AK8963电子罗盘IC

AK8963电子罗盘IC
AK8963电子罗盘IC

= Short Datasheet =

AK8963

3-axis Electronic Compass

A 3-axis electronic compass IC with high sensitive Hall sensor technology.

Best adapted to pedestrian city navigation use for cell phone and other portable appliance.

Functions:

·3-axis magnetometer device suitable for compass application

·Built-in A to D Converter for magnetometer data out

·14-/16-bit selectable data out for each 3 axis magnetic components

- Sensitivity: 0.6 μT/LSB typ. (14-bit)

0.15μT/LSB typ. (16-bit)

·Serial interface

- I2C bus interface.

Standard mode and Fast mode compliant with Philips I2C specification Ver.2.1

- 4-wire SPI

·Operation modes:

Power-down, Single measurement, Continuous measurement, External trigger measurement, Self test and Fuse ROM access.

·DRDY function for measurement data ready

·Magnetic sensor overflow monitor function

·Built-in oscillator for internal clock source

·Power on Reset circuit

·Self test function with built-in internal magnetic source

Operating temperatures:

·-30°C to +85°C

Operating supply voltage:

·Analog power supply +2.4V to +3.6V

·Digital Interface supply +1.65V to analog power supply voltage.

Current consumption:

·Power-down: 3 μA typ.

·Measurement:

- Average power consumption at 8 Hz repetition rate: 280μA typ.

Package:

AK8963C 14-pin WL-CSP (BGA): 1.6 mm ′ 1.6 mm ′ 0.5 mm (typ.)

AK8963N 16-pin QFN package: 3.0 mm ′ 3.0 mm ′ 0.75 mm (typ.)

AK8963 is 3-axis electronic compass IC with high sensitive Hall sensor technology.

Small package of AK8963 incorporates magnetic sensors for detecting terrestrial magnetism in the X-axis, Y-axis, and Z-axis, a sensor driving circuit, signal amplifier chain, and an arithmetic circuit for processing the signal from each sensor. Self test function is also incorporated. From its compact foot print and thin package feature, it is suitable for map heading up purpose in GPS-equipped cell phone to realize pedestrian navigation function.

AK8963 has the following features:

(1)Silicon monolithic Hall-effect magnetic sensor with magnetic concentrator realizes 3-axis magnetometer

on a silicon chip. Analog circuit, digital logic, power block and interface block are also integrated on a chip.

(2)Wide dynamic measurement range and high resolution with lower current consumption.

Output data resolution: 14-bit (0.6 μT/LSB)

16-bit (0.15 μT/LSB)

Measurement range: ±4900 μT

Average current at 8Hz repetition rate: 280μA typ.

(3)Digital serial interface

- I2C bus interface to control AK8963 functions and to read out the measured data by external CPU. A dedicated power supply for I2C bus interface can work in low-voltage apply as low as 1.65V.

- 4-wire SPI is also supported. A dedicated power supply for SPI can work in low-voltage apply as low as

1.65V.

(4)DRDY pin and register inform to system that measurement is end and set of data in registers are ready to

be read.

(5)Device is worked by on-chip oscillator so no external clock source is necessary.

(6)Self test function with internal magnetic source to confirm magnetic sensor operation on end products.

2.Overview (2)

3.Table of Contents (3)

4.Circuit Configuration (4)

4.1.Block Diagram (4)

4.2.Block Function (4)

4.3.Pin Function (5)

5.Overall Characteristics (6)

5.1.Absolute Maximum Ratings (6)

5.2.Recommended Operating Conditions (6)

5.3.Electrical Characteristics (6)

5.3.1.DC Characteristics (6)

5.3.2.AC Characteristics (7)

5.3.3.Analog Circuit Characteristics (8)

5.3.4.4-wire SPI (9)

5.3.5.I2C Bus Interface (10)

6.Functional Explanation (11)

6.1.Power States (11)

6.2.Reset Functions (11)

6.3.Operation Modes (12)

7.Example of Recommended External Connection (13)

7.1.I2C Bus Interface (13)

7.2.4-wire SPI (14)

8.Package (15)

8.1.Marking (15)

8.2.Pin Assignment (15)

8.3.Outline Dimensions (16)

8.4.Recommended Foot Print Pattern (17)

9.Relationship between the Magnetic Field and Output Code (18)

DRDY

SCL/SK SO CSB TST1

TRIG

RSV

5.1. Absolute Maximum Ratings

are not guaranteed in such exceeding conditions.

