1999Apatite fission track dating of fluorite ore veins from Santa Catarina state

1999Apatite fission track dating of fluorite ore veins from Santa Catarina state
1999Apatite fission track dating of fluorite ore veins from Santa Catarina state

Apatite ?ssion track dating of ˉuorite ore veins from Santa Catarina state,Brazil:a complex hydrothermal evolution

A.R.Jelinek a,*,A.C.Bastos Neto a ,M.L.V.Lelarge b ,E.Soliani Jr a

a

Centro de Estudos em Petrologia e Geoqu??m ica,Universidade Federal do Rio Grande do Sul,Brazil

b

Instituto de Geocie ?ncias,Universidade Federal do Rio Grande do Sul,Brazil

Abstract

The ˉuorite of Santa Catarina that occurs in veins cutting Precambrian granitic rocks of coastal Brazil has been di cult to date by Rb/Sr,K/Ar and Sm/Nd methods.New ?ssion track dating of apatite in granites next to the veins yields ages of 144±76Ma,which are related to the opening of the South Atlantic Ocean.Four groups of ?ssion track ages were identi?ed:the ca 145Ma group is a hydrothermal event that preceded ˉuorite mineralization;the second group of ages,131±107Ma,records the ?rst hydrothermal mineralizing event;the third group,98±93Ma,represents the second hydrothermal mineralizing event;and the fourth group,89±76Ma,dates the last hydrothermal mineralizing event.As shown by previous studies,the temperatures of these events varied from 1708to 708C,but the last hydrothermal event occurred during a gradual cooling.The smaller lengths of the con?ned ?ssion tracks from the fourth event support this interpretation.These results are based on sixteen carefully selected samples from four veins ranging from 1to 4m in thickness.The ages of these samples were established using the standard methods of ?ssion track dating.Our study clearly demonstrates the value of apatite ?ssion track dating for deposits whose mineralization occurred over a long time span at a wide range of temperatures.#1999Elsevier Science Ltd.All rights reserved.

1.Introduction

Most of the present ˉuorite production of Brazil originates from the Santa Catarina Fluorite District (SCFD)in southern Brazil (Fig.1).Total ˉuorite reserves in the SCFD are estimated at about 5.5Mt of ore of a grade of 40%CaF 2.

These low temperature ˉuorite hydrothermal vein deposits are hosted by ``Brasiliano''granites (about 0.6Ga).These veins also cut the diabase of the Serra Geral Formation and thus are clearly less than 133Ma (Renne et al.,1992).These veins have been related to the South Atlantic opening but with two di erent interpretations;one interpretation genetically links them with alkaline magmatism (Willig,1973;Horbach and Marimon,1980;Morgental,1984)and the other

more recent idea links them to the leaching of ˉuorine from granites by hydrothermal activity connected to geothermal anomalies and regional uplift (Savi,1980;Dardenne and Savi,1984;Dardenne and Touray,1988).

It is now recognized that ˉuorite deposition is re-lated to three successive hydrothermal events of which the last one,with distinct physical±chemical con-ditions,could be very late.Wall-rock alteration data (Bastos Neto et al.,1997)attests to the complex hy-drothermal evolution of ˉuorite in the SCFD,but also demonstrates the existence of hydrothermal events prior to ˉuorite deposition as well as post-ˉuorite de-position from supergene processes that a ected the hydrothermally alternated wall-rock of the veins.

Unfortunately,neither model provides su cient geo-logical constraints to estimate the age of the ˉuorite veins.For example,ages of ca 133Ma by K/Ar method (Sonoki and Garda,1988)and ages of 138±90Ma by apatite ?ssion track (Baitelli,1992)were

Journal of South American Earth Sciences 12(1999)367±377

0895-9811/99/$-see front matter #1999Elsevier Science Ltd.All rights reserved.PII:S 0895-9811(99)00028-

*Corresponding author.Tel.:+55-051-316-6369;fax:+55-051-319-1811.

E-mail address:jelinek@if.ufrgs.br (A.R.Jelinek).

obtained for the Anita

polis magmatism,but the mag-matism at Lages has been dated by Scheibe (1986)at ca 70Ma using K/Ar.These conˉicting ages may be the result of the anomalous evolution of the passive continental margin (Asmus,1984)between

Floriano

polis and Rio de Janeiro lineaments (Fig.1),which has known tectonic reactivations and is still somewhat seismically active.Some local hydrothermal activity also occurs even today.Thus,any age between 133Ma and a very late age could be assigned to the hydrothermal ore veins.In addition,the complex evol-ution of the ˉuorite deposits explains the di culties in using K/Ar (Teixeira,1969;Santos and Bonhomme,1993)and Rb/Sr methods (Tassinari and Flores,

1992)

Fig.1.Main physiographical elements of the southeastern Brazil continental margin,modi?ed after Asmus (1984)and Melo et al.(1985)and the

location of the Santa Catarina Fluorite District (SCFD).1:Coastal deposits;2:Tertiary basins;3:Serra Geral Formation;4:Parana

Basin sedi-mentary rocks;5:Ribeira fold belt;6:alkaline massives;7:Isopachs (km);8:lineaments;A:Ponta Grossa dome alkaline province;B:Serra do

Mar alkaline province;C:Lages alkaline complex;D:Anita

polis alkaline massive;Pg:Ponta Grossa dome;T:Torres syncline.A.R.Jelinek et al./Journal of South American Earth Sciences 12(1999)367±377

368

on hydrothermally altered wall rock in an attempt to date the ore veins;the ages obtained by these methods range from between 450and 30Ma.Earlier appli-cation of the Sm/Nd method on ˉuorite gave values of 150245Ma (Tassinari and Flores,1992),values too imprecise to be helpful.Because of this wide impreci-sion,we have used the apatite ?ssion track method as an alternative,which is capable of dating successive thermal events,of ``excluding''thermal events with temperatures incompatible with the ˉuorite deposition conditions between 1708and 1008C (both over and below),and of dating a later hydrothermal event that could possibly be relatively recent.To our knowledge,this is the ?rst time ?ssion track dating has

been

Fig.2.Geological map of the Segunda Linha Torrens vein system.1:alluvial deposits;2:Serra Geral Formation;3:Rio Bonito Formation;4:Rio do Sul Formation;5:sub-volcanic acidic rocks;6:granitic basement;7:ˉuorite vein;8:nonmineralized fault;9:diabase dyke;10:quartz dyke;11:working mine;12:inactive mine.

A.R.Jelinek et al./Journal of South American Earth Sciences 12(1999)367±377369

employed to date a hydrothermal ore vein deposit with a complex history.

2.Geology of the Santa Catarina ˉuorite district 2.1.Pedras Grandes granitic suite

Most ˉuorite ore veins are hosted by the Pedras Grandes granitic suite which is composed predomi-nantly of monzogranites.These monzogranites have a medium to coarse grained inequigranular texture.Potassic feldspar forms the dominant phase of the rock,followed by plagioclase,quartz and biotite.Titanate,epidote,opaque minerals,apatite and zircon form its magmatic accessory phases.The volumetri-cally large secondary assemblage consists of epidote,sericite,chlorite,opaque minerals,ˉuorite and carbon-ate.

Prior to ˉuorite deposition,the Pedras Grandes granite was a ected by earlier hydrothermal activities recognized in the district and related to the cooling of the Southern Santa Catarina granitic batholith.These hydrothermal activities are responsible for potassic (biotite+microcline),white mica,and propylitic altera-tions that occur throughout the district.During these processes,a signi?cant amount of ˉuorine was removed from the silicates and redeposited as acces-sory secondary ˉuorite in the granites.Close to the ore veins the propylitic alteration was more intense;for example,a chlorite±quartz±titanate±ˉuorite paragen-esis has entirely replaced primary and secondary bio-tite,formed during potassic alteration.The propylitized rocks have been partially silici?ed and are cross-cut by two generations of quartz-rich micro?s-sures.

