their four–velocity.When it comes to producing the gravitational?eld,the mass distribution can simply be reabsorbed into four–velocity,which is the reason why it does not naturally occur as a separate variable either in the Lagrangian or Hamiltonian frameworks.We formulate a spacetime variational principle from which the null geodesic equations of motion follow in Section4.The variational principle for null dust is quite similar to the variational principle for ordinary dust given by Brown and Kuchaˇr[1],but there are several characteristic di?erences.The most important one was already mentioned:Null worldlines have no natural parametrization and hence the null velocity appears in the variational principle as the Pfa?form of six scalars(the Clebsch potentials)rather than seven scalars which characterize the timelike velocity.Consequences of this distinction can be traced throughout the whole formalism. In Appendix C we illustrate on explicit examples the decomposition of null covector?elds into Clebsch potentials which is a prerequisite of our variational principle.In Section5we show that any solution of the Euler equations of the variational principle provides enough building blocks to reconstruct an a?nely parametrized four–velocity kαand the associated mass distribution M.We also discuss other special parametrizations.In Section6,we cast our covariant spacetime action into Hamiltonian form by following the Dirac–ADM algorithm.The details of this process are substantially di?erent from the steps which need to be taken for ordinary dust.We express the energy and momentum densities of null dust in terms of appropriate canonical variables.The energy density turns out to be the norm of the momentum density with respect to the spatial metric.It transpires that null dust has only three degrees of freedom per space point,one less than ordinary dust which has four.The missing degree of freedom is a privileged scalar parameter(like proper time)along lightlike geodesics.The missing canonically conjugate momentum is the mass distribution which has been reabsorbed into the four–velocity form.We conclude this section by writing down the standard Hamiltonian and momentum constraints for geometry coupled to null dust.In Section7,we rewrite these constraints in two alternative forms in which they generate a true Lie algebra.In this process,the Hamiltonian constraint is replaced by alternative constraints which contain only geometric variables.This feature of the constraint is related to a Rainich–type‘already uni?ed theory’for geometry coupled to null dust.In Section8,we show how one can formally impose the new form of constraints as quantum operator restrictions on state functionals.The outcome of this procedure is a single functional di?erential equation for physical state functionalsΨ[g]which depend solely on the spatial metric g in the dust frame.In the?nal Section9,we compare the canonical formalism and the ensuing quantum theory for null dust with those for ordinary dust and emphasize their di?erences.

Our conventions follow those of Misner,Thorne and Wheeler[3],except for our choice of units which are such that 16πG=1=c.

II.DUST AS A SOURCE OF GRA VITY

Incoherent dust is one of the simplest phenomenological sources of gravity in general relativity.Its energy–momentum tensor

Tαβ=MUαUβ,(2.1)

UαUα=?1,(2.2)

curves the spacetime according to Einstein’s law of gravitation

Gαβ:=Rαβ?12Tαβ.(2.3) Dust is described by the four–velocity Uαof its particles and the(rest)mass density M of their distribution.The equations of motion of the dust are entirely contained in the energy–momentum conservation law

?βTαβ=0(2.4)

which follows from the Einstein law(2.3)through the Bianchi identities.The structure(2.1)of the energy–momentum tensor allows us to write Eq.(2.4)in the form

MUβ?βUα+?β(MUβ)Uα=0.(2.5) One sees that

MUβ?βUα∝Uα,(2.6) i.e.,that the dust particles move along geodesics.The normalization(2.2)of the four–velocity tells us that the particle worldlines are parametrized by proper time.When one multiplies the geodesic equation by Uα,the normalization condition(2.2)implies the rest mass conservation

?β(MUβ)=0.(2.7) By using Eq.(2.7)back in Eq.(2.5)one learns that proper time is an a?ne parameter:

Uβ?βUα=0.(2.8) These facts describe in full detail the motion of ordinary dust of massive particles.

Null dust has the same energy–momentum tensor(2.1)as ordinary dust,but its particles are assumed to follow lightlike worldlines:

UαUα=0.(2.9)

The energy–momentum conservation law(2.4)still implies that those worldlines are geodesics,Eqs.(2.5)–(2.6). However,the null normalization(2.9)no longer enforces either the conservation law(2.7)or a?ne parametrization (2.8).

For ordinary dust,the decomposition of the energy–momentum tensor into the mass density M and four–velocity Uαis unique due to the timelike normalization(2.2).For null dust,the lightlike normalization(2.9)is preserved by an arbitrary scaling of Uα:

M=Λ?2M,(2.11) one preserves the form(2.1)of the energy–momentum tensor.This shows that the decomposition of Tαβinto M and Uαis arbitrary.In particular,by takingΛ=M1/2,one can eliminate the scalar M altogether and write Tαβentirely in terms of a single null vector

lα:=M1/2Uα(2.12)

as

Tαβ=lαlβ.(2.13)

In terms of lα,the geodesic equation(2.5)takes the form

lβ?βlα+(?βlβ)lα=0.(2.14) We shall see later that this choice maximally simpli?es the form of the null dust action and its canonical decomposition.

III.NULL GEODESIC CONGRUENCES

In a region of spacetime,M,which is?lled by dust whose worldlines do not intersect,the vector?eld Uαde?nes a line congruence S.This congruence can be viewed as an abstract three–dimensional space,the‘dust space’,whose points are the individual worldlines.The worldlines z∈S can be locally labeled by three parameters z k(z)which

introduce a coordinate chart in S.We shall use the indices i,j,k from the middle of the Latin alphabet to denote the components of the objects in S;they take the values1,2,3.(A global standpoint replacing this local description is discussed in[1].)

Through each event of the region there passes one and only one worldline.One can uniquely assign to each event y the labels z k of that worldline:

z k=Z k(y).(3.1) Our interpretation of the scalar?elds Z k(y)presupposes that their values z k constitute a good chart in S.Therefore, the three gradients Z k,αmust be three linearly independent covectors:1

Uα∝1

δαβγδU,αZ i,βZ j,γZ k,δδijk=0.(3.5)

3!

The mapping Z:M→I R×S given locally by Eqs.(3.3)and(3.1)can thus be inverted into the mapping Υ:I R×S→M given locally by

yα=Υα(u,z k).(3.6) Here,z k distinguish di?erent curves of the congruence S and u speci?es the point on a given curve.The four vectors

Uα=Υα,u,Zαk=Υα,k(3.7) form a basis in T M dual to the cobasis

Z K,α=(U,α,Z k,α)(3.8) in T?M.The basis(3.7)and cobasis(3.8)satisfy the standard orthonormality and completeness relations.In particular

Zαi Z k,α=δk i.(3.9) So far,everything applies equally well both to timelike and null congruences.Brown and Kuchaˇr[1]specialized the formalism to timelike congruences and applied it to Lagrangian description of ordinary dust.In this paper,we ?rst brie?y recapitulate how to specialize the formalism to null geodesic congruences(see,e.g.,[4]and[5]for more details)and then use it for Lagrangian description of null dust.

A geodesic null congruence Uαmust satisfy the geodesic condition(2.6)and the null condition(2.9).These conditions still hold when the vector?eld Uαis scaled by an arbitrary factor,Eq.(2.10).Instead of using that scaling for eliminating M from the energy–momentum tensor,Eqs.(2.11)–(2.13),one can use it for enforcing a?ne parametrization.In terms of lα,the geodesic equation takes the form(2.14).Unless lαhappens to be divergencefree, it is not a?nely parametrized.Let us?rst show that there exists a positive scaling factor

Λ(y)=eλ(y)(3.10)

such that

?β(Λ?1lβ)=0.(3.11) The condition(3.11)amounts to a linear inhomogeneous equation

lβ?βλ=?βlβ(3.12) forλ.In the adapted coordinates u,z k,Eq.(3.12)assumes the form

?λ(u,z)

.(3.21)

?v

The a?ne parametrization(3.19)depends on two arbitrary functions,λ0(z)and v0(z).This means that along each geodesic the a?ne parameter is determined only up to a linear transformation

ˉv=Λ?10(z)v+ˉv0,Λ0(z)>0.(3.22) When we change the a?ne parameter by Eq.(3.22),the null vector?eld kα(y)is scaled into

ˉkα(y)=Λ

(Z(y))kα(y).(3.23)

The a?nely parametrized null vector?eld kα(y)is thus determined only up to an arbitrary positive multiplicative factorΛ0which is a function of comoving coordinates z k=Z k(y).

A congruence of a?nely parametrized null geodesics is characterized by its twist(or rotation)ω,expansionθ,and shearσ.The corresponding scalars are given by

ω= 1

(?αkα),(3.25)

2

1

|σ|=

?αβγδkβ?δkγ.(3.27)

2

If kαis proportional to a gradient,

kα(y)=φ(y)ψ,α(y),(3.28) the geodesics of S form null hypersurfacesψ=const to which kαis orthogonal.A null geodesic congruence is hypersurface orthogonal if and only if it has a vanishing twist:ω=0.