5.2. Recommended Operating Conditions

5.3. Electrical Characteristics

The following conditions apply unless otherwise noted:

Vdd=2.4V to 3.6V, Vid=1.65V to Vdd, Temperature range=-30°C to 85°C

(Note 3)Maximum load capacitance: 400pF (capacitive load of each bus line applied to the I2C bus interface) (Note 4)Output is open-drain. Connect a pull-up resistor externally.

(Note 5)Without any resistance load

(Note 6)(case1)Vdd=ON, Vid=ON, RSTN pin = “L”. (case2)Vdd=ON, Vid=OFF(0V),RSTN pin = “L”.

(case3)Vdd=Off(0V), Vid=On.

(Note 8)When POR circuit detects the rise of VDD/VID voltage, it resets internal circuits and initializes the registers. After reset, AK8963 transits to Power-down mode.

(Note 11)Reference value for design

(Note 12)Value of measurement data register on shipment without applying magnetic field on purpose.

5.3.4. 4-wire SPI

(Note 14) Reference value for design.

[4-wire SPI]

CSB

SK SI

SO

SK

5.3.5. I 2C Bus Interface CSB pin = “H”

I 2C bus interface is compliant with Standard mode and Fast mode. Standard/Fast mode is selected automatically by fSCL.

(1) Standard mode

(2) Fast mode

[I 2

C bus interface timing]

SCL

VIH2

VIL2

VIH2

VIL2

When VDD and VID are turned on from Vdd=OFF (0V) and Vid=OFF (0V), all registers in AK8963 are initialized by POR circuit and AK8963 transits to Power-down mode.

All the states in the table below can be set, although the transition from state 2 to state 3 and the transition from state 3 to state 2 are prohibited.

Table 6.1

State VDD VID Power state

1 OFF (0V) OFF (0V) OFF (0V).

It doesn’t affect external interface. Digital input

pins other than SCL and SDA pin should be fixed

to “L”(0V).

2 OFF (0V) 1.65V to 3.6V OFF (0V). It doesn’t affect external interface.

3 2.4V to 3.6V OFF (0V) OFF (0V).

It doesn’t affect external interface. Digital input

pins other than SCL and SDA pin should be fixed

to “L” (0V).

4 2.4V to 3.6V 1.65V to Vdd ON

6.2. Reset Functions

When the power state is ON, always keep Vid≤Vdd.

Power-on reset (POR) works until Vdd reaches to the operation effective voltage (about 1.4V: reference value for design) on power-on sequence. After POR is deactivated, all registers are initialized and transits to power down mode.

When Vdd=2.4 ~ 3.6V, POR circuit and VID monitor circuit are active. When Vid=0V, AK8963 is in reset status and it consumes the current of reset state (IDD4).

AK8963 has four types of reset;

(1)Power on reset (POR)

When Vdd rise is detected, POR circuit operates, and AK8963 is reset.

(2)VID monitor

When Vid is turned OFF (0V), AK8963 is reset.

(3)Reset pin (RSTN)

AK8963 is reset by Reset pin. When Reset pin is not used, connect to VID.

(4)Soft reset

AK8963 is reset by setting SRST bit.

When AK8963 is reset, all registers are initialized and AK8963 transits to Power-down mode.

6.3. Operation Modes

AK8963 has following seven operation modes:

(1) Power-down mode

(2) Single measurement mode

(3) Continuous measurement mode 1

(4) Continuous measurement mode 2

(5) External trigger measurement mode

(6) Self-test mode

(7) Fuse ROM access mode

By setting CNTL1 register MODE[3:0] bits, the operation set for each mode is started.

A transition from one mode to another is shown below.

When power is turned ON, AK8963 is in power-down mode. When a specified value is set to MODE[3:0], AK8963 transits to the specified mode and starts operation. When user wants to change operation mode, transit to power-down mode first and then transit to other modes. After power-down mode is set, at least 100m s(Twat) is needed before setting another mode.

Pins of dot circle should be kept non-connected.

Same as AK8963C.

7.2. 4-wire SPI

Pins of dot circle should be kept non-connected.

Same as AK8963C.

8.1. Marking

· Product name: 8963 · Date code: X 1X 2X 3X 4X 5

X 1

= ID X 2 = Year code X 3X 4 = Week code

X 5 = Lot

· Company logo: AKM · Product name: 8963 · Date code: X 1X 2X 3X 4X 5

X 1 = ID

X 2

= Year code X 3X 4 = Week code

X 5

= Lot

8.2. Pin Assignment

D C B A

14 SO 15 TRG 16

VID 8 7 RSV

4

SCL/SK

3 NC

9

RSTN 10 CAD0

11 CAD1

12

CSB

2 6 TST1 DRDY

5

VSS 13

SDA/SI

VDD NC 1

8.3. Outline Dimensions

[mm]

[mm]

±0.05

REF. ±0.10

0.45

8.4. Recommended Foot Print Pattern

[mm]

[mm]

The measurement data increases as the magnetic flux density increases in the arrow directions.