2.2.Fluorite ore veins:tectonic control and geochemistry

The ˉuorite deposits in the district occur in veins that are controlled by well de?ned lineaments,chieˉy the Canela Grande which is about 150km long and 2km wide and extends from the southern part of the

district to the north of the Anita

polis alkaline intru-sion (Fig.1).The Canela Grande lineament is chieˉy de?ned by many closely spaced N±S to NNE±SSW faults (Fig.2).In the Segunda Linha Torrens veins system (Fig.2),the ˉuorite veins are located along a main structure,the Segunda Linha Torrens fault,and

in secondary structures as the Cocal,Aqua

rio and Fumac a ore veins.

Four tectonic phases were recognizable (Table 1)as responsible for the opening of the vein structures,with alternating compressional and tensional regimes.During the tectonic phases 1,2and 3,six ˉuorite gen-

T a b l e 1S y n t h e t i c p r e s e n t a t i o n o f m i n i n g d a t a w i t h a b r i e f d e s c r i p t i o n o f h y d r o t h e r m a l a s s o c i a t i o n s i n a l t e r e d w a l l -r o c k s o f ˉu o r i t e v e i n f r o m S a n t a C a t a r i n a F l u o r i t e D i s t r i c t (S C F D )a

O r e

T e c t o n i c p h a s e s

G e n e r a t i o n s P a r a g e n e s i s

T e x t u r e s

L a /Y b L a /S m W a l l -r o c k a l t e r a t i o n b

C o m p r e s s i o n N E ±S W (1)I C h a l c e d o n y ,g r e e n a n d v i o l e t ˉu o r i t e ,s i d e r i t e M a s s i v e

4.61

2.83S i l i c i ?c a t i o n C /S

I I

G r e e n a n d v i o l e t ˉu o r i t e ,c h a l c e d o n y ,s i d e r i t e

0.921.19

E x t e n s i o n N W ±S E (2)

I I I G r e e n a n d v i o l e t ˉu o r i t e ,c h a l c e d o n y B a n d e d ,``c o c a r d e ''a n d c o l l a p s e b r e c c i a m a r k e d v e r t i c a l z o n a t i o n 0.580.80I /S R 3I ±L C M s e r i e

I V

Y e l l o w ˉu o r i t e ,c h a l c e d o n y

0.36

0.47

C o m p r e s s i o n N E ±S W (3)V G r e e n ˉu o r i t e M a s s i v e

1.331.87I /S R 1I ±H C M s e r i e

V I

Y e l l o w ˉu o r i t e

0.36

0.84

E x t e n s i o n N W ±S E (4)

V I I W h i t e ˉu o r i t e ,c h a l c e d o n y ,b a r i t e B a n d e d ,``c o c a r d e ''a n d c o l l a p s e b r e c c i a m a r k e d v e r t i c a l z o n a t i o n 0.721.19I /S R 0I ±L C M s e r i e

V I I I Y e l l o w ˉu o r i t e ,c h a l c e d o n y ,b a r y t e ,p y r i t e ,I /S 0.470.92I X

W h i t e ˉu o r i t e ,c h a l c e d o n y ,p y r i t e ,b a r i t e ,s m e c t i t e 0.42

0.59

a

F o u r t e c t o n i c p h a s e s w e r e r e c o g n i z e d ,r e s p o n s i b l e f o r t h e o p e n i n g o f t h e v e i n s t r u c t u r e s ,a l t e r n a t i n g c o m p r e s s i o n a n d t e n s i o n r e g i m e s .T h e d e p o s i t i o n o f s i x ˉu o r i t e g e n e r a t i o n s I a n d I I ;I I I a n d I V ;V a n d V I h a p p e n e d d u r i n g t e c t o n i c p h a s e s 1,2a n d 3,r e s p e c t i v e l y .D u r i n g t e c t o n i c p h a s e 4,g e n e r a t i o n s V I I ,V I I I a n d I X w e r e d e p o s i t e d .b I /S :i n t e r l a y e r e d i l l i t e /s m e c t i t e ;C /S :i n t e r l a y e r e d c h l o r i t e /s m e c t i t e ;I ±L C M :i l l i t e ±l o w c h a r g e m o n t m o r i l l o n i t e ;I ±H C M :i l l i t e ±h i g h c h a r g e m o n t m o r i l l o n i t e ;R (R e i c h w e i t e ):o r d e r f a c t o r .

A.R.Jelinek et al./Journal of South American Earth Sciences 12(1999)367±377

370

erations were deposited(I and II;III and IV;V and VI;respectively).During tectonic phase4,ˉuorite gen-erations VII,VIII,and IX were deposited(Table1). These nine generations ofˉuorite have been studied for their rare earth elements(REE)andˉuid inclusions (Dardenne and Savi,1984;Bastos Neto et al.,1991). Three successive hydrothermal cycles have been ident-i?ed,each with di erent REE patterns(La/Sm and La/Yb).These three hydrothermal cycles formedˉuor-ite vein generations I±IV,V±VI,and VII±IX,respect-ively.Fluorite veins associated with the third hydrothermal cycle(generations VII±IX)have positive Eu anomalies and signi?cant dispersal of their REE patterns.Almost constant ratios of heavy REE(for example,Yb/Tb near5)of the di erent nine gener-ations ofˉuorite suggest a common source of theˉu-orine for all generations.The homogenization temperatures of the primary aqueous phase inˉuorite range from1708to1008C.Each hydrothermal cycle has a progressively lower homogenization temperature. The homogenization temperature of the primaryˉuor-iteˉuid inclusions is assigned to a relatively shallower deposition in respect to older generations(Bastos Neto et al.,1991).

The systematic determination of87Sr/86Sr has accu-rately identi?ed theˉuorine of the ore veins as having been derived from accessoryˉuorite in the enclosing granites(Sallet et al.,1996;Rocha,1997).Thisˉuorine is believed to have been leached by meteoric water involved in convective hydrothermal calls based on the D/H isotopic composition of water from theˉuorite ˉuid inclusions in the ore veins(Bastos Neto et al., 1996).

2.3.Wall-rock alteration

Wall-rock alterations were promoted by the hydro-thermal mineralizing events.The host rock has been pervasively alternated by the F-bearing hydrothermal solutions.This alteration is as wide as8m and gradu-ally increases in intensity towards the ore veins.A greenish,?ne-grained mass of illite/smectite,chlorite/ smectite,smectite,quartz,andˉuorite has replaced most primary minerals and propylitic minerals such as epidote,chlorite,and secondary titanate.Primary F-apatite and much of the zircon were not a ected by these low temperature alterations,even very close to the ore veins.

Four successiveˉuorite-rich micro?ssures and gener-ations of breccia associated with these low temperature hydrothermal alterations have been distinguished. Their chronological relations and?llings may be dis-tinguished at intermediate distances from the ore vein; however,close to the ore vein these phases are di cult to distinguish.The paragenesis of these micro?ssures and breccias are:(1)quartz+ˉuorite+chlorite/smectite;(2)illite-low charge montmorillonite+ˉuorite+pyrite;(3)illite-high charge montmorillo-nite+ˉuorite+pyrite;(4)R0montmorillonite+ˉuorite+barite+quartz+pyrite.Microchemistry and X-di ractometry of secondary paragenesis(associated with microfracturing or pervasive alterations)indicate thatˉuorite deposition was related to three hydrother-mal episodes(Bastos Neto et al.,1997).

In summary,four hydrothermal alteration processes occurred in the district prior toˉuorite ore vein depo-sition.They were(1)potassic,(2)white mica,(3)pro-pylitic alterations,all of which occur throughout the district and are related to the cooling of the granitic batholith,and(4)silici?cation recognized only in the wall-rock of the ore veins.The low-temperatureˉuor-ite ore veins were deposited by three successive hydro-thermal events inferred from REE andˉuid inclusion studies.The hydrothermal alterations of the wall-rock hosting of theˉuorite veins agree with this complex hydrothermal evolution.

3.Apatite Fission Tracks Analysis(AFTA)

3.1.Sampling

Several geological factors were considered in select-ing the area within theˉuorite district to be sampled and the veins within it.These factors include mini-mizing the e ects of possible di erential uplift within the district(which might complicate AFTA age in-terpretation),making certain that the relative ages of each vein sampled are well established,and making certain that the sampled veins represent all four tec-tonic phases.We minimized the impact of di erential uplift within the base by sampling only one tectonic block.