Under the change(3.23)of a?ne parametrization,the rotation,expansion and shear all scale by the same factor:

ˉω=Λ0ω,ˉθ=Λ0θ,|ˉσ|=Λ0|σ|.(3.29) Also,by using Eqs.(3.10)–(3.12)and(3.15),one can reexpress them in terms of lαand its derivatives,and of the undi?erentiated scaling factor(3.10),(3.14):

ω=Λ 14(?αlα)2 1/2,(3.30)

θ=Λ(?αlα),(3.31)

14(?αlα)2 1/2.(3.32)

|σ|=Λ

The scalars(3.30)–(3.32)allow us to introduce other special parametrizations of null geodesic congruences.Consider-ations about the rate of expansion of a shadow image(see,e.g.,[4]and[5])lead to the concept of luminosity distance Λ.This is de?ned as any solution of the equation

1

=θ,(3.33)

dv

where v is an a?ne parameter andθ(assumed to be nonvanishing)is the expansion(3.25).Equations(3.15)and (3.23)ensure that the luminosity distance is identical with the scaling factor(3.10),(3.12).The luminosity distance played a prominent role in several classical works in radiation theory[6]and in cosmology[7].The mass distribution M introduced by Eq.(3.15)is the inverse square M=Λ?2of the luminosity distance.The parallax distance p,

p=θ?1,(3.34) is also occasionally useful.

IV.SPACETIME ACTION AND THE EULER EQUATIONS

We describe null dust by six spacetime scalars Z k,W k.The interpretation of our state variables Z k,W k emerges from the form of the action and the resulting equations of motion.We shall see that Z k are comoving coordinates of null dust particles.By specifying the values z k of the scalars Z k(y),we choose a particular null geodesic of the congruence S.The three gradients Z k,αare assumed to be three independent covectors.We shall see later that none of them can be timelike.

The four–velocity covector lαof a lightlike particle is given by its components W k in the cobasis Z k,α:

lα=W k Z k,α.(4.1)

This relation expresses the one–form l=lαdyαas a Pfa?form

l=W k dZ k(4.2) of six scalar?elds Z k and W k.According to Pfa?’s theorem[8],four scalar potentials A,B,C,D are su?cient to describe an arbitrary covector in a four–dimensional space:

lα=AB,α+CD,α.(4.3) However,the representation of lαby six potentials W k,Z k is more useful because it has a clear physical interpretation [9].

The null dust action

S ND[Z k,W k;γαβ]= d4y L ND(y)(4.4) is a functional of our six state variables,and of the metricγαβ.The Lagrangian density L ND is taken in the form

1

L ND=?

=?|γ|?1/2Z k,αlα,(4.6)

δW k

δS ND

0=

?β(lαlβ)=?W k,α(Z k,βlβ)+Z k,α?β(W k lβ)+1

2The mixed brackets in R(y;γ]indicate that the curvature scalar R is a function of y and a functional ofγαβ(y′).This convention is used throughout the paper.

The mass distribution

M=Λ?2(5.6) associated with the a?ne parametrization(5.4)satis?es a continuity equation(3.17).The potentials W k associated with lαalso satisfy the continuity equation(4.10).However,because in general?αlα=0,the potentials W k do not

stay the same along the dust lines:

lα?αW k=0.(5.7) On the other hand,by virtue of the continuity equations(4.10)and(3.17),the potentials w k associated with an a?nely parametrized kαof Eq.(5.4)do stay the same along the dust lines:

kα?αw k=0.(5.8) Equations(3.7),(3.9)and(5.5)enable us to interpret w k geometrically as projections of the null?eld kαinto the hypersurfaces yα=ΥαAFF(v,z),v=const,of a?ne foliation:

?ΥαAFF(v,z)

w k=kα

2|γ|1/2Mγαβkαkβ,(5.11) with

kα:=Z,α+w A Z A,α.(5.12) The Pfa?form corresponding to kαis now constructed only from?ve potentials Z,Z A,w A,though the action(4.4), (5.11)–(5.12)still depends on six scalar variables,due to the presence of M in the Lagrangian(5.11).By varying the action with respect to Z one obtains the continuity equation(3.17).By using the other?eld equations,one easily derives Eq.(3.16)for a?nely parametrized geodesics.

The Lagrangian(4.5)is special because it leads to the simpli?ed form of the energy–momentum tensor,while the Lagrangian(5.11)is special because it leads to an a?nely parametrized kα.By building an additional redundancy into the Lagrangian,one can reach the generic form(2.1),(2.9)of the energy–momentum source.One simply introduces the seventh scalar M while keeping Uαas the Pfa?form of six scalar?elds Z k,W k:3

1

L ND=?

3By comparing Eqs.(5.13)–(5.14)with Eqs.(4.2)and(4.5),we see that W k=M1/2W k.

with

Uα:=W k Z k,α.(5.14) The new Lagrangian density and all equations of motion are then invariant under the gauge transformation(2.10), (2.11),

W k→

M=Λ?2M,(5.16) whereΛ(y)>0is an arbitrary scaling factor.

The canonical form of the action is the same whether one starts from the original Lagrangian(4.5),(4.1)or the redundant Lagrangian(5.13)–(5.14).The canonical variables recombine the redundant potentials in such a way that the information about the split of lαinto M and Uαgets lost:From the canonical variables one can reconstruct only lα.It is thus not worth the e?ort to complicate the spacetime Lagrangian by striving to achieve a super?uous generality.Having learned this lesson,we take the spacetime action(4.4)–(4.5)with lαgiven by Eq.(4.1)as our starting point.

VI.CANONICAL DESCRIPTION OF NULL DUST

The familiar ADM algorithm for casting a covariant action into Hamiltonian form works for the null dust in a similar way as for the ordinary dust of massive particles[1].One foliates the spacetime M by spacelike hypersurfaces Σ,

Y:I R×Σ→M by(t,x)→y=Y(t,x).(6.1) In local coordinates x a,a=1,2,3onΣand yα,α=0,1,2,3on M,the foliation is represented by

(t,x a)→yα=Yα(t,x a).(6.2) A transition from one leafΣof the foliation to another is described by the deformation vector˙Yα:=?Yα/?t.Its decomposition into the normal nαand tangential Yα,a directions to the leaves yields the lapse function N⊥and the shift vector N a:

˙Yα=N⊥nα+N a Yα

.(6.3)

,a

On each leaf,the spacetime metricγαβ(y)induces the intrinsic metric

g ab(t,x)=γαβ(Y(t,x))Yα,a(t,x)Yβ,b(t,x).(6.4) The spacetime metric is reconstructed as

γαβ=?nαnβ+g ab Yα,a Yβ,b,(6.5) where g ab is the inverse of g ab,and the determinants|γ|ofγαβand|g|of g ab are related by

|γ|1/2=N⊥|g|1/2.(6.6) Scalar?elds on M,such as the null–dust variables Z k,W k can be pulled back to I R×Σby the mapping(6.1).By using Eq.(6.3)we obtain

Z k,αnα=(N⊥)?1V k,(6.7) where we have introduced the normal velocities

V k:=˙Z k?Z k,a N a,Z k,a=Z k,αYα,a.(6.8)

This allows us to write the null–dust action(4.4)–(4.5),with lαgiven by(4.1),as an integral over I R×Σ,i.e.,in the (3+1)–split form:

S ND[Z k,W k;g ab,N⊥,N a]= I R dt Σd3x L ND.(6.9) The Lagrangian density L ND on I R×Σis a quadratic form of the Lagrange multipliers W k:

1

L ND=

W V j(V i V i)?1/2,(6.15) where W is an arbitrary positive factor.

By substituting this solution(6.15)back into the Lagrangian(6.10),we eliminate from the action the multipliers W j,replacing them by a single multiplier W:

1

L ND=

=|g|1/2W(N⊥)?1V k.(6.18)

?˙Z k

To clarify their physical meaning,we return to the de?nition(6.15)of W j,the decomposition(4.1)of lα,and Eqs.

(6.7)–(6.8)for the normal velocity.In this way we learn that P k are normal projections of the currents Jαk introduced in Eq.(4.9):

P k=|g|1/2Jαk nα.(6.19)

Equation (6.18)can be inverted to obtain the velocities

˙Z

k =N ⊥|g |?1/2W ?1g kj P j +N a Z k ,a .(6.20)This leads to the Hamiltonian

H ND :=P k ˙Z k ?L ND =N ⊥H ND ⊥+N a H ND a (6.21)

which is a linear combination of the momentum density

H ND a =P k Z k ,a (6.22)

and the energy density

H ND ⊥=1

2W |g |1/2

(6.23)=

12W |g |1/2(6.24)of the dust.The canonical form of the action then reads S ND [Z k ,P k ,W ;g ab ,N ⊥,N a ]= I R dt Σd 3x P k ˙Z k ?N ⊥H ND ⊥?N a H ND a ,(6.25)

where H ND a and H ND ⊥are given by Eqs.(6.22)and (6.24).