Important Notice

· These products and their specifications are subject to change without notice.

When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

· AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.

· Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.

· AKM products are neither intended nor authorized for use as critical components Note1) in any safety, life support, or other hazard related device or system Note2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

· It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

电子罗盘的工作原理及校准 电子罗盘,电子指南针,android

Android ST集成传感器方案实现电子罗盘功能 电子罗盘是一种重要的导航工具,能实时提供移动物体的航向和姿态。随着半导体工艺的 进步和手机操作系统的发展,集成了越来越多传感器的智能手机变得功能强大,很多手机 上都实现了电子罗盘的功能。而基于电子罗盘的应用(如Android的Skymap)在各个软件 平台上也流行起来。 要实现电子罗盘功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器。随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块LSM303DLH,方便用户在短时间内设计出成本低、性能高的电子罗盘。本文以LSM303DLH为例讨论该器件的工作原理、技术参数和电子罗盘的实现方法。 1. 地磁场和航向角的背景知识 如图1所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是Tesla或者Gauss(1Tesla=10000Gauss)。随着地理位置的不同,通常地磁场的强度是0.4-0.6 Gauss。需要注意的是,磁北极和地理上的北极并不重合,通常他们之间有11度左右的夹角。 图1 地磁场分布图 地磁场是一个矢量,对于一个固定的地点来说,这个矢量可以被分解为两个与当地水平面平行的分量和一个与当地水平面垂直的分量。如果保持电子罗盘和当地的水平面平行,那么罗盘中磁力计的三个轴就和这三个分量对应起来,如图2所示。

图2 地磁场矢量分解示意图 实际上对水平方向的两个分量来说,他们的矢量和总是指向磁北的。罗盘中的航向角(Azimuth)就是当前方向和磁北的夹角。由于罗盘保持水平,只需要用磁力计水平方向两 轴(通常为X轴和Y轴)的检测数据就可以用式1计算出航向角。当罗盘水平旋转的时候,航向角在0?- 360?之间变化。 2.ST集成磁力计和加速计的传感器模块LSM303DLH 2.1 磁力计工作原理 在LSM303DLH中磁力计采用各向异性磁致电阻(Anisotropic Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁 场的强弱变化会导致AMR自身电阻值发生变化。 在制造过程中,将一个强磁场加在AMR上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该AMR的敏感轴,如图3所示。为了使测量结果以线性的方式变化,AMR材料上的金属导线呈45º角倾斜排列,电流从这些导线上流过,如图4所示。由初始的强磁场在AMR材料上建立起来的主磁域和电流的方向有45º的夹角。 图3 AMR材料示意图 图4 45º角排列的导线

电子陀螺仪工作原理【详述】

电子陀螺仪工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电子陀螺仪其实就是机械式陀螺仪的进化,机械式是利用真实的陀螺等机械制作的,而电子是利用芯片来实现陀螺仪的功能,其工作原理类似(电子只不过是模拟出来的而已)。 所有陀螺仪的工作原理是一样的:广泛应用于航海、航空和航天领域,种类很多,其中陀螺罗盘就是代替罗盘的装置。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 最基础的陀螺仪的结构:基础的陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内; 历史: 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转

动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.360docs.net/doc/236316386.html,/subject/zhiliudianliuchuanganqi.html

电子罗盘

电子指南针 指南针 1、概述 指南针是用以判别方位的一种简单仪器。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的南极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。 指南针的发明是我国劳动人民,在长期的实践中对物体磁性认识的结果。由于生产劳动,人们接触了磁铁矿,开始了对磁性质的了解。人们首先发现了磁石引铁的性质。后来又发现了磁石的指向性。经过多方的实验和研究,终于发明了可以实用的指南针。 2、磁偏角与磁倾角 现在人们已经知道,地球的两个磁极和地理的南北极只是接近,并不重合。磁针指向的是地球磁极而不是地理的南北极,这样磁针指的就不是正南、正北方向而略有偏差,这个角度就叫磁偏角。又因为地球近似球形,所以磁针指向磁极时必向下倾斜,和水平方向有一个夹角,这个夹角称为磁倾角。不同地点的磁偏角和磁倾角都不相同。磁偏角和磁倾角的发现使指南针的指向更加准确。