With these factors in mind,we sampled the Segunda Linha Torrens vein system.Within this system the Segunda Linha Torrens,Cocal,Fumac a and Aqua rio veins were selected(Fig.2).All of these veins are re-lated to the Segunda Linha Torrens fault,which is a large fault older thanˉuorite mineralization(Bastos Neto,1990).The earliestˉuorite deposition(gener-ation I,see Table1)took place within this fault on a ?rst phase of reactivation;laterˉuorite deposition also took place during subsequent phases of reactivation. Samples from the Segunda Linha Torrens vein all come from Mina2and from its``southern lens''where micro?ssures and associated alteration on the wall-rock were previously studied by Bastos Neto et al. (1997).The Cocal vein,which is related to a dextral strike slip fault,was sampled because it is believed that this fault was formed and opened during tectonic phase1(Bastos Neto et al.,1992)and only represents generation II.The Fumac a and the Aqua rioˉuorite

A.R.Jelinek et al./Journal of South American Earth Sciences12(1999)367±377371

T a b l e 2A p a t i t e ?s s i o n t r a c k a g e s a n d c o n ?n e d l e n g t h d a t a f r o m P e d r a s G r a n d e s g r a n i t e o f t h e S e g u n d a L i n h a T o r r e n s v e i n s y s t e m a

S a m p l e (V e i n /L o c a t i o n )

A l t i t u d e /d e p t h (m )n r s

(N S )(?105c m à2)

r i

(N i )(?105c m à2)

r d

(N d )(?104c m à2)z 962W /963T 2s (M a )P (w 2)N t M e a n t r a c k l e n g t h 21s (m m )S D (m m )

G r o u p 1:P r e -m i n e r a l i z a t i o n h y d r o t h e r m a l e v e n t S u r f a c e 23040.525(21)0.475(19)36.697(22711)38428W

146.6239.9F a i l 58.3221.753.92S L T D1à230.7

15

0.426(64)

0.520(78)36.697(22711)38428W 143.829.9

F a i l

25

8.7320.52

2.59

G r o u p 2:F i r s t h y d r o t h e r m a l m i n e r a l i z i n g e v e n t S L T D3à18040.300(12)0.125(5)0.9365(1765)113582264130.726.8P a s s 278.9120.733.82S L T D2à180160.562(90)0.700(112)0.9365(1765)113582264121.328.0F a i l 208.3620.753.88C o c a l D22550.400(20)0.240(12)36.697(22711)38428W

120.4244.0P a s s 148.3920.662.46C o c a l D4à175410.714(293)0.512(210)0.9365(1765)113582264116.423.9F a i l 2610.6820.794.05F u m a c a 45.380.425(34)0.725(58)36.697(22711)38428W

109.9213.9F a i l 178.6620.793.27A q u a r i o D3à226.4220.313(69)2.368(521)36.697(22711)38428W

107.925.3F a i l 438.0320.422.74A q u a

r i o D1157.3

35

1.160

(409)

1.448

(496)0.9365(1765)113582264

107.023.9

F a i l

8

10.2821.02

2.87

G r o u p 3:S e c o n d h y d r o t h e r m a l m i n e r a l i z i n g e v e n t

C o c a l D1à175310.451(140)0.677(210)0.9365(1765)11358226498.323.9F a i l 578.7820.503.79C o c a l D1?

à175300.630(189)0.690(207)36.697(22711)354213W

92.924.6F a i l ±±±C o c a l D325290.565(164)1.296(376)0.9365(1765)11358226497.224.0F a i l 2510.6120.753.77A q u a

r i o D4à31.5

24

0.833

(200)

1.296

(253)0.9365(1765)113582264

96.324.5

F a i l

17

10.7021.04

4.28

G r o u p 4:T h i r d h y d r o t h e r m a l m i n e r a l i z i n g e v e n t

A q u a r i o D212110.318(35)0.600(66)36.697(22711)38428W

89.028.2F a i l 146.2420.802.99S L T D4à180230.630(145)1.156(266)0.9365(1765)11358226488.024.0F a i l 139.8820.843.03C o c a l D5à108.5300.486(146)0.580(174)0.9365(1765)11358226485.823.5F a i l 139.9521.023.68C o c a l D6

à7539

0.638(249)

0.456(178)0.9365

(1765)11358226476.527.9

P a s s

23

7.1420.53

2.55

a

n =n u m b e r o f c r y s t a l s c o u n t e d ;r s =s p o n t a n e o u s t r a c k d e n s i t y o f a s a m p l e ;N S n u m b e r o f t r a c k s c o u n t e d t o d e t e r m i n e d r s ;r i i n d u c e d t r a c k d e n s i t y o f a s a m p l e m e a s u r e d i n a K a p t o n e x t e r -n a l d e t e c t o r ;N i =n u m b e r o f t r a c k s c o u n t e d t o d e t e r m i n e d r i ;r d =i n d u c e d t r a c k d e n s i t y o f a g l a s s d o s i m e t e r S R M 962o r 963m e a s u r e d i n a K a p t o n e x t e r n a l d e t e c t o r ;N d =n u m b e r o f t r a c k s c o u n t e d t o d e t e r m i n e d r d ;T =a p a t i t e ?s s i o n t r a c k a g e w i t h a 1s t a n d a r d e r r o r ;P (w 2)=p r o b a b i l i t y o f o b t a i n i n g t h e o b s e r v e d w 2v a l u e f o r n d e g r e e s o f f r e e d o m w h e r e n =n u m b e r o f c r y s t a l s à1;z 962W /963=c a l i b r a t i o n f a c t o r u s e d f o r a p a t i t e ?s s i o n t r a c k a g e c a l i b r a t i o n f o r N B S d o s i m e t e r g l a s s 962a n d 963d e t e r m i n e d b y m u l t i p l e a n a l y s i s o f D u r a n g o s t a n d a r d .W o r k e r s :A .J e l i n e k ;?M .L .L e l a r g e .T h e 2p /4p g e o m e t r y c o r r e c t i o n f a c t o r i s 0.51a n d 0.50f o r t h e d i e r e n t o b s e r v a t o r s r e s p e c t i v e l y ;N t =n u m b e r o f c o n ?n e d t r a c k s m e a s u r e d ;S D =s t a n d a r d d e v i a t i o n o f t h e d i s t r i b u t i o n ;s u r f a c e c o u n t e d :10.000m m 2.S L T =S e g u n d a L i n h a T o r r e n s .

A.R.Jelinek et al./Journal of South American Earth Sciences 12(1999)367±377

372

veins are secondary tensional structures of the Segunda Linha Torrens vein system,related to the tec-tonic phase1.Onlyˉuorite generations II,VII,VIII and IX are present at the Fumac a ore vein.At the Aqua rio vein,several generations are present but gen-eration II predominates.Most samples were collected from underground mines but?ve samples came from the drill core.None of these samples are more than 2m from theˉuorite ore vein.In addition,a granite control sample was collected more than1km from the ore veins.All samples were carried out on the Pedras Grandes granitic suite.

3.2.Analytical procedure

Sample analysis was done at the Fission Track Analysis Laboratory of the IG-UFRGS.The granite samples were crushed and ground to a grain size of 80±125mm and the apatites were separated with the aid of heavy liquids and a Frantz magnetic separator. The apatites were mounted in epoxy resin,polished to expose internal surfaces,etched,and covered with Kapton1?ssion track detector(external detector method,cf.Gleadow,1981).The etching conditions were80s in1M HNO3at208C for apatite and8min in boiling in NaOCl(14%)+NaCl(12%)for Kapton1.The observations were made in transmitted light using a100?immersion oil objective at a total magni?cation of1250?.Track counting and track length measurements were performed with an Olympus biological microscope,a drawing tube and a digitizing table linked to a microcomputer.All samples were irradiated in a24B facility of the Instituto de Pesquisas Energe ticas e Nucleares(IPEN-CNEN)reac-tor at Sa o Paulo(Brazil).The spatialˉux variation of this reactor was studied for?ssion track dating by Bigazzi et al.(1988)and Osorio et al.(1993)and no substantial neutronˉux variation was detected.The ˉux gradient was monitored using SRM-963and SRM-962glass dosimeters interspersed among samples.All?ssion track ages were calculated using the zeta calibration approach(Hurford and Green, 1983).The Durango apatite age standard was used to determine zeta calibration factors for the two dosi-meter glasses,and zeta values are given in Table2. The w2test was applied to evaluate the spread in the single grain ages(Galbraith,1981).The?ssion track ages and errors of samples that passed the w2test were calculated using the conventional technique of Green (1981),and ages and error estimates for those analyses that failed the w2test were calculated using the mean ratios.Lengths of con?ned?ssion tracks were measured following the recommendations of Laslett et al.(1982).Track lengths were measured using con-?ned fossil?ssion track.Only horizontal tracks were measured in grains with polished surfaces parallel to a prismatic surface.The analytical results were sum-marized in Table 2.All apatites analyzed in this study were F-rich,as shown by microprobe analysis.