At this stage,we are ?nally able to eliminate the last remaining multiplier W .By varying the action (6.22)–(6.25)with respect to W ,we obtain an equation

δS ND

?W

=0(6.26)which determines W in terms of the canonical data:

W =|g |

?1/2 g ab H ND a H ND b .(6.27)

By substituting this solution back into H ND ⊥we obtain

H ND ⊥=

4

Our Lagrangian and Hamiltonian formalism can easily be generalized to several mutually noninteracting species (streams)of null dust.This may be useful for the canonical treatment of spherical collapse,in which the ingoing null dust is turned into an outgoing null dust at the center of symmetry,or for the canonical treatment of models involving colliding streams of dust with plane or cylindrical symmetry (see references in [34]).

l⊥=?lαnα=?W1/2,(6.30)

l a=lαYα,a=W?1/2|g|?1/2H ND a.(6.31) Here,of course,W stands for the scalar form(6.27)of the energy–momentum density.One can check that lαis a null vector by virtue of its construction(6.29)–(6.31):

lαlα=?(l⊥)2+l a l a=0.(6.32) The background variables N⊥(t,x),N a(t,x)and g ab(t,x)in the dust action S ND[Z k,P k;g ab,N⊥,N a]are not to be varied.The Hamiltonian formalism for null dust on a given background is thus entirely unconstrained.To couple null dust to geometry,we must add its action S ND to the gravitational Dirac–ADM action

S G g ab,p ab;N⊥,N a = I R dt Σd3x p ab˙g ab?N⊥H G⊥?N a H G a (6.33) with the standard gravitational super–Hamiltonian and supermomentum densities

H G⊥(x;g ab,p ab]=G abcd(x;g)p ab(x)p cd(x)?|g|1/2R(x;g],(6.34)

1

G abcd=

=0.(7.1)

g ab H G a H G

b

Only the supermomentum constraint(6.38)contains the dust variables.The new Hamiltonian constraint(7.1)is constructed solely from the gravitational variables g ab,p ab.Alternatively,one can get rid of an inconvenient square root by rewriting Eq.(7.1)in the form

G:=(H G⊥)2?g ab H G a H G b=0.(7.2) Under the positivity condition

?H ND⊥=H G⊥≤0,(7.3) the constraint(7.2)is equivalent to the constraint(7.1).

Brown and Kuchaˇr[1]proved a remarkable fact that the densities(7.2)have strongly vanishing Poisson brackets:

{G(x),G(x′)}=0.(7.4) By coupling gravity to other simple sources,Kuchaˇr and Romano[11]and Brown and Marolf[12]produced other densitized expressions constructed from the scalar variables g?1/2H G⊥and g?1g ab H G a H G b which also have strongly vanishing Poisson brackets.Markopoulou[13]posed the question what is the most general density

F=g w/2F(g?1/2H G⊥,g?1g ab H G a H G b)(7.5) of weight w constructed from these variables which has the strongly vanishing Poisson brackets

{F(x),F(x′)}=0.(7.6) She found an algorithm for generating all such densities.The density(7.2)of weight2still seems to be the simplest. Among others,there is the scalar form

G√:=g?1/2 H G⊥+

5Equation(7.11)is perhaps the simplest example of the Rainich–type geometrization of a source?eld.The general task is to ?nd equations for the Einstein tensor which are equivalent to the Einstein law of gravitation together with the?eld equations for a given source.The problem was?rst formulated for the Einstein–Maxwell system by Rainich and solved by him under the assumption that the electromagnetic?eld is not algebraically special(null)[14],[15].The Rainich problem for the null electromagnetic?eld was solved by Hlavat′y[16].The much simpler scalar?eld case was analyzed by Peres[17]and by Kuchaˇr [18].The spinor?eld was treated by Kuchaˇr[19]and the Proca?eld by Biˇc′a k[20].

G⊥⊥=?1

2

g?1/2H G a,(7.13)

Eq.(7.12)is equivalent to the constraint(7.2).We have already noticed that under the energy positivity condition (7.3)the constraint(7.2)is equivalent to the constraint(7.7).The Rainich–type condition(7.11)thus connects the new form(7.2)or(7.7)of the Hamiltonian constraint with the spacetime picture.

VIII.CONSTRAINT QUANTIZATION OF GEOMETRY COUPLED TO NULL DUST

We have cast the constraint system for geometry coupled to null dust into a form in which it generates a Lie algebra. In this process,the Hamiltonian constraint has been replaced either by the constraint(7.2)or by the constraint(7.7). Either of these constraints have vanishing Poisson brackets(7.4).The momentum constraint is left in its original form

(6.38)and(6.22):

H a(x):=P k(x)Z k,a(x)+H G a(x)=0.(8.1) The momentum constraints(8.1)close in the way characteristic for the Lie algebra LDi?Σof the di?eomorphism group Di?Σ.The Poisson brackets of G(x)(or G√(x))with H a(x′)close into G(x)(or G√(x))in the way which re?ects the transformation behavior of G(x)(or G√(x))under spatial di?eomorphisms Di?Σ:G(x)is a density of weight2,while G√(x)is a scalar.

As for ordinary dust,the constraint system can be vastly simpli?ed by the introduction of an alternative set of canonical variables which re?ect the fact that the dust particles de?ne a preferred system of coordinates onΣ.The mapping Z:Σ→S which,in local coordinates,assumes the form

z k=Z k(x a),(8.2) takes the tensorial variables g ab(x)and p ab(x)onΣinto corresponding tensors g ij(z)and p ij(z)on the dust space S:

g ij(z):=X a,i(z)X b,j(z)g ab(X(z)),(8.3)

p ij(z):= ?X(z)

One can prove that the S–variables g ij(z),p ij(z)along with the dust frame variables Z k(x)and the new supermo-mentum H↑k(x)form a canonical chart[1].In particular,this means that the new constraint functions P k(x):=H↑k(x) have vanishing Poisson brackets among themselves and are the momenta P k(x)canonically conjugate to the dust frame variables Z k(x).Further,because the Poisson brackets of the S–tensors g ij(z),p ij(z)with the smeared supermomen-tum(8.9)vanish,these S–tensors are invariant under the shifts(8.6).

In terms of the new canonical variables g ij(z),p ij(z)and Z k(x),P k(x)the momentum constraint(8.6)reduces to the condition that the canonical momentum P k(x)vanishes:

P k(x)=0.(8.11) The Hamiltonian constraints(7.2)or(7.7)can then be mapped to the dust space S according to their weight:

G(z):= ?X(z)

.(8.14)

δZ k(x)

The operators(8.14)automatically commute,

P i(x), P j(x′) =0.(8.15)

It is far from clear how to replace the remaining classical constraints by operators which not only commute with P k(x),but also among themselves.We shall proceed under the assumption that there exists a factor ordering and regularization of G:=G(z; g ij(z), p ij(z)]and/or G√:=G√(z; g ij(z), p ij(z)]which achieves this goal.If so,the constraint operators can consistently annihilate the physical states.The momentum constraint

P k(x)Ψ[Z,g]=0,(8.16)

where P k(x)is interpreted as the variational derivative(8.14),means that the state functionalΨ[Z,g]cannot depend on Z k(x):

Ψ=Ψ[g].(8.17) The constraint system is thereby reduced to a single∞3nontrivial condition that G:=G(z; g ij(z), p ij(z)], (or G√:=G√(z; g ij(z), p ij(z)])annihilates the state functional:

G(z; g ij(z), p ij(z)]Ψ[g]=0.(8.18) The caveats which need to be born in mind when implementing such a formal procedure for gravity coupled to ordinary dust are carefully spelled out in[1].An additional di?culty with null dust is that there is no natural variable which would play the role of internal time.As a result,unlike for ordinary dust,the quantum constraint(8.18)does not have the form of a functional Schr¨o dinger equation.It is thus unclear how,even formally,to turn the space of its solutions into a Hilbert space.

https://www.360docs.net/doc/2d6011007.html,PARING NULL DUST WITH ORDINARY DUST

Ordinary dust coupled to gravity was turned into a Hamiltonian system and formally quantized by Brown and Kuchaˇr[1].This scheme turns out to be both similar to and characteristically di?erent from the description of null dust given in this paper.We shall outline the basic similarities and emphasize the di?erences.

The spacetime action

S D[T,Z k;M,W k;γαβ]= M d4y L D(y)(9.1)

of ordinary dust is constructed from eight scalar?elds Z k,W k and T,M.The Lagrangian density L D(y)has the form

L D=?

1

δM =?

1

δW k

=?|γ|1/2MZ k,αUα,(9.5)

0=

δS D

δZ k

= |γ|1/2MW k Uα ,α.(9.7)

They lead to the interpretation of the state variables.Equation(9.5)is analogous to Eq.(4.6)for null dust.It ensures that the three vector?elds Z k are constant along the?ow lines of Uαand therefore their values z k can be interpreted as comoving coordinates for the dust.Equation(9.4)ensures that the four–velocity Uαis a unit timelike vector?eld. It is analogous to Eq.(4.8)which guarantees that the four–velocity lαof null dust is lightlike.Equation(9.6)allows us to interpret M as the rest mass density of the dust and expresses the law of mass conservation.It is analogous to Eq.

(3.17)for the null dust in a?ne parametrization.Equation(9.7)can be interpreted as the momentum conservation law.It is analogous to Eq.(4.10)for the null dust written again in a?ne parametrization.By multiplying Eq.(9.3) by Uαand using the?eld equations(9.4)–(9.5),we learn that

T,αUα=1,(9.8) i.e.,that T is the proper time between a?ducial hypersurface T=0and an arbitrary hypersurface T=const along the dust worldlines.From Eq.(9.3)we see that the W k variables are the projections of the four–velocity Uαto the hypersurfaces of constant T expressed in the dust space cobasis Z k,α.Due to the conservation laws(9.6)–(9.7),these projections remain the same along a?ow line of Uα.In comparison,W k for the null dust is the component of the null covector lαin the dust space cobasis Z k,α.These components are not conserved along the?ow lines,Eq.(5.7). However,when one rescales lαinto an a?nely parametrized kαby Eqs.(5.4)–(5.5)and projects kαinto hypersurfaces of constant a?ne parameter v,one obtains the components w k of Eq.(5.9)which are conserved along the?ow lines, Eq.(5.8).