图1. 地球磁场示意图 3、罗盘定位 要确定方向除了指南针之外,还需要有方位盘相配合。最初使用指南针时,可能没有固定的方位盘,随着测方位的需要,出现了磁针和方位盘一体的罗盘 4、电子指南针 指南针是一个重要的导航工具,甚至在G P S中也会用到。电子指南针将替代旧的针式指南针或罗盘指南针,因为电子指南针全采用固态的元件,还可以简单地和其他电子系统接口。 电子指南针系统中磁场传感器的磁阻(M R)技术是最佳的解决方法,和现在很多电子指南针还在使用的磁通量闸门传感器相比较,M R技术不需要绕线圈而且可以用I C生产过程(I C-l i k e p r o c e s s)生产,是一个更值得使用的解决方案。 由于M R有高灵敏度,它甚至比这个应用范围中的霍尔元件更好。

MEMS陀螺仪工作原理

陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。 陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。 角速率由科氏加速度测量结果决定 - 科氏加速度 = 2 × (w ×质量块速度) - w是施加的角速率(w = 2 πf) 通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架 - 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动 该机械系统的结构与加速度计相似(微加工多晶硅) 信号调理(电压转换偏移)采用与加速度计类似的技术 施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。

上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。

PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。 任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。 无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。从而在处理中可以更加方便的处理影像。而POS数据主要包括GPS数据和

IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。 GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。 飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。 IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。 微机电系统(MEMS) IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。 微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。 我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘 HMC5883L都是微机电系统,属于传感MEMS分支。传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。 加速器(G-sensors) 加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。含加速器的产品,可提供有限的运动感测功能。 加速度计的低频特性好,可以测量低速的静态加速度。在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。记住这一点对姿态解算融合理解非常重要。 当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。加速度计在自由落体时,其输出为0。为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。

电子罗盘的方位角计算公式

BY 电子罗盘的方位角计算公式 丙寅电子 Honeywell 在中国区的特级代理。 上海丙寅电子有限公司是美国霍尼韦尔提供软硬件全套解决方案,如需要任何设计与技术方面的支的项目支持经验。 在磁阻传感器应用领域有丰富 上海丙寅电子有限公司 电话:86 021 65072675 传真:86 021 65075878 地址:中国 上海市虹口区四平路188号上海商贸大厦801室 公司主页:http://www.bingyindz.com 邮箱:by07@anotron.com 持可与我们联系,将助您在最短的时间内设计成功。

如何得到罗盘的方位角 磁阻传感器为建立罗盘导航系统提供了固态有效的解决办法!但是我们怎么才能够从简单的3轴数据得到罗盘的方位角呢?下面就将一步步告诉你如何去实现!1)当3轴磁力计工作时可以读到XYZ 三轴的磁场强度,此时的数值并不能直接用作方位角的计算!因为此时的读数可能受到器件版面上其他一些含磁材料的影响,形成圆心坐标的硬铁漂移! 用作方位角计算的XYZ 数值必须将此漂移值移除,使圆心回到原点。 上海丙寅电子上 海丙寅电子上海丙寅电子上海丙寅电子上 海丙寅电子上 海丙寅电子丙寅电子寅电子寅电

具体的办法是:1,水平匀速旋转,收集XY 轴的数据 2,转动器材90度(此时Z 轴水平)匀速旋转以收集Z 轴数据 3,将读取到的各轴数据的最大值加上最小值除以2,就得到一个各轴的offset 值 Xoffset=(Xmax+Xmin )/2 Yoffset=(Ymax+Ymin )/2 Zoffset=(Zmax+Zmin )/24,然后将磁力计读取的各轴的裸值减去前面计算所得的offset 值,就可以得到用作角度计算的Heading 值 X H =X 裸-Xoffset Y H =Y 裸-Yoffset Z H =Z 裸-Zoffset 如果只用作水平测量,则此时的方位角为 方位角=arctanY H /X H 上海丙寅电子 上海丙寅电子 上海丙寅电子 上海丙寅电子上 海丙寅电子上海丙寅电子海丙寅电子海丙寅电子 海丙寅电子