4.Results and discussion

Our results allow us to distinguish an older patient AFT age group(Table2,pre-mineralization hydro-thermal event).It is de?ned by ages of147240Ma and144210Ma and includes the control sample and one sample from Segunda Linha Torrens ore vein.Their standard deviations correspond to an ana-lytical indetermination uncertainty related to scarcity of the few number of grains and tracks.The mean track length of these samples is about8±9m m,in-dicative of a thermal event,with a component of small con?ned track length in spite of the reduced number of track counts(Fig.3a).It is important to note that the older age(144Ma)was only obtained on the Segunda Linha Torrens ore vein,which is con-trolled by an older structure.Hydrothermal alteration temperature of Segunda Linha Torrens wall-rock, including post-propylitic alteration(the propylitic alteration temperature is around2508C,i.e.,higher than the retention temperature of apatite?ssion tracks)and prior toˉuorite deposition,would prob-ably correspond to this age.This event is correlated to the pre-rifting thermal dome on the continental margin(Asmus,1984).

A Rb/Sr(whole rock)age of18527Ma was obtained by Tassinari and Flores(1992)on alternated granitic wall-rocks from the Fumac a ore vein and attributed to the hydrothermal mineralizing event. Based on both the dating of the apatites and measure-ments of con?ned track length,this age might correlate with the beginning of the thermal event associated with the pre-rift stage.The?ssion track ages registered a thermal event at145Ma due to the lower retention temperature ofˉuorine-apatite?ssion tracks,expected to be completely annealed at temperatures of H1108C (Gallagher et al.,1994)for time-scales of1±100Ma. In spite of this temperature being compatible with ˉuorite deposition,the ore vein formation cannot be correlated with the end of this thermal event because, as mentioned by previous authors(Savi,1980; Dardenne and Savi,1984;Morgental,1984),ˉuorite ore veins cross-cut the Serra Geral Formation NW±SE diabase dykes.Consequently,ˉuorite ages are equal or younger than133Ma.

The other ages are distributed in a great time inter-val(131±76Ma).This high span observed on?ssion track ages obtained on apatite hosted in granites, assigned to hydrothermal events,apparently also a ected the Anita polis alkaline rocks,according to data reported by Baitelli(1992).

A.R.Jelinek et al./Journal of South American Earth Sciences12(1999)367±377373

The ore vein geochemistry and wall-rock alteration data demonstrate that the ˉuorite was deposited by three successive hydrothermal events with own characteristics.Thus,ages in the range 131±76Ma should be related to these three hydrothermal epi-sodes,which are associated with the opening of the South Atlantic Ocean.The distribution of the veins studied here,their apparent ages,and the age of events in the evolution of the continental margin lead us to interpret the apparent ages in the interval 131±76Ma as forming groups 2,3and 4(Table 2),dis-cussed below.

The second group of apparent ages falls in the range 13127to 10724Ma (Table 2,?rst hydro-thermal mineralizing event)and the mean con?ned ?ssion track length range from 8to 11m m.This age range corresponds approximately to the rift stage (130±115Ma)of the South Atlantic opening (Asmus,1984).In comparison with the two younger hydro-thermal mineralizing events (Table 2)this event shows a larger range of ages.The geochemistry of ˉuorites and wall-rock alteration data (Table 1)agree that ˉuorites deposited during tectonic phases 1and 2display a single geochemical evolution,so the for-mer hydrothermal mineralizing event could have been relatively longer.The apatite ?ssion track analysis and the con?ned ?ssion track length measurements allow us to con?rm the time interval of this event.The distribution of the apatite apparent ages for single crystals and the con?ned track lengths of the

sample Aqua

rio 3illustrate this case (see Fig.3b).Thermal anomalies linked to the rifting process are responsible for hydrothermal circulations.The mag-matism at the Floriano

polis dome Dlying on the E±W zone separating stretched continental crust (at the north)and new oceanic crust (at the south)Dmay explain the prolongation of hydrothermalism until after the rift stage end (115Ma).It is also noted that individual ˉuorite vein ages agree with the tectonic model and ˉuorite generation distribution:the older ages correspond to an older NNE±SSW structure (STL),the only one where generation I is abundant;the next ages were obtained from the Cocal ore vein (samples Cocal 2and 4)where the ?rst ˉuorite depo-sition corresponds to generation II.

The third group includes samples with ages of 9824to 9325Ma (Table 2,second ˉuorite hydro-thermal mineralizing event),which are the same within one standard deviation.The distributions of apatite con?ned ?ssion track lengths,ranging from 8to 11m m,are bimodal (Fig.3c);these distributions are typical of more than one thermal event.These in-termediate mineralization ages have not been obtained by previous https://www.360docs.net/doc/206652713.html,ing the complex model described by Bastos Neto (1990),these ages would correspond to the third ore vein

opening-?lling

Fig.3.Summary of ?ssion track data observed in SCFD (Santa Catarina Fluorite District)in four samples.The distribution of apparent ?ssion track ages are broader and illustrate the mixed ages.For samples of ?gures a and b the mean track length distribution represents various degrees of annealing.Samples of ?gures c and d present a bimodal distribution typical of a partial annealing that erases the older tracks of samples.

A.R.Jelinek et al./Journal of South American Earth Sciences 12(1999)367±377

374

phase,and correspond to the second hydrothermal mineralizing event(see Table1).Bastos Neto et al. (1991)correlated this tectonic opening of vein struc-tures(tectonic phase3)to a disturbance of tensional stress linked to reactivations of ENE±WSW structures at the SCFD area in response to detachment(``de col-lements''formation)during the stretching of the Sa o Paulo``plateau''.However,the present?ssion track age analysis rejects this interpretation because it is not possible to consider this tectonic reactivation after100Ma,when South America and Africa plates were completely separated(Nu rnburg and Mu ller, 1991).A group of apparent?ssion track ages obtained by Lelarge(1993)in the Ponta Grossa Dome(see Fig.1)falls in the range between113and 100Ma and can be interpreted as the formation of a ``Proto-Serra do Mar''in this area.After Bastos Neto(1990),the``Proto-Serra do Mar''was formed by lateral conduction(Alvarez et al.,1984)just in front of the zone a ected by the crustal stretching re-sponsible for the formation of the Sa o Paulo``pla-teau''.Thus,this``Proto-Serra do Mar''would have to be limited to regions north of the Floriano polis lineament.Subsequently,the coastal area from the southern SCFD to the Ponta Grossa Dome was a ected by the Serra do Mar uplift.The third AFTA group can be correlated with the beginning of the process responsible for di erential vertical movements of adjacent blocks and opening of fractures,leading to signi?cant isothermal adjustments which were able to start convective hydrothermal activity and,conse-quently,ˉuorite ore vein formation.

The last group of ages range from8928to7625 Ma(Table2,third hydrothermal mineralizing event). This event can be correlated with a very important reactivation on the continental margin responsible for the paroxysm of the subsidence on the Santos Basin and the synchronical uplift on the coastal area (Pereira,1992).After the ages obtained by Lelarge (1993),the uplift of Serra do Mar was already indeed implanted at86Ma.In SCFD,aligned with the Santos basin depocenter,ENE±WSW structures that controlled the gradual uplift to the north were reacti-vated.Thus,our AFTA data agree with geochemical data and wall-rock alteration in the sense thatˉuorite generations VII,VIII and IX were deposited at shal-lower levels than the older generations.