The main di?erence between the actions S D and S ND is that the dust action depends on eight variables T,M and Z k,W k,while the null dust action depends only on six variables Z k,W k.The interpretation of the variables Z k as the comoving coordinates and W k as the projections of the four–velocities Uα(or lα)into hypersurfaces of constant T(or U)is analogous.The variables T and M do not appear in the null dust action(4.1),(4.4)–(4.5).This re?ects the fact that the mass function M of the null dust is not uniquely determined and it was absorbed into the de?nition of lα.Similarly,the a?ne parameter along the null geodesics is not uniquely determined.If one chooses to enforce the a?ne parametrization by taking the null dust Lagrangian in the form(5.11),the corresponding M occurs in the action,but the Pfa?form of an a?nely parametrized kα,Eq.(5.12),contains only two independent scalars w A.One

can work in a totally arbitrary parametrization by letting the Lagrangian density to depend on seven variables M,Z k, W k instead of six,Eqs.(5.13)–(5.14),but then the action becomes gauge invariant under the scalings(5.15)–(5.16), which makes it e?ectively dependent only on six of these variables.

These similarities and di?erences are re?ected in the canonical form of the action.For ordinary dust,the energy density H D⊥and momentum density H D a depend on four pairs of canonical variables,T and P,and Z k,P k.They take the form

H D a=P T,a+P k Z k,a(9.9)

and

H D⊥=

G T,a Z a k=0,(9.13)

H↑:=P?

dust space,the momentum constraint is eliminated and what remains is a single functional di?erential Schr¨o dinger equation

P(z)?

6This is di?erent from the energy–momentum tensor of perfect?uid with the equation of state p=M/3,which represents the superposition of waves with random propagation directions.

eα=A?1aα.(A5) As a consequence of the source–free wave equation and the Lorentz gauge condition,both written in the?rst order of the geometrical optics approximation,the quantities(A3)–(A5)obey the following set of equations:

kαkα=0,(A6)

kβ?βkα=0,(A7)

?α(A2kα)=0,(A8) and

kαeα=0,kβ?βeα=0.(A9) From Eq.(A7)we see that the null vector kαis a?nely parametrized.The electromagnetic?eld tensor is given by

Fαβ=2Re iAe iΘk[αeβ] .(A10) It represents the electromagnetic?eld of type N(the null?eld)since it satis?es the relations

(Fαβ+iF?αβ)kβ=0,FαβFαβ=FαβF?αβ=0,(A11) where F?αβis dual to Fαβ.Equations(A7)and(A8)imply the covariant conservation law for the electromagnetic energy–momentum tensor

Tαβ=A2kαkβ.(A12)

We see that the phenomenological null dust equations(2.9),(3.16)–(3.18)are the same as Eqs.(A6)–(A8)and (A12)of the high–frequency limit of the Maxwell theory if the null vector?eld kαis de?ned by Eq.(A3)and the mass distribution M is identi?ed with the square of the scalar amplitude A:

M=A2.(A13)

Null dust thus exhibits all features of the geometrical optics limit of Maxwell’s theory except for the polarization properties.However,starting from a solution of the null dust equations one can always construct a polarization vector eαsuch that Eqs.(A9)are also satis?ed.This yields the tensor(A10)which can be regarded as an electromagnetic ?eld tensor in the geometrical optics approximation.

The laws of geometrical optics can also be interpreted as describing photons that move along null rays with the ?ux vector which is determined by the amplitude A and the null vector kα(see[3]for details).

The lightlike particles need not necessarily be photons.It is quite obvious that similar conclusions can be reached for all zero–rest–mass?elds in high–frequency limit.For example,by employing the geometrical optics form(A1)of the energy–momentum tensor,several authors[21]studied the gravitational collapse with escaping neutrinos.

A somewhat special case is the gravitational?eld itself.Careful studies of the high–frequency limit of the gravita-tional radiation by Isaacson and others[22]have shown that the energy–momentum tensor(A12)and the null vector ?eld kαwhich satisfy Eqs.(A6)–(A8)also describe the behavior of high–frequency gravitational waves.The metric tensor perturbations representing high–frequency waves are given by

hαβ=Re (aαβ?1

aαβˉaαβ 1/2.(A15)

2

One also obtains the equations for the polarization tensor eαβ=aαβ/A,analogous to Eqs.(A9)(see[3],[22]).The Riemann tensor of the metric(A14)has the Petrov type N.The gravitational?eld in the high–frequency limit is null,similarly as the electromagnetic?eld.The well–known peeling–o?property of exact radiative(zero–rest–mass)

交通违章违法代码罚款金额对照表

交通违章违法代码罚款金 额对照表 Prepared on 22 November 2020

机动车违章违法代码表(请按C t r l+F查找代码) 违法代码罚款金额扣分违法内容 1006B 15000B驾驶证被期间驾驶汽车的 100715000 把机动车交给未取得机动车驾驶证的人驾驶的 100815000 把机动车交给机动车驾驶证被吊销的人驾驶的 100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010A 10000 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的 1010B 15000 B驾驶人在驾驶证超过有效期仍驾驶汽车的 101110000 非法安装警报器的 101210000 非法安装标志灯具的 10170 不按规定投保机动车第三者责任险的 1202 500 2 公路客运车辆载客超过核定载客人数未达20%的 1601A 1000 6 公路客运车辆载客,超过额定乘员20%以上不足50%的 1601B 1500 6 公路客运车辆载客超过额定乘员50%以上不足100% 5049 0 1年内醉酒后驾驶机动车被处罚两次以上的 1601C 2000 6 公路客运车辆载客超过额定乘员100%以上的 1602A 1000 6 机动车载物超过核定载质量30%以上不足100%的 1602B 2000 6 机动车载物超过核定载质量100%以上的 1603A 1000 6 机动车行驶超过规定时速50%以上不足100%的 1603B 2000 6 机动车行驶超过规定时速100%以上 1604 300 6 饮酒后驾驶机动车的 1605500 6 饮酒后驾驶营运机动车的

新交通法交通违章罚款参考表

新交通法交通违章罚款参考表 违章代码违章行为金额 119400驾驶与驾驶证载明的准驾车型不符的机动车的200 121001驾驶安全设施不全的车辆上道路行驶的200 121002驾驶机件不符合技术标准的机动车上道路行驶的200 122202服用国家管制的精神药品或麻醉药品后驾驶机动车的200 122203患有妨碍安全驾驶机动车的疾病仍驾驶机动车的200 135000逆向行驶的200 136001在没有划分中心线和机非分道的道路上不按规定行驶的100 136002违反分道行驶规定的100 137000违反规定进入专用车道内行驶的200 138001违反指示标志、标线或交通警察指挥指示的100 138002违反禁令标志、警告标志、禁止禁线、警告标线指示的100 138003违反交通信号灯指示的200 139001违反限制通行规定的100 142001超过规定时速不足50%的200 143100在同车道行驶中不按规定与前车保持安全距离的50 143200不按规定超车的200 144001机动车通过无交通信号控制路口未减速让行的100 145100遇有前方车辆排队等候或缓慢行驶时,借道超车的200 145101遇有前方车辆排队等候或缓慢行驶时,占用对面车道的200

145102遇有前方车辆排队等候或缓慢行驶时,穿插等候车辆的200 145200违反交替通行规定的100 146001通过铁路道口,违反交通信号或者管理人员指挥的200 146002通过无交通信号或管理人员的铁路道口未减速或停车确认安全的100 147100行经人行横道遇行人通过时未停车让行的。200 147200行经无交通信号的道路遇行人横过道路未避让的100 148101机动车载物遗洒、飘散载运物的100 148200运载超限的不可解体物品,未按交管部门规定行驶的100 148300运载危险化学品未按规定行驶的200 149001机动车载人超过核定人数未达20%的100 149002机动车载人超过核定人数达20%以上的200 151001机动车驾驶人未按规定使用安全带的50 151002摩托车驾驶人未按规定戴安全头盔50 152001机动车发生故障尚能移动,未移至不妨碍交通地点的200 152002机动车发生故障,未按规定报警的100 153100不避让执行紧急任务的警车、消防车、救护车、工程救险车的。200 153200警车、消防车、救护车、工程救险车在非执行紧急任务时使用警报器、标志灯具的200 155100拖拉机在禁行道路上行驶的50 155200拖拉机违反规定载人的100 156100在禁止停放车辆的地点停放车辆的200 164200遇有盲人在道路上通行,机动车未避让的。100 167000驾驶禁止驶入高速公路的机动车驶入高速公路的200 168200非救援车、清障车在高速公路上拖曳、牵引机动车的200 170200发生交通事故后,不按规定撤离现场,造成交通堵塞的200