地磁电子罗盘

磁电子罗盘是一种利用地磁场实现定向功能的装置,在移动机器人导航方面有着重要的应用价值。与传统的自主惯性导航设备相比,磁电子罗盘具有体积小、成本低、无累计误差、能够自动寻北等特点。与常规的指针型罗盘相比,磁电子罗盘在抗冲击性、抗震性等方面性能良好。并且能够对杂散磁场进行补偿,输出电信号.可方便地与其他电子设备组成应用系统。 本罗盘设计采用Philips公司的KMZ52磁阻传感器和Microchip公司的PIC16F818单片机。并对罗盘进行详细介绍。 2地磁场 由于地球本身具有磁性。在地球和近地空间之间存在磁场,称为地磁场。地磁场的强度为0.3高斯至0.6高斯,其大小和方向随地点(甚至随时间)而异。地磁场的北极、南极分别在地理南极、北极附近,彼此并不重合,而且两者间的偏差随时间缓慢变化。 本文设计的二维磁电子罗盘用于测量、计算磁场的方位角,并将其转换为电信号传输给移动机器人的控制器。此磁电子罗盘采用磁电阻传感器,移动机器人的控制器接收来自磁电阻传感器信号,此信号均为0 V~5 V模拟量,电压值的变化表现为航向角的不同,并且要求高可靠性和一定精度。 3各向异性磁阻传感器的测量原理 各向异性磁电阻效应是指对于强磁性金属(铁、钴、镍等及其合金),当外加磁场平行于磁场内部磁化方向时,阻值不变;若外界磁场方向偏离时,则其阻值减小;如果把这类金属做成薄膜带状导线,当电流通过时,其阻值大小随内外两磁场的合成磁化方向与电流流向的相对关系变化,趋于同向时阻值增大,背向时阻值减小。由于坡莫(NiFe)合金在弱磁场下的电阻变化率较大,因此适用于弱磁场中。 KMZ52是Philips公司生产的一种磁阻传感器,是利用坡莫合金薄片的磁阻效应测量磁场的高灵敏度磁阻传感器。该磁阻传感器内置两个正交磁敏电阻桥、完整的补偿线圈和设置/复位线圈。补偿线圈的输出与当前测量结果形成闭环反馈,使传感器的灵敏度不受地域限制。这种磁阻传感器主要应用于导航、通用地磁测量和交通检测。该磁阻传感器在金属铝的表面沉积了一定厚度的高磁导率的坡莫合金,在翻转线圈和外界磁场两个力的作用下,电子改变运动方向,使得磁敏电阻的阻值发生变化。同时KMZ52的斑马条电阻成45°放置,这使得电子在正反向磁场力作用下有较好的对称性。由于加入了翻转磁场,KMZ52的变化曲线与普通的磁敏电阻不同,更加线性化。KMZ52磁阻传感器的核心部分是惠斯通电桥,是由4个磁敏感元件组成的磁阻桥臂。磁敏感元件由长而薄的坡莫合金薄膜制成。在外加磁场的作用下,磁阻的变化引起输出电压的变化。 如图1所示,KMZ52磁阻传感器的等效电路,其中,R1~R4的阻值均为R,供电电源为U。在外加偏置磁场H的作用下,R1和R4的磁化方向背向电流方向转动引起阻值减小。而R2和R3的磁化方向朝向电流方向转动,阻值增大△R。计算得:

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

电子陀螺仪原理与构造

MEM陀螺仪传感器产业探究 目录: 一、MEM陀螺仪市场现状................................................. 2. 第一节、MEM主要厂家产品资料汇总 (2) 第二节、MEM在我国的产业现状 (2) 二、MEM陀螺仪介绍.................................................... 3. 第一节、什么是微机械(MEM)? (3) 第二节、微机械陀螺仪(MEMS gyroscope的工作原理 (3) 第三节、微机械陀螺仪的结构......................................... 4. 三、MEM技术的加工工艺................................................. 6. 第一节、体加工工艺.................................................. 6. 第二节、硅表面微机械加工技术....................................... 7. 第三节、结合技术................................................... 7. 第四节、逐次加工.................................................... 8. 第五节、LIGA工艺................................................... 8. 第六节、THEMLA:艺流程........................................... 9. 四、基于DSP的MEM陀螺仪信号处理平台设计 (9) 第一节、MEM陀螺仪信号处理平台的硬件结构 (9) 第二节、MEM陀螺仪信号处理平台系统任务分析....................... 1 0第三节、MEM信号处理平台软件设计方案.. (11) 五、基于GPS的汽车导航系统的设计与实现 (12) 第一节、主体控制方案.............................................. 1.2第二节、GPS定位系统设计 .. (13) 第三节、车体部分MCU主控模块设计................................ 1.4第四节、系统软件设计.............................................. 1.4

电子陀螺仪原理与构造

MEMS陀螺仪传感器产业探究 目录: 一、MEMS陀螺仪市场现状 (2) 第一节、MEMS主要厂家产品资料汇总 (2) 第二节、MEMS在我国的产业现状 (2) 二、MEMS陀螺仪介绍 (3) 第一节、什么是微机械(MEMS)? (3) 第二节、微机械陀螺仪(MEMS gyroscope)的工作原理 (3) 第三节、微机械陀螺仪的结构 (4) 三、MEMS技术的加工工艺 (6) 第一节、体加工工艺 (6) 第二节、硅表面微机械加工技术 (7) 第三节、结合技术 (7) 第四节、逐次加工 (8) 第五节、LIGA工艺 (8) 第六节、THEMLA工艺流程 (9) 四、基于DSP的MEMS陀螺仪信号处理平台设计 (9) 第一节、MEMS陀螺仪信号处理平台的硬件结构 (9) 第二节、MEMS陀螺仪信号处理平台系统任务分析 (10) 第三节、MEMS信号处理平台软件设计方案 (11) 五、基于GPS的汽车导航系统的设计与实现 (12) 第一节、主体控制方案 (12) 第二节、GPS定位系统设计 (13) 第三节、车体部分MCU 主控模块设计 (14) 第四节、系统软件设计 (14)