Two apatite?ssion track ages determined by Baitelli(1992)for Lages Alkaline Massive of84and 78Ma can be associated with this reactivation of the southern continental margin.The apatite appar-ent?ssion track ages of this group are in agreement with the86Ma(K/Ar)age obtained by Santos (1994)on clays associated with theˉuorite mineraliz-ations of SCFD;and also with the88.4Ma K/Ar whole rock age in a diabase dike of the Serra Geral Formation cut byˉuorite mineralization in the Segunda Linha Torrens veins,Santa Catarina Mine (Teixeira,1969).

The mean con?ned?ssion track lengths of the samples of the last group fall in the range6to10m m, and the distributions of apparent single crystals ages are bimodal(Fig.3d).The application of the method of apatite?ssion track analysis(AFTA)to these samples illustrate a thermal event erasing the?ssion tracks.In this case,it seems probable that the gra-dual cooling of the last hydrothermal event,whose ?nal stage is characterized by barite deposition, occurred at lower temperatures(708C)with respect to the annealing?ssion tracks.The duration of this deposition was su ciently long to promote the partial annealing of?ssion tracks related to previous events.

5.Conclusions

Sixteen apparent ages obtained by the?ssion track technique on apatites associated withˉuorite veins in the Santa Catarina Fluorite District are arranged into four groups,which can be related to hydrothermal events,and are supported by geochemical data.The age groups present values between146and76Ma. The?rst group,with ages around145Ma,represents a hydrothermal event older than theˉuorite mineral-ization.The other ages are distributed in a great time interval(131±76Ma).As with AFTA data from the literature on alkaline regional rocks(con?rmed by K/ Ar data),we have found a high span in?ssion track ages on apatites hosted in https://www.360docs.net/doc/206652713.html,ing geochem-ical and structural data on the ore veins,correlated with the continental margin evolution,we classify these ages into three groups(groups2±4).The second group of ages,131±107Ma,records the?rst hydro-thermal mineralizing event.The third group of ages, 98±93Ma,represents the second hydrothermal miner-alizing event.The fourth group of ages,89±76Ma, dates the last hydrothermal mineralizing event.

The results display a distribution pattern of age groups that are clearly connected to evolution of the continental margin,and are capable of promoting the convective hydrothermal cycles.To our knowl-edge,the application of AFTD toˉuorite ore veins from the Santa Catarine Fluorite District is the?rst time?ssion track dating has been employed to date a hydrothermal ore vein deposit with a complex his-tory.

Acknowledgements

The authors acknowledge the Conselho Nacional de

A.R.Jelinek et al./Journal of South American Earth Sciences12(1999)367±377375

Desenvolvimento Cient??co e Technolo gico for?nan-cial support,wish to thank Drs.Paul Potter and Vitor Pereira for reading the manuscript and making valu-able suggestions,and Dr.Luiz Paulo Geraldo for the sample irradiations.Bastos Neto and Soliani Jr. acknowledge the Ministe rio da Cie ncia e Technologia for?nancial support through projeto PRONEX/IG/ UFGRS.

References

Alvarez,F.,Virieux,J.,Le Pichon,X.,1984.Thermal consequences of lithosphere extension over continental margins:the initial stretching phase.Geophysical Journal Research Astr.Soc.78, 389±411.

Asmus,H.E.,1984.Geologia da Margem Continental Brasileira.In: Schobbenhaus,C.,Campos,D.A.,Derze,G.R.,Asmus,H.E.

(Eds.),Geologia do Brasil.DNPM,Bras?lia,pp.443±472. Baitelli,R.1992.Geocronologia por trac os de?ssa o de macic os alcalinos do Brasil meridional.Unpublished Master Thesis.

Universidade Federal do Rio Grande do Sul,204pp.

Bastos Neto,A.C.1990.Le district aˉuorine de Santa Catarina: mine ralisations et alte rations hydrothermales dans leur cadre ge o-dynamique.Orle ans.Unpublished PhD Thesis,Universite d'Orle ans,420pp.

Bastos Neto,A.C.,Charvet,J.,Touray,J.C.,Dardenne,M.A.,1991.

Evolution tectonique du district aˉuorine de Santa Catarina (Bre sil)en relacion avec l'ouverture de l'Atlantique Sud.Bulletin de la Socie te Ge ologique de France3,503±513.

Bastos Neto,A.C.,Touray,J.C.,Charvet,J.,Dardenne,M.A.,1992.

Contro le tectonique des mine ralisations aˉuorine du district de Santa Catarina,Bre sil(?lons en extension et en de crochement).

Chronique de la Recherche Minie re507,43±52.

Bastos Neto,A.C.,Touray,J.C.,Dardenne,M.,1996.Ge ochimie isotopique(d D)applique e a l'e tude des inclusionsˉuides de la ˉuorine du district de Santa Catarina(Bre sil):une discussion sur l'origine des solutions mine ralise es.Anais da Academia Brasileira de Cie ncias68(2),213±221.

Bastos Neto, A.C.,Dardenne,M.A.,Touray,J.C.,1997.

Contribuic a o do estudo das alterac o es hidrotermais de encaixante

a ge nese das mineralizac o es do distritoˉuor?tico de Santa

Catarina.Geochimica Brasiliensis11(2),213±229.

Bigazzi,G.,Dompnier,E.,Hadler,Neto J.C.,Poupeau,G.,Vulliez,

E.,1988.A reactor intercalibration for?ssion track-dating and

uranium micromapping.Nuclear Tracks Radiation Measurements 15(14),755±757.

Dardenne,M.A.,Savi,C.N.,1984.Geologia e geoqu?mica dos?lo es deˉuorite Segunda Linha Torrens e CocalDSC.Revista Brasileira de Geocie ncias14(2),120±127.

Dardenne,M.A.,Touray,J.C.,https://www.360docs.net/doc/206652713.html,ˉuorine du Bre sil.

Gisements?loniens traditionnels et nouveaux types de mine ralis-ations.Chronique de la Recherche Minie re490,35±46. Galbraith,R.F.,1981.On statistical models for?ssion track counts.

Mathematical Geology13,471±488.

Gallagher,K.,Dimitru,T.A.,Gleadow,A.J.W.,1994.Constraints on the vertical motion of eastern Australia during the Mesozoic.

Basin Research6,77±94.

Gleadow,A.J.W.,1981.Fission-track dating methods:what are the real alternatives?.Nuclear Tracks5(1/2),3±14.

Green,P.F.,1981.``Track in Track''length measurements in annealed apatites.Nuclear Tracks5(1/2),121±128. Horbach,R.,Marimon,R.G.,1980.Esboc o da evoluc a o tecto nica e

seu signi?cado na ge nese dos depo sitos deˉuorita no sudeste cat-arinense.In:XXXI Congresso Brasileiro de Geologia,Camboriu, vol.3,pp.1540±1551.

Hurford,A.J.,Green,P.F.,1983.The zeta age calibration of?ssion track dating.Chemical Geology(Isotope Geoscience Letters)1, 285±317.

Laslett,G.M.,Kendall,W.S.,Gleadow,A.J.W.,Duddy,I.R.,1982.

BIAS in measurement of?ssion-track length distributions.

Nuclear Tracks6(2/3),79±85.

Lelarge,M.L.M.V.1993.Thermochronologie par la methode des traces de?ssion d'une marge passive(Dome de Ponta Grossa,SE Bre sil)et au sein d'une chaine de collision(zone externe de l'arc alpin,France).Unpublished PhD Thesis,Universite Joseph Fourier,Grenoble I,251pp.

Melo,M.S.,Riccomini, C.,Hasui,Y.,Almeida, F.F.M.,1985.

Geologia e evoluc a o do sistema de bacias trafoge nicas continen-tais da regia o sudeste do Brasil.Revista Brasiliera de Geocie ncias 15(3),193±201.

Morgental,A.,1984.Caracterizac a o dos depo sitos deˉuorita do dis-trito de Santa Catarina.In:XXXIII Congresso Brasileiro de Geologia,Rio de Janeiro,pp.3770±3783.

Nu rnburg,D.,Mu ller,R.D.,1991.The tectonic evolution of the South Atlantic from Late Jurassic to present.Tectonophysics 191,27±53.