交通违章罚款代码大全

交通违章罚款代码大全 &机动车通行 代码扣分罚金(元)违法行为/依据 10010 1000吊销驾驶拼装的机动车上道路行驶的A:驾驶拼装的非汽车类机动车上道路行驶的 10010 1500吊销驾驶拼装的机动车上道路行驶的B:驾驶拼装的汽车上道路行驶的 10020 1000吊销驾驶已达报废标准的车辆上道路行驶的A:驾驶已达报废标准的非汽车类机动车上道路行驶的 10020 1500吊销驾驶已达报废标准的车辆上道路行驶的B:驾驶已达报废标准的汽车上道路行驶的 10030 吊销造成交通事故后逃逸,构成犯罪的A:持有机动车驾驶证 10030 吊销造成交通事故后逃逸,构成犯罪的B:未取得机动车驾驶证 10040 吊销违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的 1000可以并处拘留15天 10050 未取得驾驶证驾驶机动车的A:未取得驾驶证驾驶非汽车类机动车的 以下 1500可以并处拘留15天 10050 未取得驾驶证驾驶机动车的B:未取得驾驶证驾驶汽车的 以下 1000可以并处拘留15天 10060 驾驶证被吊销期间驾驶机动车的A:驾驶证被吊销期间驾驶非汽车类机动车的 以下 1500可以并处拘留15天 10060 驾驶证被吊销期间驾驶机动车的B:驾驶证被吊销期间驾驶汽车的 以下 1500 10070 把机动车交给未取得机动车驾驶证的人驾驶的 可以并处吊销 1500 10080 把机动车交给机动车驾驶证被吊销的人驾驶的 可以并处吊销 1500 10090 把机动车交给机动车驾驶证被暂扣的人驾驶的 可以并处吊销 10100 1000驾驶人在驾驶证超过有效期仍驾驶机动车的A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的 10100 1500驾驶人在驾驶证超过有效期仍驾驶机动车的B驾驶人在驾驶证超过有效期仍驾驶汽车的 10110 1000非法安装警报器的 10120 1000非法安装标志灯具的 10130 200驾驶证丢失期间仍驾驶机动车的 10140 200驾驶证损毁期间仍驾驶机动车的 10150 200驾驶证被依法扣留期间仍驾驶机动车的 10160 200违法记分达到12分仍驾驶机动车的 10170 150不按规定投保机动车第三者责任险的 10180 机动车不在机动车道内行驶的 10190 150机动车违反规定使用专用车道的 10200 200机动车驾驶人不服从交警指挥的 10210 200遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧穿插行驶的 10220 200遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧穿插行驶的 10230 100遇前方机动车停车排队等候或者缓慢行驶时,未依次交替驶入车道减少后的路口、路段的 10240 100在没有交通信号灯、交通标志、交通标线或者交警指挥的交叉路口遇到停车排队等候或者缓慢行驶时,机动车未依次交替通行的10250 100遇前方机动车停车排队等候或者缓慢行驶时,在人行横道、网状线区域内停车等候的 10260 50行经铁路道口,不按规定通行的 10270 150机动车载货长度、宽度、高度超过规定的

新交通法规违章罚款明细

新交通法规违章罚款明细新交通法规违章罚款明细 违章代码违章行为金额 119400 驾驶与驾驶证载明的准驾车型不符的机动车的 200 121001 驾驶安全设施不全的车辆上道路行驶的 200 121002 驾驶机件不符合技术标准的机动车上道路行驶的 200 122202 服用国家管制的精神药品或麻醉药品后驾驶机动车的 200 122203 患有妨碍安全驾驶机动车的疾病仍驾驶机动车的 200 135000 逆向行驶的 200 136001 在没有划分中心线和机非分道的道路上不按规定行驶的 100 136002 违反分道行驶规定的 100 137000 违反规定进入专用车道内行驶的 200 138001 违反指示标志、标线或交通警察指挥指示的 100 138002 违反禁令标志、警告标志、禁止禁线、警告标线指示的 100 138003 违反交通信号灯指示的 200 139001 违反限制通行规定的 100 142001 超过规定时速不足50 % 的 200 143100 在同车道行驶中不按规定与前车保持安全距离的 50 143200 不按规定超车的 200 144001 机动车通过无交通信号控制路口未减速让行的 100 145100 遇有前方车辆排队等候或缓慢行驶时,借道超车的 200 145101 遇有前方车辆排队等候或缓慢行驶时,占用对面车道的 200 145102 遇有前方车辆排队等候或缓慢行驶时,穿插等候车辆的 200 145200 违反交替通行规定的 100

146001 通过铁路道口,违反交通信号或者管理人员指挥的 200 146002 通过无交通信号或管理人员的铁路道口未减速或停车确认安全的147100 行经人行横道遇行人通过时未停车让行的。 200 147200 行经无交通信号的道路遇行人横过道路未避让的 100 148101 机动车载物遗洒、飘散载运物的 100 148200 运载超限的不可解体物品,未按交管部门规定行驶的 100 148300 运载危险化学品未按规定行驶的 200 149001 机动车载人超过核定人数未达20 % 的 100 100 149002 机动车载人超过核定人数达20 % 以上的 200 151001 机动车驾驶人未按规定使用安全带的 50 151002 摩托车驾驶人未按规定戴安全头盔 50 152001 机动车发生故障尚能移动,未移至不妨碍交通地点的 200 152002 机动车发生故障,未按规定报警的 100 153100 不避让执行紧急任务的警车、消防车、救护车、工程救险车的。 200 153200 警车消防车救护车工程救险车在非执行紧急任务时使用警报器标志灯具的200155100 拖拉机在禁行道路上行驶的 50 155200 拖拉机违反规定载人的 100 156100 在禁止停放车辆的地点停放车辆的 200 164200 遇有盲人在道路上通行,机动车未避让的。 100 167000 驾驶禁止驶入高速公路的机动车驶入高速公路的 200 168200 非救援车、清障车在高速公路上拖曳、牵引机动车的 200 170200 发生交通事故后,不按规定撤离现场,造成交通堵塞的 200 191101 饮酒后驾驶机动车的 500 191102 醉酒后驾驶机动车的 1500 191201 饮酒后驾驶营运机动车的 500

最新交通违章处罚条例(违法代码查询)

最新交通违章处罚条例违法代码罚款扣分违法内容 1001B 1500 0 B 驾驶拼装的汽车上道路行驶的 1002B15000 B 驾驶已达报废标准的汽车上道路行驶的 1003A吊销0 造成交通事故后逃逸, 构成犯罪的, 持有机动车驾驶证 1003B吊销0 造成交通事故后逃逸, 构成犯罪的, 未取得机动车驾驶证 1004吊销0 违反道路交通安全法律、法规的规定,发生重大事故, 构成犯罪的 1005B15000 B 未取得驾驶证驾驶汽车的 1006B15000 B 驾驶证被吊销期间驾驶汽车的 100715000 把机动车交给未取得机动车驾驶证的人驾驶的 100815000 把机动车交给机动车驾驶证被吊销的人驾驶的 100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010B 15000 B 驾驶人在驾驶证超过有效期仍驾驶汽车的 101110000 非法安装警报器的 101210000 非法安装标志灯具的 10132000驾驶证丢失期间仍驾驶机动车的 10142000驾驶证损毁期间仍驾驶机动车的 10152000驾驶证被依法扣留期间仍驾驶机动车的 10162000违法记分达到12 分仍驾驶机动车的 10171500不按规定投保机动车第三者责任险的 10181500机动车不在机动车道内行驶的 10191500机动车违反规定使用专用车道的 10202000机动车驾驶人不服从交警指挥的 10212000遇前方机动车停车排队等候或者缓慢行驶时, 从前方车辆两侧穿插行驶的 10222000遇前方机动车停车排队等候或者缓慢行驶时, 从前方车辆两侧超越行驶的 10231000遇前方机动车停车排队等候或者缓慢行驶时, 未依次交替驶入车道减少后的路口、路段的10241000在没有交通信号灯、交通标志、交通标线或交警指挥的交叉路口遇到停车排队等候或者缓慢行驶时, 机动车未依次交替通行的 10251000遇前方机动车停车排队等候或者缓慢行驶时, 在人行横道、网状线区域内停车等候的102650 0 行经铁路道口, 不按规定通行的 10271500机动车载货长度、宽度、高度超过规定的 10281500机动车载物行驶时遗洒、飘散载运物的 10291500运载超限物品时不按规定的时间、路线、速度行驶的 10301500运载超限物品时未悬挂明显标志的 10312000运载危险物品未经批准的 10322000运载危险物品时不按规定的时间、路线、速度行驶的 10332000运载危险物品时未悬挂警示标志的 10342000运载危险物品时未采取必要的安全措施的 10351000载客汽车载货违反规定的 10361000货运机动车违反规定载人的 10372000未将故障车辆移到不妨碍交通的地方停放的 103850 0 不避让正在作业的道路养护车、工程作业车的 10392000机动车违反规定停放、临时停车, 妨碍其它车辆、行人通行的 10401000 机动车喷涂、粘贴标识或者车身广告影响安全驾驶的 1041 200 0 道路养护施工作业车辆、机械作业时未开启示警灯和危险报警闪光灯的 1042 200 0 机动车不按规定车道行驶的