一、MEMS陀螺仪市场现状 MEMS陀螺仪即微机电系统陀螺仪,是一种微型传感器,主要用于手机及游戏机等领域。与普通芯片相比,除计算功能外,此产品还具有感知功能,通过内置的陀螺仪传感器可以感知外界运动,并做出相应反应。 在具体应用上,MEMS芯片可以用在消费类电子产品上,比如游戏机中的动作控制;可以用在汽车安全领域,在汽车出现紧急情况时及时作出反应;在军事、航海中,陀螺仪被用来导航。 此前全球针对消费电子产品的陀螺仪厂商只有意法半导体(ST)、飞思卡尔半导体(Freescale)两家,深迪半导体(https://www.360docs.net/doc/236316386.html,)成为第三家,打破了国内众多消费电子厂商陀螺仪全部依赖进口的局面。深迪半导体成立于2008年8月,目前在国内还没有竞争对手。 根据著名市场研究顾问机构 Yole Development 的最新预测,MEMS 陀螺仪、加速度计和 IMU 的销售额在2013年将达到45亿美元的规模,在消费类应用市场的年增长率达到了27%,而中国未来将是消费类电子、汽车工业以及其产业链的中心和全球最大的市场。 第一节、MEMS主要厂家产品资料汇总 (1)InvenSense: 网上放出的目前只有2轴的产品,加速度和陀螺仪一体化,号称封装尺寸最小。 2009年,借助任天堂(日本最著名的游戏制作公司)的成功,InvenSense在MEMS市场成长速度位居第一。 (2)ST: ST的产品线比较长,主打3轴。陀螺仪L3G系列和加速度传感器LIS属于两个不同的系列。 (3)EPSON: x,y2轴加速度传感器加单轴陀螺仪。 (4)飞思卡尔: 分的很细,根据加速度分成低/中/高三类,典型应用案例是汽车气囊。没有找到陀螺仪的介绍。应该是以工业产品为主。 (5)村田(Murata) 网上资料很少,最新的也是2009年5月的。提供2款产品,都是单轴陀螺仪。 (6)松下 作为2009年MEMS市场的成长速度名列第二的松下,主要面向车用传感器市场。 第二节、MEMS在我国的产业现状 目前国内已有1688家企事业从事传感器的研制、生产和应用,其中从事MEMS研制生产的只有50多家,其规模和应用领域都较小。在国际市场上,德国、日本、美国、俄罗斯等老牌工业国家的企业主导了传感器市场,许多厂家的生产都实现了规模化,有些企业的年

数字电子罗盘 型号

数字电子罗盘型号:XL49-ZCC212N-TTL-TY1 一.概述 电子罗盘是基于X,Y 两个方向的磁阻传感器测出地球磁场的水平分量,从而得出方位 角。本产品无活动件,耐振动,并具有硬铁校准功能,可以克服 周围硬铁磁场的干扰。工作电压:+5V,功耗低,体积小。以TTL 方式与上位机进行通信,.其输出波特率9600bp/s,为查询输出 方式。 二.产品特点 体积小; 重量轻; 功耗低; 耐振动;三.产品应用 手持式仪器仪表; 机器人导航、定位; 航行系统; 船用自动; 天线定位; 车载GPS 导航; 航模定四.技术参数表:

三.产品应用 手持式仪器仪表; 机器人导航、定位; 航行系统; 船用自动舵; 天线定位; 车载GPS 导航; 航模定向。 四.技术参数表: 测量范围;0°\u65374X 360° 分辨率:1 精度:<5 响应频率:5 重复性:<1 电压:5+(-)0.1V 工作电流:<30 工作温度:-40 ~+ 85 外形尺寸:22 * 25.4 * 11.5

五.通讯协议:(数据输出为ASC11 码): 1、输出协议: 每组方位数据共11 个字节,内容如下: Byte1:$[0x24] Byte2:H[0x48] Byte3:,[0x2C] Byte4:角度值的百位 Byte5:角度值的十位 Byte6:角度值的个位 Byte7:*[0x2A] Byte8:校验第一位 Byte9:校验第二位 Byte10:回车[0x0d] Byte11:换行[0x0a] 如: $H,211*30 注: 单字节传送每帧的格式为:1 位起始位,8 位数据位,1 位结束位2、用户指令:

微机械陀螺仪的工作原理及其应用

本文详细介绍了意法半导体公司的电容式微机械陀螺仪的基本工作原理,其采用对称双质量块结构,驱动质量块由静电力驱动产生可控的运动速度,而检测质量块则由哥氏力推动运动。振荡驱动电路采用了双闭环的控制结构,有效地减小了温度或其它缺陷对振幅的影响,显著提高了陀螺仪的分辨率和稳定性。最后,以单轴偏航陀螺仪LY530AL为例,详细介绍其关键参数及其应用,并配合三轴加速度传感器LIS3LV02DL,实现了新型无线遥控器和鼠标,验证了LY530AL的性能参数。 微机械陀螺仪 陀螺仪又称角速度计可以用来检测旋转的角速度和角度。正如我们所熟知,传统的机械式陀螺、精密光纤陀螺和激光陀螺等已经在航空、航天或其它军事领域得到了广泛地应用。然而,这些陀螺仪由于成本太高和体积太大而不适合应用于消费电子中。微机械陀螺仪由于内部无需集成旋转部件,而是通过一个由硅制成的振动的微机械部件来检测角速度,因此微机械陀螺仪非常容易小型化和批量生产,具有成本低和体积小等特点。近年来,微机械陀螺仪在很多应用中受到密切地关注,例如,陀螺仪配合微机械加速度传感器用于惯性导航、在数码相机中用于稳定图像、用于电脑的无线惯性鼠标等等[1]。 微机械工艺的发展和成熟,使得微机械陀螺仪在消费电子中的广泛应用成为可能,并且已有相应的产品面世,如罗技的空中鼠标。这些都使业界相信微机械陀螺仪很快就会成为继微机械加速计之后用于动作感测的另一重要元件。鉴于此,意法半导体公司基于其先进的Thelma工艺先后开发并量产了超小型单轴偏航陀螺仪LISY300AL和LY530AL。LY530AL具有两种接口:模拟和数字接口,提高了设计的灵活性,简化了设计难度,可测角速率达到±300度/秒。本文以LY530AL为例讨论意法半导体微机械陀螺仪的工作原理及其应用。

陀螺仪(gyroscope)原理

内容 MID中的传感器 1 加速计 2 陀螺仪 3 地磁传感器 4

MID中的传感器——已商用的传感器 ◆触摸屏 ◆摄像头 ◆麦克风(ST:MEMS microphones……) ◆光线传感器 ◆温度传感器 ◆近距离传感器 ◆压力传感器(ALPS:MEMS气压传感器……) ◆陀螺仪(MEMS) ◆加速度传感器(MEMS) ◆地磁传感器(MEMS)

集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。 微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。 微机电系统(Micro Electro Mechanical Systems,MEMS)MEMS = 集成电路+ 微机械

陀螺仪(Gyroscope) ?测量角速度 ?可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑)加速度传感器(Accelerometer) ?测量线加速度 ?可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) ?测量磁场强度 ?可用于电子罗盘、GPS导航

陀螺仪+加速计+地磁传感器 ?电子稳像(EIS: Electronic Image Stabilization)?光学稳像(OIS: Optical Image Stabilization)?“零触控”手势用户接口 ?行人导航器 ?运动感测游戏 ?现实增强

1、陀螺仪(角速度传感器)厂商: 欧美:ADI、ST、VTI、Invensense、sensordynamics、sensonor 日本:EPSON、Panasonic、MuRata、konix 、Fujitsu、konix、SSS 国产:深迪 2、加速度传感器(G-sensor)厂商: 欧美:ADI、Freescale、ST、VTI、Invensense、Sensordynamics、Silicon Designs 日本:konix、Bosch、MSI、Panasonic、北陆电气 国产:MEMSIC(总部在美国) 3、地磁传感器(电子罗盘)厂商: 欧美:ADI、Honeywell 日本:aichi、alps、AsahiKASEI、Yamaha 国产:MEMSIC(总部在美国)