Osorio,A.M.,Khouri,M.,Hadler,J.C.,Iunes,P.J.,De Paulo,S.R.

1993.Boletim do Instituto de Pesquisas Energe ticas e Nucleares n https://www.360docs.net/doc/206652713.html,EN/SP.

Pereira,M.J.,1992.Considerac o es sobre a estratigra?a do Cenomaniano-Santoniano em algumas bacias marginais brasi-leiras e sua implicac a o na histo ria tecto nica e sedimentar da mar-gem continental.Boletim de Geocie ncias de PETROBRA S6(3/

4),171±176.

Renne,P.,Ernesto,M.,Pacca,I.G.,Coe,R.S.,Glen,J.M.,Pre vot, M.,Perrin,M.,1992.The age of Paranaˉood volcanism,rifting of Gondwanaland,and the Jurassic-Cretaceous Boundary.

Science258,975±979.

Rocha,F.F.N.1997.Geologia e geoqu?mica dos?lo es deˉuorita da parte norte do Distrito Fluor?tico de Santa Catarina.

Unpublished Master Thesis,Universidade Federal do Rio Grande do Sul,188pp.

Sallet,R.G.,Moritz,R.,Fontignie,D.,1996.87Sr/86Sr systematics at the post-Jurassic Santa Catarina Fluorite District,Brazil.Genetic model and age implications.In:XXXIX Congresso Brasileiro de Geologia,Salvadore,vol.7,pp.328±331.

Santos,R.P.1994.Datation K/Ar et Rb/Sr d'argiles de mine ralis-ations et de diagene se le long de la co te Est de l'Ame rique du Sud.Implications ge odynamiques.Unpublished PhD Thesis, Universite Joseph Fourier,Grenoble I,266pp.

Santos,R.P.,Bonhomme,M.G.,1993.Datac a o K/Ar de argilas associadas a mineralizac a o e aos processos diagene ticos,em rela-

c a o com a histo ria da abertura do Oceano Alta ntico Sul.Revista

Brasileira de Geologia23(1),61±67.

Savi,C.N.1980.Ge nese e controle das mineralizac o es deˉuorita da regia o de Criciu maDSC.Unpublished Master Thesis, Universidade de Bras?lia,112pp.

Scheibe,L.F.1986.Geologia e Petrologia do Distrito Alcalino de Lages,SC.Unpublished Thesis,Universidade de Sa o Paulo, 224pp.

Sonoki,I.K.,Garda,G.M.,1988.Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental:Compilac a o e adapta-

c a o a s Novas Constantes.Boletim IG-USP,Se rie Cient??ca19,

63±85.

Tassinari, C.G.,Flores,J.A.,1992.Aplicac a o dos iso topos de Sr e Nd na mineralizac a o deˉuorita do poc o5,Segunda Linha Torrens,sudeste de Santa Catarina.In:XXXVII Congresso Brasileiro de Geologia,Sa o Paulo,vol.1, pp.259±260.

A.R.Jelinek et al./Journal of South American Earth Sciences12(1999)367±377 376

Teixeira,C.A.S.1969.Relato rio de datac o es geocronolo gicas do pro-jeto ba sico da regia o leste e do projeto espec?i?co daˉuorita.

DNPM,Porto Alegre,39pp.Unpublished Report.Willig,C.D.,1973.Observac o es sobre os controles e a ge nese dos depo sitos deˉuorita de Santa Catarina.Revista de Engenharia de Minerac a o e Metalurgia343,36±41.

A.R.Jelinek et al./Journal of South American Earth Sciences12(1999)367±377377

威派格稳压补偿式无负压供水设备原理的介绍

第一章威派格稳压补偿式无负压供水设备简介 (3) 1.1设备原理图 (3) 1.2设备工作原理 (3) 1.3设备的核心功能 (4) 1.4主要优点 (4) 1.5稳压补偿式无负压供水设备与传统的罐式无负压供水设备比较 (4) 第二章威派格稳压补偿式无负压设备特点及配置说明 (6) 第三章威派格稳压补偿式无负压供水设备技术创新点 (12) 第四章威派格稳压补偿式无负压设备与同类型设备相比技术优势 (13) ①、通过相关设备始终将市政管网压力维持在最低服务压力上 (13) ②、当市政管网压力下降至最低服务压力时,保证用户正常用水的需求。 (14) ③、补偿罐具有差量调节作用 (14) ④、在小流量用水时,在不启动主泵的情况下保证用户正常用水 (15)

⑤、所有水泵、管路、阀门、配件及设备过流部分必须采用食品级不锈钢材质 (15) ⑥、无负压节能特点,市政管网出现断水、用水高峰出现压力下降的保护措施和方案 (15) 第五章威派格无负压供水设备无线监控系统设计方案 (16) 5.1设计目标 (17) 5.2实现方案 (17) 5.3系统示意图 (18) 5.4系统特点 (18) 5.5系统网络 (19) 5.6系统功能 (21) 5.6.3远程监控室现场图片 (22)

第一章威派格稳压补偿式无负压供水设备简介 1.1设备原理图 1.2设备工作原理 该设备通过智能控制控制技术与稳压补偿技术实现设备对市政管网不产生负压,保证向用户管网不间断供水。该设备采用的流量控制器在维持最低服务压力的基础上能够自动调节市政管网向设备的输入水量,确保市政管网不产生负压,用水高峰期时能量储存器释放预充的一定压力的气体,保证稳压补偿罐

节能型稳压补偿式无负压供水设备管理简单安全可靠

编订:__________________ 审核:__________________ 单位:__________________ 节能型稳压补偿式无负压供水设备管理简单安全可 靠 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7917-96 节能型稳压补偿式无负压供水设备 管理简单安全可靠 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 设备由丹麦格兰富水泵、稳压补偿罐、双向补偿装置、能量储存装置(专利证书)、无负压流量控制器、水泵、控制系统、成套附件等部件组成。 节能型稳压补偿式无负压供水设备引进国际上最先进的技术合理运用无负压补偿罐分腔式供水装置与能量储存器,结合双向补偿装置在市政管网压力下降及高峰期供水时给用户补水。设备及管路均采用食品级不锈钢材质,封闭式运行不与外界空气接触,在保证长期安全、稳定运行措施上有所突破,设备可以任意组合,而且实现自动操作,管理简单、安全可靠,节能环保无二次污染,采用国际著名品牌ABB变频器,通过可编程序控制器对单台或多台水泵进行变频调速和程序控制,以实现无负压变量供水的目的,是一种

山东济南自动稳压供水设备的特点及分析

一、山东济南自动稳压供水设备的特点及分析 用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。 若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如发生火灾时,若供水压力不足或或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用全自动变频供水成套设备,具有较大的经济和社会意义 随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能全自动变频供水成套设备取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。 二、自动稳压供水设备应用方式 通常在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量小时开一台或两台。在采用变频恒压供水设备进行恒压供水时,就用两种方式,其一是所有水泵配用一台变频器;其二是每

台水泵配用一台变频器。后种方法根据压力反馈信号,通过PID运算自动调整变频器输出频率,改变电动机转速,最终达到管网恒压的目的,就一个闭环回路,较简单,但成本高。前种方法成本低,性能不比后种差,但控制程序较复杂,是未来的发展方向,我公司开发NKL-A系列变频恒压供水设备系统就可实现一变频器控制任意数马达的功能。下面讲到的原理都是一变频器拖动多马达的系统。 三、自动稳压供水设备特点: 1.投资省无需修建水池或水箱,也不需设置大型气压罐,节省了一大笔投资,而且由于能充分利用自来水管网依次依次供水压力加压泵选型可以减少,设备投资减少。 2.卫生无污染供水系统从自来水管网至用户水龙头为全封闭结构。污染物不会进入系统,水体不与空气直接接触,过滤部件采用食品级不绣钢制作,无二次污染机会,环保卫生。 3.生活封闭智能泵站节能效果显著设备直接与自来水管串接,在自来水厂一次供水管网压力的基础、上叠加所需的压力,差多少,补多少,能充分利用管网的余压,用水低峰期,设备甚至不需要运行,节能效果显著,与传统给水设备比,节能达30%-90% 4.节约水资源不用定期清洗,不浪费水资源和人力资源。节约维护费用。 5.占地面积小,生活封闭智能泵站不需要建造蓄水池或水箱不需要配置大型气压罐,大大节约了系统占地面积,可以利用节约的土地提高地产利用率,符合国家节约土地的要求。