新全国交通违章代码查询表

全国交通违章代码查询表 交通违章行为代码编写说明 1、交通违章行为代码的结构和表示形式代码的结构本代码由四位数字组成,按交通法中通行原则进行分类,排列顺序从左到右依次为一位行为分类代码,一位计分分类代码,二位数字顺序码。第一位代码:行为分类代码,表示在道路交通法中的所处的分类代码;第二位代码:记分分类代码,表示交通违章行为记分的分类代码;第三、四位代码:顺序码,表示在同一行为分类中出现的行为的顺序码。例如:1303——“1”表示机动车行为,第2个数字“3”表示要扣3分,后面的“03”表示在扣3分这一类里的第三个行为,机动车行驶超过规定时速50%以下的。再比如1603--“1”表示机动车行为,第2个数字“6”表示要扣6分,后面的“03”表示在扣6分这一类里的第三个行为,机动车行驶超过规定时速50%以上的。 第一位代码即行为代码共1到5及7、8几种,1表示机动车通行,2表示非机动车通行,3表示行人、乘车人通行,4表示高速公路通行,5表示其他规定,7表示省、自治区、直辖市的实施细则规定,8表示各市(地区、自治州、盟)的地方法规。 第二位代码即记分分类代码共0、1、2、3、6、7几种,0表示不记分,1表示记1分,2表示记2分,3表示记3分,6表示记6分,7表示记12分。 2、违法行为数量公安部原交通违章行为代码表共有违法行为337种,其中:机动车通行175种,非机动车通行55种,行人、乘车人通行30种,高速公路通行28种,其他规定49种。 3、交通违章行为代码查询表: -交通违章代码1字头机动车通行规定 违章代码违法行为适用法律 扣分情况最低罚款最高罚款 1001 驾驶拼装的机动车上道路行驶的《法》第100条第2款200 2000 1002 驾驶已达报废标准的机动车上道路行驶的《法》第100条第2款200 2000 1003 造成交通事故后逃逸,构成犯罪的《法》第101条第2款 1004 违反道路交通安全法律、法规的规定,发生重大交通事故,构成犯罪的《法》第101条第1款 1005 未取得驾驶证驾驶机动车的《法》第99条第1款第1项200 2000 1006 驾驶证被吊销期间驾驶机动车的《法》第99条第1项第2种行为200 2000 1007 把机动车交给未取得机动车驾驶证的人驾驶的《法》第99条第1款第2项200 2000 1008 把机动车交给机动车驾驶证被吊销的人驾驶的《法》第99条第1款第2项200 2000 1009 把机动车交给机动车驾驶证被暂扣的人驾驶的《法》第99条第1款第2项200 2000

交通违章违法代码罚款金额对照表

交通违章违法代码罚款 金额对照表 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

机动车违章违法代码表(请按Ctrl+F查找代码) 违法代码罚款金额扣分违法内容 1006B 1500 0B驾驶证被期间驾驶汽车的 1007 1500 0 把机动车交给未取得机动车驾驶证的人驾驶的1008 1500 0 把机动车交给机动车驾驶证被吊销的人驾驶的1009 1500 0 把机动车交给机动车驾驶证被暂扣的人驾驶的1010A 1000 0 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的 1010B 1500 0 B驾驶人在驾驶证超过有效期仍驾驶汽车的 1011 1000 0 非法安装警报器的 1012 1000 0 非法安装标志灯具的 1017 0 不按规定投保机动车第三者责任险的 1202 500 2 公路客运车辆载客超过核定载客人数未达20%的1601A 1000 6 公路客运车辆载客,超过额定乘员20%以上不足50%的

1601B 1500 6 公路客运车辆载客超过额定乘员50%以上不足100% 5049 0 1年内醉酒后驾驶机动车被处罚两次以上的1601C 2000 6 公路客运车辆载客超过额定乘员100%以上的1602A 1000 6 机动车载物超过核定载质量30%以上不足100%的1602B 2000 6 机动车载物超过核定载质量100%以上的 1603A 1000 6 机动车行驶超过规定时速50%以上不足100%的1603B 2000 6 机动车行驶超过规定时速100%以上 1604 300 6 饮酒后驾驶机动车的 1605 500 6 饮酒后驾驶营运机动车的 1606 1000 6 公路客运车辆违反规定载货的 1607A 500 6 货运机动车违反规定载客3人以下的 1607B 1500 6 货运机动车违反规定载客3人以上的 1609 2000 6 运输剧毒化学品机动车超过规定时速50%以上的1702 1500 12 醉酒后驾驶机动车的

交通违章违法代码罚款金额对照表

机动车违章代码表(请按Ctrl+F查找代码) 代码罚款金额扣分容 1006B15000B驾驶证被期间驾驶汽车的 100715000 把机动车交给未取得机动车驾驶证的人驾驶的100815000 把机动车交给机动车驾驶证被吊销的人驾驶的100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010A10000 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的1010B 15000 B驾驶人在驾驶证超过有效期仍驾驶汽车的101110000 非法安装警报器的 101210000 非法安装标志灯具的 10170 不按规定投保机动车第三者责任险的 1202 500 2 公路客运车辆载客超过核定载客人数未达20%的 1601A 1000 6 公路客运车辆载客,超过额定乘员20%以上不足50%的1601B1500 6 公路客运车辆载客超过额定乘员50%以上不足100% 5049 0 1年醉酒后驾驶机动车被处罚两次以上的 1601C 2000 6 公路客运车辆载客超过额定乘员100%以上的 1602A1000 6 机动车载物超过核定载质量30%以上不足100%的1602B 2000 6 机动车载物超过核定载质量100%以上的 1603A 1000 6 机动车行驶超过规定时速50%以上不足100%的 1603B 2000 6 机动车行驶超过规定时速100%以上 1604 300 6 饮酒后驾驶机动车的 1605500 6 饮酒后驾驶营运机动车的

16061000 6 公路客运车辆违反规定载货的 1607A 500 6 货运机动车违反规定载客3人以下的 1607B1500 6 货运机动车违反规定载客3人以上的 16092000 6 运输剧毒化学品机动车超过规定时速50%以上的 1702150012 醉酒后驾驶机动车的 1703200012 醉酒后驾驶营运机动车的 1704A100012 A在驾驶证暂扣期间仍驾驶非汽车类机动车的 1704B150012 B在驾驶证暂扣期间仍驾驶汽车的 1705 200012 造成交通事故后逃逸,尚不构成犯罪 1706 200012 违反交通管制规定强行通行,不听劝阻的 1709A100012 驾驶与驾驶证载明的准驾车型不相符合的车辆的A驾驶非汽车类1709B150012 驾驶与驾驶证载明的准驾车型不相符合的车辆的B驾驶汽车类200110000 非机动车造成交通事故后逃逸,尚不构成犯罪的 20021000 0 非机动车违反交通管制的规定强行通行,不听劝阻的 1001A10000 A驾驶拼装的非汽车类机动车上道路行驶的 1001B15000 B 驾驶拼装的汽车上道路行驶的 1002A10000 A 驾驶已达报废标准的非汽车类机动车上道路行驶的 1002B15000 B 驾驶已达报废标准的汽车上道路行驶的 1003A0 造成交通事故后逃逸,构成犯罪的,持有机动车驾驶证 1003B 0 造成交通事故后逃逸,构成犯罪的,未取得机动车驾驶证10040 违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的1005A10000 A未取得驾驶证驾驶非汽车类机动车的

交通违章违法代码罚款金额扣分对照表

交通违章违法代码罚款金额扣分对照表 违法代码罚款金额扣分违法内容 1006B15000B驾驶证被期间驾驶汽车的 100715000 把机动车交给未取得机动车驾驶证的人驾驶的 100815000 把机动车交给机动车驾驶证被吊销的人驾驶的 100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010A10000 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的 1010B 15000 B驾驶人在驾驶证超过有效期仍驾驶汽车的 101110000 非法安装警报器的 101210000 非法安装标志灯具的 10170 不按规定投保机动车第三者责任险的 1202 500 2 公路客运车辆载客超过核定载客人数未达20%的 1601A 1000 6 公路客运车辆载客,超过额定乘员20%以上不足50%的 1601B1500 6 公路客运车辆载客超过额定乘员50%以上不足100% 5049 0 1年内醉酒后驾驶机动车被处罚两次以上的 1601C 2000 6 公路客运车辆载客超过额定乘员100%以上的 1602A1000 6 机动车载物超过核定载质量30%以上不足100%的 1602B 2000 6 机动车载物超过核定载质量100%以上的 1603A 1000 6 机动车行驶超过规定时速50%以上不足100%的 1603B 2000 6 机动车行驶超过规定时速100%以上 1604 300 6 饮酒后驾驶机动车的 1605500 6 饮酒后驾驶营运机动车的 16061000 6 公路客运车辆违反规定载货的 1607A 500 6 货运机动车违反规定载客3人以下的 1607B1500 6 货运机动车违反规定载客3人以上的 16092000 6 运输剧毒化学品机动车超过规定时速50%以上的 1702150012 醉酒后驾驶机动车的 1703200012 醉酒后驾驶营运机动车的 1704A100012 A在驾驶证暂扣期间仍驾驶非汽车类机动车的 1704B150012 B在驾驶证暂扣期间仍驾驶汽车的 1705 200012 造成交通事故后逃逸,尚不构成犯罪 1706 200012 违反交通管制规定强行通行,不听劝阻的 1709A100012 驾驶与驾驶证载明的准驾车型不相符合的车辆的A驾驶非汽车类 1709B150012 驾驶与驾驶证载明的准驾车型不相符合的车辆的B驾驶汽车类 200110000 非机动车造成交通事故后逃逸,尚不构成犯罪的 20021000 0 非机动车违反交通管制的规定强行通行,不听劝阻的 1001A10000 A驾驶拼装的非汽车类机动车上道路行驶的 1001B15000 B 驾驶拼装的汽车上道路行驶的 1002A10000 A 驾驶已达报废标准的非汽车类机动车上道路行驶的 1002B15000 B 驾驶已达报废标准的汽车上道路行驶的 1003A0 造成交通事故后逃逸,构成犯罪的,持有机动车驾驶证 1003B 0 造成交通事故后逃逸,构成犯罪的,未取得机动车驾驶证 10040 违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的 1005A10000 A未取得驾驶证驾驶非汽车类机动车的 1005B15000 B未取得驾驶证驾驶汽车的 1006A1000 0 《中华人民共和国道路交通安全法》第99条第1款第1项第2种行为、《广东省道路交通安全法实施条例》第64条第1款第1项第2种行为 10552000 特种车辆违反规定使用警报器的 10562000 特种车辆违反规定使用标志灯具的 10571000 机动车在单位院内居民居住区内不低速行驶的 10581000 机动车在单位院内居民居住区内不避让行人的 10591500 驾驶摩托车手离车把的 50012000 6 伪造、变造机动车登记证书的 500220000 伪造、变造机动车号牌的 5003 20000 伪造、变造机动车行驶证的 500420000 伪造、变造机动车检验合格标志的 5005 2000 0 伪造、变造机动车保险标志的 500620000 伪造、变造机动车驾驶证的