电子罗盘的工作原理及校准

ST集成传感器方案实现电子罗盘功能 电子罗盘是一种重要的导航工具,能实时提供移动物体的航向和姿态。随着半导体工艺的 进步和手机操作系统的发展,集成了越来越多传感器的智能手机变得功能强大,很多手机上都实现了电子罗盘的功能。而基于电子罗盘的应用(如Android的Skymap)在各个软 件平台上也流行起来。 要实现电子罗盘功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块LSM303DLH,方便用户在短时间内设计出成本低、性能高的电子罗盘。本文以LSM303DLH为例讨论该器件的工作原理、技术参数和电子罗盘的实现方法。 1. 地磁场和航向角的背景知识 如图1所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是T esla或者Gauss(1T esla=10000Gauss)。随着地理位置的不同,通常地磁场的强度是0.4-0.6 Gauss。需要注意的是,磁北极和地理上的北极并不重合,通常他们之间有11度左右的夹角。 图1 地磁场分布图 地磁场是一个矢量,对于一个固定的地点来说,这个矢量可以被分解为两个与当地水平面平行的分量和一个与当地水平面垂直的分量。如果保持电子罗盘和当地的水平面平行那么罗盘中磁力计的三个轴就和这三个分量对应起来,如图2所示。

图2 地磁场矢量分解示意图 实际上对水平方向的两个分量来说,他们的矢量和总是指向磁北的。罗盘中的航向角(Azimuth)就是当前方向和磁北的夹角。由于罗盘保持水平,只需要用磁力计水平方向两轴(通常为X轴和Y轴)的检测数据就可以用式1计算出航向角。当罗盘水平旋转的时候,航向角在0?-360?之间变化。 2.ST集成磁力计和加速计的传感器模块LSM303DLH 2.1 磁力计工作原理 在LSM303DLH中磁力计采用各向异性磁致电阻(Anisotropic Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁场的强弱变化会导致AMR自身电阻值发生变化。 在制造过程中,将一个强磁场加在AMR上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该AMR的敏感轴,如图3所示。为了使测量结果以线性的方式变化,AMR材料上的金属导线呈45º角倾斜排列,电流从这些导线上流过,如图4所示。由初始的强磁场在AMR材料上建立起来的主磁域和电流的方向有45º的夹角。 图3 AMR材料示意图

陀螺仪”和“加速度计”工作原理

陀螺仪”和“加速度计”工作原理 2016-09-17 16:14:40 作者:没有夏天的四叶草修改:小马hoty 时间:2016/1/10 最近看到加速度计和陀螺仪比较火,而且也有很多人都在研究。于是也在网上淘了一个mpu6050模块,想用来做自平衡小车。可是使用起来就发愁了。网上关于mpu6050的资料的确不少,但是大家都是互相抄袭,然后贴出一段程序,看完之后还是不知道所以然。经过翻阅各个方面的资料,以及自己的研究在处理mpu6050数据方面有一些心得,在这里和大家分享一下。 1、加速度和陀螺仪原理 当然,在开始之前至少要弄懂什么是加速度计,什么是陀螺仪吧,否则那后边讲的都是没有意义的。简单的说,加速度计主要是测量物体运动的加速度,陀螺仪主要测量物体转动的角速度。这些理论的知识我就不多说了,都可以在网上查到。这里推荐一篇讲的比较详细的文章《AGuide To using IMU (Accelerometer and Gyroscope Devices) inEmbeddedApplications》,在网上可以直接搜索到。 2、加速度测量 在开始之前,不知大家是否还记得加速度具有合成定理?如果不记得可以先大概了解一下,其实简单的举个例子来说就是重力加速度可以理

解成是由x,y,z三个方向的加速度共同作用的结果。反过来说就是重力加速度可以分解成x,y,z三个方向的加速度。 加速度计可以测量某一时刻x,y,z三个方向的加速度值。而自平衡小车利用加速度计测出重力加速度在x,y,z轴的分量,然后利用各个方向的分量与重力加速度的比值来计算出小车大致的倾角。其实在自平衡小车上非静止的时候,加速度计测出的结果并不是非常精确。因为大家在高中物理的时候都学过,物体时刻都会受到地球的万有引力作用产生一个向下的重力加速度,而小车在动态时,受电机的作用肯定有一个前进或者后退方向的作用力,而加速度计测出的结果是,重力加速度与小车运动加速度合成得到一个总的加速度在三个方向上的分量。 不过我们暂时不考虑电机作用产生的运动加速度对测量结果的影响。因为我们要先把复杂的事情分解成一个个简单的事情来分析,这样才能看到成果,才会有信心继续。 下边我们就开始分析从加速度得到角度的方法。如下图,把加速度 计平放,分别画出xyz轴的方向。这三个轴就是我们后边分析所要用到的坐标系。如图一

陀螺仪原理

英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(退化为平衡棒)仿生得来。 在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。 陀螺仪 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。 现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 早于874年,中国陕西省法门寺供奉佛指舍利的贡品中,曾出现过用陀螺仪制作的香囊1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。

相关文档
最新文档