二次加压供水设备消防稳压设备消防泵各类水泵不

久华供水设备厂主营:无负压供水设备、变频恒压供水设备、二次加压供水设备、消防稳压设备、消防泵、各类水泵、不锈钢水箱、变频控制柜、消防控制柜等。 无负压供水设备无负压供水设备-无负压供水设备-无负压供水设备-无负压供水设备-无负压供水设备-无负压供水设备-无负压供水设备无负压供水设备产品特点 1、无负压供水设备投资省:与水塔、高位水箱相比可节省投资约40%-60%.。 2、无负压供水设备占地面积小:该设备结构紧凑,与其他传统的供水装置相比减少了占地面积,节省了土地资源.。 3、无负压供水设备安装便捷:本设备整体装配便于安装、调试,施工周期短。 4、无负压供水设备管理简单:本设备全自动运行,无需专人管理,工作可靠。 5、无负压供水设备利用气压罐的可调节能力,可自动调节用户水量的变化;当用水量减少或不用水时,可较长时间不启动水泵,达到节能目的。

社会背景: 目前,供水设备之饮用水市场多采用管网无负压无负压供水设备,该设备主要是利用“稳流罐+真空抑制器”结构的机械防负压 式设备。此种设备消除负压的基本原理是在供水系统产生负压后通过真空抑制器的进气阀进气使稳流罐中的水与大气联通,消除负压,达到无负压供水的目的。此种设备水源不能与空气完全隔离,存在水源二次污染且成本高、占用空间大、可靠性低、稳定性差、寿命短。与机械防负压式管网无负压无负压供水设备不同,管网无负压无负压供水设备另辟蹊径,采用与机械防负压式设备完全不同的控制原理,有效克服了其缺点,是一种完全新型的管网无负压无负压供水设备。 无负压供水设备的用途

无负压给水设备主要使用于直接串接于自来水管网上的场合,无负压供水设备既可解决渗、冒、滴、漏水和二次污染等问题,又可充分利用市政管网原来压力,尤其适用于小区居民楼生活用水。无负压给水设备可以采用水位、压力、变频调速等多种控制方式,无负压供水设备满足不同用户的需求,防止蓄水池二次污染、运行时不对市政管网产生负压、充分利用市政管网压力等诸多优点使得无负压给水设备成为新一代具代表性的环保节能成套供水设备。 智能型无负压供水设备经济卫生,节能效果显著,实践证明:使用智能型无负压变频给水设备可节省50%以上的兴建水池费用,与其它供水设备相比,可节电20%~50%无负压供水设备

威派格稳压补偿式无负压供水设备原理介绍解读要点

一@片@垃@圾@,忽@悠@死@人@不@偿@命,哥实在没耐心看下去,简单批了一下 第一章威派格稳压补偿式无负压供水设备简介 (3) 1.1设备原理图 (3) 1.2设备工作原理 (3) 1.3设备的核心功能 (4) 1.4主要优点 (4) 1.5稳压补偿式无负压供水设备与传统的罐式无负压供水设备比较 (4) 第二章威派格稳压补偿式无负压设备特点及配置说明 (6) 第三章威派格稳压补偿式无负压供水设备技术创新点 (11) 第四章威派格稳压补偿式无负压设备与同类型设备相比技术优势 (12) ①、通过相关设备始终将市政管网压力维持在最低服务压力上 (12) ②、当市政管网压力下降至最低服务压力时,保证用户正常用水的需求。 (12) ③、补偿罐具有差量调节作用 (12) ④、在小流量用水时,在不启动主泵的情况下保证用户正常用水 (13)

⑤、所有水泵、管路、阀门、配件及设备过流部分必须采用食品级不锈钢材质 (13) ⑥、无负压节能特点,市政管网出现断水、用水高峰出现压力下降的保护措施和方案 (14) 第五章威派格无负压供水设备无线监控系统设计方案 (15) 5.1设计目标 (15) 5.2实现方案 (15) 5.3系统示意图 (16) 5.4系统特点 (16) 5.5系统网络 (17) 5.6系统功能 (18) 5.6.3远程监控室现场图片 (19)

第一章威派格稳压补偿式无负压供水设备简介 1.1设备原理图 1.2设备工作原理 该设备通过智能控制控制技术与稳压补偿技术实现设备对市政管网不产生负压,保证向用户管网不间断供水。该设备采用的流量控制器在维持最低服务压力的基础上能够自动调节市政管网向设备的输入水量,确保市政管网不产生负压,用水高峰期时能量储存器释放预充的一定压力的气体,保证稳压补偿罐高压腔的水带有一定压力补偿到恒压腔中,在一定时间内可补充市政管网来水量的不足,通过双向补偿器,在用水低谷期时对稳压补偿罐进行蓄能,对用户管道起稳压补偿作用,充分利用了市政管网的压力,节能效果显著。

消防增压稳压给水设备

消防增压稳压给水设备 《产品特性文件表》申报指南 1.基本要求 1.1 产品特性文件表要严格依据产品的设计文件、工艺文件、产品标准、检验报告等技术资料及型式试验样品实物、实物照片、定型图纸、产品说明书、铭牌标志等出具。 1.2 产品特性文件表内容应填写完整,并加盖公章。认证委托方、生产者、生产企业名称应与认证申请材料、企业注册文件及公章一致。 1.3 填表时间应据实准确。 1.4 产品名称、型号规格应按相应实施规则、实施细则及产品标准中规定的名称和表示方式填写。如:消防稳压给水设备、消防增压给水设备、消防增压稳压给水设备。 2.填写指南 2.1 “铭牌标志” 将产品的铭牌照片粘贴在特性文件表附页指定空白处,并附产品说明书,产品实物照片。申报单位应对照“项目”一栏要求及产品标准的有关规定,对于铭牌照片、操作指导书中不完全的部分及缺少部分,如:警示用语等其它信息,据实填写于特性文件表对应栏目中。 注: 1)基本性能参数 a)消防稳压给水设备和消防无负压(叠压)稳压给水设备 基本性能参数应包括稳压压力上限、稳压压力下限、气压水罐总容积

或稳流补偿器总容积、止气/充气压力或取水压力下限、气压水罐设计安全使用寿命、操控柜总功率、水泵台等数。 b)消防增压给水设备 基本性能参数应包括消防额定工作流量、消防额定工作压力、操控柜总功率、水泵台数等。 c)消防增压稳压合用给水设备 基本性能参数应包括稳压压力上限、稳压压力下限、消防泵启动压力、止气/充气压力、消防额定工作流量、消防额定工作压力、气压水罐总容积或稳流补偿器总容积、气压水罐设计安全使用寿命、水泵台数、操控柜总功率等。 2)系统示意图、简要的操作说明:铭牌上应具有系统示意图和操作说明。 3)标志: 指获证后3C标志的施加方式及位置。 4)警告用语:指设备各部位使用的警告用语。 2.2“关键元器件” 1)橡胶隔膜 具有橡胶隔膜的设备应填写橡胶隔膜具体的规格型号、生产单位,并将产品出厂合格证或质量合格证明书(照片、复印件等)粘贴在特性文件表附页指定空白处。 不存在此产品关键元器件时,填“/”。 2)稳流补偿装置 具有稳流补偿装置的设备应填写稳流补偿装置具体的规格型号、生产单位,并将产品出厂合格证或质量合格证明书(照片、复印件等)粘贴在特性文件表附页指定空白处。