最新交通违章处罚条例(违法代码查询)

最新交通违章处罚条例 违法代码罚款扣分违法内容 1001B 1500 0 B 驾驶拼装的汽车上道路行驶的 1002B 1500 0 B 驾驶已达报废标准的汽车上道路行驶的 1003A 吊销0 造成交通事故后逃逸,构成犯罪的,持有机动车驾驶证 1003B 吊销0 造成交通事故后逃逸,构成犯罪的,未取得机动车驾驶证 1004 吊销0 违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的 1005B 1500 0 B 未取得驾驶证驾驶汽车的 1006B 1500 0 B 驾驶证被吊销期间驾驶汽车的 1007 1500 0 把机动车交给未取得机动车驾驶证的人驾驶的 1008 1500 0 把机动车交给机动车驾驶证被吊销的人驾驶的 1009 1500 0 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010B 1500 0 B 驾驶人在驾驶证超过有效期仍驾驶汽车的 1011 1000 0 非法安装警报器的 1012 1000 0 非法安装标志灯具的 1013 200 0 驾驶证丢失期间仍驾驶机动车的 1014 200 0 驾驶证损毁期间仍驾驶机动车的 1015 200 0 驾驶证被依法扣留期间仍驾驶机动车的 1016 200 0 违法记分达到12分仍驾驶机动车的 1017 150 0 不按规定投保机动车第三者责任险的 1018 150 0 机动车不在机动车道内行驶的 1019 150 0 机动车违反规定使用专用车道的 1020 200 0 机动车驾驶人不服从交警指挥的 1021 200 0 遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧穿插行驶的 1022 200 0 遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧超越行驶的 1023 100 0 遇前方机动车停车排队等候或者缓慢行驶时,未依次交替驶入车道减少后的路口、路段的1024 100 0 在没有交通信号灯、交通标志、交通标线或交警指挥的交叉路口遇到停车排队等候或者缓慢行驶时,机动车未依次交替通行的 1025 100 0 遇前方机动车停车排队等候或者缓慢行驶时,在人行横道、网状线区域内停车等候的 1026 50 0 行经铁路道口,不按规定通行的 1027 150 0 机动车载货长度、宽度、高度超过规定的 1028 150 0 机动车载物行驶时遗洒、飘散载运物的 1029 150 0 运载超限物品时不按规定的时间、路线、速度行驶的 1030 150 0 运载超限物品时未悬挂明显标志的 1031 200 0 运载危险物品未经批准的 1032 200 0 运载危险物品时不按规定的时间、路线、速度行驶的 1033 200 0 运载危险物品时未悬挂警示标志的 1034 200 0 运载危险物品时未采取必要的安全措施的 1035 100 0 载客汽车载货违反规定的 1036 100 0 货运机动车违反规定载人的 1037 200 0 未将故障车辆移到不妨碍交通的地方停放的 1038 50 0 不避让正在作业的道路养护车、工程作业车的 1039 200 0 机动车违反规定停放、临时停车,妨碍其它车辆、行人通行的 1040 100 0 机动车喷涂、粘贴标识或者车身广告影响安全驾驶的

广东省交通违章罚款代码价格与扣分(doc 11页)

广东省交通违章罚款代码价格与扣分(doc 11页)

广东省交通违章罚款代码价格及扣分表 2009-5-24 20:36:35 广东省交通违章罚款代码价格及扣分表 广东省交通违章罚款代码表 深圳违章代码广东交通违章代码罚款交通违章违法项目扣分 1002A 1000 A 驾驶已达报废标准的非汽车类机动车上道路行驶的0 1002B 1500 B 驾驶已达报废标准的汽车上道路行驶的0 1003A 0 造成交通事故后逃逸,构成犯罪的,持有机动车驾驶证0 1003B 0 造成交通事故后逃逸,构成犯罪的,未取得机动车驾驶证0 1004 0 违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的0 1005A 1000 A未取得驾驶证驾驶非汽车类机动车的0 1005B 1500 B未取得驾驶证驾驶汽车的0 1006A 1000 《中华人民共和国道路交通安全法》第99条第1款第1项第2种行为、《广东省道路交通安全法实施条例》第64条第1款第1项第2种行为0 1006B 1500 B驾驶证被期间驾驶汽车的0 1007 1500 把机动车交给未取得机动车驾驶证的人驾驶的0 1008 1500 把机动车交给机动车驾驶证被吊销的人驾驶的0 1009 1500 把机动车交给机动车驾驶证被暂扣的人驾驶的0 1010A 1000 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的0 1010B 1500 B驾驶人在驾驶证超过有效期仍驾驶汽车的0 1011 1000 非法安装警报器的0 1012 1000 非法安装标志灯具的0 1017 0 不按规定投保机动车第三者责任险的0 1202 500 公路客运车辆载客超过核定载客人数未达20%的2 1601A 1000 公路客运车辆载客,超过额定乘员20%以上不足50%的6 1601B 1500 公路客运车辆载客超过额定乘员50%以上不足100% 6 5020 1500 故意移动交通设施,造成危害后果,尚不构成犯罪的0 5021 1500 故意涂改交通设施,造成危害后果,尚不构成犯罪的0 5022 2000 非法拦载机动车,不听劝阻,造成交通严重阻塞、较大财产损失的0

交通违章违法代码罚款金额对照表全国车辆违章查询车辆

交通违章违法代码罚款金额对照表全国车辆违章查询车辆违章查询驾驶证违章查询 交通信息中心下载中心驾车导航 全国最专业的车辆违章查询网!全国驾驶证违章扣分查询网! 您现在的位置:车辆违章查询网>> 交通信息中心>> 内容正文 交通违章违法代码罚款金额对照表 点击数:335048 作者:admin 来源:本站原创发布时间:2009年06月27日【字体:小大】 机动车违章违法代码表(请按Ctrl+F查找代码) 违法代码罚款金额扣分违法内容 1006B15000B驾驶证被期间驾驶汽车的100715000 把机动车交给未取得机动车驾驶证的人驾驶的 100815000 把机动车交给机动车驾驶证被吊销的人驾驶的 100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010A10000 A驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的

1010B 15000 B驾驶人在驾驶证超过有效期仍驾驶汽车的 101110000 非法安装警报器的 101210000 非法安装标志灯具的 10170 不按规定投保机动车第三者责任险的 1202 500 2 公路客运车辆载客超过核定载客人数未达20%的 1601A 1000 6 公路客运车辆载客,超过额定乘员20%以上不足50%的 1601B1500 6 公路客运车辆载客超过额定乘员50%以上不足100% 5049 0 1年内醉酒后驾驶机动车被处罚两次以上的 1601C 2000 6 公路客运车辆载客超过额定乘员100%以上的 1602A1000 6 机动车载物超过核定载质量30%以上不足100%的 1602B 2000 6 机动车载物超过核定载质量100%以上的 1603A 1000 6 机动车行驶超过规定时速50%以上不足100%的

交通违章罚款标准

119400 驾驶与驾驶证载明的准驾车型不符的机动车的200 121001 驾驶安全设施不全的车辆上道路行驶的200 121002 驾驶机件不符合技术标准的机动车上道路行驶的200 122202 服用国家管制的精神药品或*****品后驾驶机动车的200 122203 患有妨碍安全驾驶机动车的疾病仍驾驶机动车的200 135000 逆向行驶的200 136001 在没有划分中心线和机非分道的道路上不按规定行驶100 136002 违反分道行驶规定的100 137000 违反规定进入专用车道内行驶的200 138001 违反指示标志、标线或交通警察指挥指示的100 138002 违反禁令标志、警告标志、禁止禁线、警告标线指示100 138003 违反交通信号灯指示的200 139001 违反限制通行规定的100 142001 超过规定时速不足50%的200 143100 在同车道行驶中不按规定与前车保持安全距离的50 143200 不按规定超车的200 144001 机动车通过无交通信号控制路口未减速让行的100 145100 遇有前方车辆排队等候或缓慢行驶时,借道超车的200 145101 遇有前方车辆排队等候或缓慢行驶时,占用对面车道200 145102 遇有前方车辆排队等候或缓慢行驶时,穿插等候车辆200 145200 违反交替通行规定的100 146001 通过铁路道口,违反交通信号或者管理人员指挥的200

146002 通过无交通信号或管理人员的铁路道口未减速或停车100 147100 行经人行横道遇行人通过时未停车让行的。200 147200 行经无交通信号的道路遇行人横过道路未避让的100 148101 机动车载物遗洒、飘散载运物的100 148200 运载超限的不可解体物品,未按交管部门规定行驶的100 148300 运载危险化学品未按规定行驶的200 149001 机动车载人超过核定人数未达20%的100 149002 机动车载人超过核定人数达20%以上的200 151001 机动车驾驶人未按规定使用安全带的50 151002 摩托车驾驶人未按规定戴安全头盔50 152001 机动车发生故障尚能移动,未移至不妨碍交通地点的200 152002 机动车发生故障,未按规定报警的100 153100 不避让执行紧急任务的警车、消防车、救护车、工程200 153200 警车、消防车、救护车、工程救险车在非执行紧急任200 155100 拖拉机在禁行道路上行驶的50 155200 拖拉机违反规定载人的100 156100 在禁止停放车辆的地点停放车辆的200 164200 遇有盲人在道路上通行,机动车未避让的。100 167000 驾驶禁止驶入高速公路的机动车驶入高速公路的200 168200 非救援车、清障车在高速公路上拖曳、牵引机动车的200 170200 发生交通事故后,不按规定撤离现场,造成交通堵塞200 191101 饮酒后驾驶机动车的500

交通违章行为罚款及扣分(DOC)

违章代码违章行为金额(元) 119400 驾驶与驾驶证载明的准驾车型不符的机动车的。 200元。 121001 驾驶安全设施不全的车辆上道路行驶的。 200元。 121002 驾驶机件不符合技术标准的机动车上道路行驶的。200元。 122202 服用国家管制的精神药品或麻醉药品后驾驶机动车的。 200元。 122203 患有妨碍安全驾驶机动车的疾病仍驾驶机动车的。200元。 135000 逆向行驶的。200元。 136001 在没有划分中心线和机非分道的道路上不按规定行驶的。 100元。 136002 违反分道行驶规定的。100元。 137000 违反规定进入专用车道内行驶的。200元。 138001 违反指示标志、标线或交通警察指挥指示的。100元。 138002 违反禁令标志、警告标志、禁止禁线、警告标线指示的。100元。 138003 违反交通信号灯指示的。200元。 139001 违反限制通行规定的。100元。 142001 超过规定时速不足50%的。200元。 143100 在同车道行驶中不按规定与前车保持安全距离的。50元。 143200 不按规定超车的。200元。 144001 机动车通过无交通信号控制路口未减速让行的。100元。 145100 遇有前方车辆排队等候或缓慢行驶时,借道超车的。200元。 145101 遇有前方车辆排队等候或缓慢行驶时,占用对面车道的。200元。 145102 遇有前方车辆排队等候或缓慢行驶时,穿插等候车辆的。200元。 145200 违反交替通行规定的。100元。 146001 通过铁路道口,违反交通信号或者管理人员指挥的。200元。 146002 通过无交通信号或管理人员的铁路道口未减速或停车确认安全的。100元。 147100 行经人行横道遇行人通过时未停车让行的。200元。 147200 行经无交通信号的道路遇行人横过道路未避让的。100元。 148101 机动车载物遗洒、飘散载运物的。100元。 148200 运载超限的不可解体物品,未按交管部门规定行驶的。100元。 148300 运载危险化学品未按规定行驶的。200元。 149001 机动车载人超过核定人数未达20%的。100元。 149002 机动车载人超过核定人数达20%以上的。200元。 151001 机动车驾驶人未按规定使用安全带的。50元。 151002 摩托车驾驶人未按规定戴安全头盔。50元。 152001 机动车发生故障尚能移动,未移至不妨碍交通地点的。200元。 152002 机动车发生故障,未按规定报警的。100元。 153100 不避让执行紧急任务的警车、消防车、救护车、工程救险车的。200元。 153200 警车、消防车、救护车、工程救险车在非执行紧急任务时使用警报器、标志灯具的。200元。155100 拖拉机在禁行道路上行驶的。50元。 155200 拖拉机违反规定载人的。100元。 156100 在禁止停放车辆的地点停放车辆的。200元。 164200 遇有盲人在道路上通行,机动车未避让的。100元。 167000 驾驶禁止驶入高速公路的机动车驶入高速公路的。200元。 168200 非救援车、清障车在高速公路上拖曳、牵引机动车的。200元。

交通违章代码大全

违法代码罚款扣分违法内容 1001A10000 A 驾驶拼装的非汽车类机动车上道路行驶的 1001B15000 B 驾驶拼装的汽车上道路行驶的 1002A10000 A 驾驶已达报废标准的非汽车类机动车上道路行驶的 1002B15000 B 驾驶已达报废标准的汽车上道路行驶的 1003A 吊销0 造成交通事故后逃逸,构成犯罪的,持有机动车驾驶证 1003B 吊销0 造成交通事故后逃逸,构成犯罪的,未取得机动车驾驶证 1004吊销0 违反道路交通安全法律、法规的规定,发生重大事故,构成犯罪的 1005A10000 A 未取得驾驶证驾驶非汽车类机动车的 1005B15000 B 未取得驾驶证驾驶汽车的 1006A10000 A 驾驶证被吊销期间驾驶非汽车类机动车的 1006B15000 B 驾驶证被吊销期间驾驶汽车的 100715000 把机动车交给未取得机动车驾驶证的人驾驶的 100815000 把机动车交给机动车驾驶证被吊销的人驾驶的 100915000 把机动车交给机动车驾驶证被暂扣的人驾驶的 1010A10000 A 驾驶人在驾驶证超过有效期仍驾驶非汽车类机动车的 1010B 15000 B 驾驶人在驾驶证超过有效期仍驾驶汽车的 101110000 非法安装警报器的 101210000 非法安装标志灯具的 10132000 驾驶证丢失期间仍驾驶机动车的 10142000 驾驶证损毁期间仍驾驶机动车的 10152000 驾驶证被依法扣留期间仍驾驶机动车的 10162000 违法记分达到12分仍驾驶机动车的 10171500 不按规定投保机动车第三者责任险的 10181500 机动车不在机动车道内行驶的 10191500 机动车违反规定使用专用车道的 10202000 机动车驾驶人不服从交警指挥的 10212000 遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧穿插行驶的 10222000 遇前方机动车停车排队等候或者缓慢行驶时,从前方车辆两侧超越行驶的 10231000 遇前方机动车停车排队等候或者缓慢行驶时,未依次交替驶入车道减少后的路口、路段的 10241000 在没有交通信号灯、交通标志、交通标线或交警指挥的交叉路口遇到停车排队等候或者缓慢行驶时,机动车未依次交替通行的 10251000 遇前方机动车停车排队等候或者缓慢行驶时,在人行横道、网状线区域内停车等候的1026500 行经铁路道口,不按规定通行的 10271500 机动车载货长度、宽度、高度超过规定的 10281500 机动车载物行驶时遗洒、飘散载运物的 10291500 运载超限物品时不按规定的时间、路线、速度行驶的 10301500 运载超限物品时未悬挂明显标志的 10312000 运载危险物品未经批准的 10322000 运载危险物品时不按规定的时间、路线、速度行驶的 10332000 运载危险物品时未悬挂警示标志的 10342000 运载危险物品时未采取必要的安全措施的 10351000 载客汽车载货违反规定的

交警罚款代码及金额

交警罚款代码及金额 违章代码违章行为金额 119400驾驶与驾驶证载明的准驾车型不符的机动车的200 121001驾驶安全设施不全的车辆上道路行驶的200 121002驾驶机件不符合技术标准的机动车上道路行驶的200 122202服用国家管制的精神药品或麻醉药品后驾驶机动车的200 122203患有妨碍安全驾驶机动车的疾病仍驾驶机动车的200 135000逆向行驶的200 136001在没有划分中心线和机非分道的道路上不按规定行驶的100 136002违反分道行驶规定的100 137000违反规定进入专用车道内行驶的200 138001违反指示标志、标线或交通警察指挥指示的100 138002违反禁令标志、警告标志、禁止禁线、警告标线指示的100 138003违反交通信号灯指示的200 139001违反限制通行规定的100 142001超过规定时速不足50%的200 143100在同车道行驶中不按规定与前车保持安全距离的50 143200不按规定超车的200 144001机动车通过无交通信号控制路口未减速让行的100 145100遇有前方车辆排队等候或缓慢行驶时,借道超车的200 145101遇有前方车辆排队等候或缓慢行驶时,占用对面车道的200 145102遇有前方车辆排队等候或缓慢行驶时,穿插等候车辆的200 145200违反交替通行规定的100 146001通过铁路道口,违反交通信号或者管理人员指挥的200 146002通过无交通信号或管理人员的铁路道口未减速或停车确认安全的100 147100行经人行横道遇行人通过时未停车让行的。200 147200行经无交通信号的道路遇行人横过道路未避让的100 148101机动车载物遗洒、飘散载运物的100 148200运载超限的不可解体物品,未按交管部门规定行驶的100 148300运载危险化学品未按规定行驶的200 149001机动车载人超过核定人数未达20%的100 149002机动车载人超过核定人数达20%以上的200 151001机动车驾驶人未按规定使用安全带的50 151002摩托车驾驶人未按规定戴安全头盔50 152001机动车发生故障尚能移动,未移至不妨碍交通地点的200 152002机动车发生故障,未按规定报警的100 153100不避让执行紧急任务的警车、消防车、救护车、工程救险车的。200 153200警车、消防车、救护车、工程救险车在非执行紧急任务时使用警报器、标志灯具的200 155100拖拉机在禁行道路上行驶的50 155200拖拉机违反规定载人的100 156100在禁止停放车辆的地点停放车辆的200 164200遇有盲人在道路上通行,机动车未避让的。100 167000驾驶禁止驶入高速公路的机动车驶入高速公路的200

相关文档
最新文档