消防供水设备

消防供水设备 一、消防供水设备产品简介 “消防供水设备”是为消防灭火工程配套的设备,主要作用:保持水灭火管网的消防压力,发生火警打开水灭火设备能立即喷出充实水柱,给报警联动启动大消防泵赢得30秒以上的初期灭火扑救时间,直至消防主泵全负荷启动进行,由于该设备能始终保持管网压力,使管网不存空气启动大消防泵不打呛管网无颤动危险。 二、消防供水设备产品特点 1)起动方式:该设备具有自动、手动、远距离消防联动三种控制方式,设备可就地启动紧急消防按钮启动,也可由消防中心远距离启动。变频柜设有消防起停信号接口,设备接到消防信号,立即进入消防恒压供水状态,一台泵故障或流量不够时,可自动变频动另起一台泵。消防信号解除,立即恢复至平时消防稳压状态。为防止自动变频万一故障,系统还设有手动工频启动功能。 2)稳压功能:变频柜在自动模式无消防信号时,设备处于变频稳压工作状态,由压力表采集管网水压限信号,当管网水压降至稳压下限时,消防泵变频运行,向消防管网补水,当管网水压达到稳压上限时,消防泵停止运行,此时由气压罐向管网补水稳压。 3)自动换泵功能:消防主泵具有周期轮换运行功能,换泵周期由变频柜程序设定,一般设定为24小时。若设备检测到某台泵故障时,立即切换到另一台泵稳压运行,并报警显示。 4)自动(手动)巡检功能:虽然平时消防泵自动换泵稳压运行,但对水泵定期巡检还是十分必要,以防偶然因素导致水泵长期不运转而“锈死”。巡检周期为及巡检运行时间由程序设定。巡检时若水泵故障,系统可自动报警。 5 )智能消防功能:因火灾或管网漏水严重,在无消防信号情况下,设备自动进入消防高恒压供水状态,并报警。 7)多种保护及故障报警功能:系统具有断相、过负荷、接地、欠压等保护及报警功能。 8)控制接口:系统设有水位接口,用于缺水报警指示。另外还设有与消防中心相联的联动、反馈接口,实现远距离自动启动和泵运行状况反馈。根据要求可提供标准的RS485通讯接口,便于远程监控。

稳压供水设备详细介绍

稳压供水设备详细介绍 上海阳光泵业制造有限公司座落于上海市金山工业园区,是国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,注册资本1100万元。主导产品包括:螺杆泵、隔膜泵、液下泵、磁力泵、排污泵、化工泵、多级泵、自吸泵、齿轮油泵、计量泵、卫生泵、真空泵、潜水泵、转子泵等类别。产品以优越的性能,精良的品质已获得各项专业认证证书及客户的认可。公司拥有多名水泵专家和各类中高级工程师,不断的开发制造,升级换代产品年年都有问世。 稳压供水设备详细介绍: 稳压供水设备供水控制器适用于工业、生活及暖通等供水控制系统。它是我公司继E和B系列控制器完成之后,按照ISO9000质量体系的要求研发的新型控制器。 我们综合了十多年来广大用户的需求,参照最新的标准,采用最新的微处理器技术,结合高可靠性的设计,开发出的供水专用型控制器具有更优良的性能。易创专用稳压供水设备供水控制器的特点是: 1、稳压供水设备多模拟量输入方式,可实现供水新工艺控制的要求,特别是无负压系统,可以实现独特的双压力控制功能; 2、变频供水设备可配置成整个或部分泵组变频循环软起动工作方式,可自由设定主泵和附属小泵参与的台数并且任意设定每台泵的运行类型,最多可配置成5+2(五台主泵和两台小泵)的控制结构;(这个特点和变频调速供水设备一样) 3、无负压供水设备设计有RS485接口,便于与上位机或触摸屏连接,进行组态控制; 4、全新的电源设计方案,抗干扰能力强,对交流电网有更好的适应性; 5、稳压供水设备系统可设定是否带检测反馈,保证系统更可靠地工作; 6、稳压供水设备参数更加详细,使系统控制过程更细化,系统工作更节能;

消防增压稳压给水设备安装调试分析

箱泵一体化,也叫智能化箱式泵站,其实也就是我们通常所说的箱式无负压供水设备,箱泵一体化可以直接与市政管网串接,可在原有市政管网的压力基础上进行叠压供水,差多少,补多少。使得设备选型较小,并且最大限度的节省了后期箱泵一体化运行费用,箱泵一体化采用全封闭运行方式,无需建水池,可节约一大笔土建投资,并且有效的解决了传统供水方式存在的二次污染现象。 智能型箱泵一体化消防增压稳压给水设备具体代表什么?经常有人问我WHDXBF-18-18-30-I智能型箱泵一体化消防增压稳压给水设备多少钱一套?由 什么组成的?WHDXBF-18-18/3.6-30-1智能型箱泵一体化泵站分别代表什么意思?答:WHDXBF是代表箱泵一体化泵站:,第一个18是代表水箱的有效容积,18/3.6,前面的18是代表消防泵的流量,后面的3.6是代表喷淋泵的流量,30是代表水泵的扬程,I是一用一备的意思。 箱泵一体化消防增压稳压给水设备工作原理: 1、箱泵一体化消防增压稳压给水设备微机设定给水泵工作压力,即用户用水压力。生活给水时,箱泵一体化消防增压稳压给水设备运行在低压变频状态,由箱泵一体化消防增压稳压给水设备变频器时刻监控管网压力,对反馈值和设定值进行运算和比较计算。若管网压力高于用户所需压力(设定压力)则自动减少输出频率,从而使箱泵一体化消防增压稳压给水设备水泵转速减少,出水量减少若管网压力低于用户所需压力(设定压力)则自动增加输出频率,从而使箱泵一体化消防增压稳压给水设备水泵转速增加,出水量增加,当一台箱泵一体化消防增压稳压给水设备水泵运行满足不了用户需要时,其它水泵自动投入运行以保证用户的使用压力。 箱泵一体化设备原理 箱泵一体化设备进水管与自来水管网直接相连,水在自来水管网剩余压力驱动下压入设备进水管,设备的加压水泵在进水剩余压力的基础上继续加压,将供水压力提高到用户所需的压力后向出水管网供水;当用户用水量大于自来水管网供水量时,进水管网压力下降,当设备进水口压力降到绝对压力小于0(或设定的管网保护压力)时,设备中的负压预防和控制装置自动启动工作,对设备运行状态进行调整直至设备停机待命,确保进水管网压力不再降低而对自来水管网造成不利影响;当自来水管网供水能力恢复,进水管网压力恢复到保护压力以上时,设备自动启动,恢复正常供水;当自来水管网剩余压力满足用户供水要求时,设备自动进入休眠状态,由自来水管网直接向用户供水,供水不足时设备自动恢复运行;当用户不用水或用水量很小时,设备自动进入停机休眠状态,由设在设备出水侧的小流量稳压保压罐维持用户数量用水及管网漏水,用户用水稳压保压罐不能维持供水管网所需压力时,设备自动唤醒,恢复正常运行。设备运行过程中充分利用自来水管网的剩余压力,始终既不对自来水管网造成不利影响又最大限度的满足用户需求,降低供水能耗,实现供水系统最优运行。 箱泵一体化产品特点 1、节省投资:节省投资50%左右,无需修建蓄水池或屋顶水箱,采用叠压供水,减小设备初期投入。 2、高效节能,运行成本低:可充分利用市政管网供水压力,差多少、补多少、不产生负压、与传统供水设备相比可节能30%—90%。停电也可维持市政管网水压供水。 3、智能化程度高,操作简单,节省人力:该设备由全自动智能化控制器控制,

消防自动稳压供水设备技术规范书

嘉峪关宏晟电热有限公司二期工程 2×300MW机组 消防自动稳压供水设备技术规范书~~~~~~~~~~~~~~~~~~~~~~~~~

目录 1.概述 2.供水设备技术规范 3.运行环境 4.技术要求 5.供货范围 6.主要部件材质 7.质量要求 8. 资料提供

1 概述 嘉峪关宏晟电热有限公司二期工程建设2×300MW机组,在厂区新建综合水泵房内设1套消防自动稳压供水设备,配2台维持水泵,1个隔膜压力水罐。 2.供水设备技术规范 消防自动稳压供水设备型号及技术参数: 3.运行环境 3.1 环境温度: 50C~400C 3.2地震基本烈度: 7度 3.3输送介质:清水 4.技术要求 4.1供方应提供技术先进,经济合理,安全可靠的产品; 4.2设备自运行,出口压力恒定,压力调节精度<±0.01Mpa,压力响应速度:0.5s,压力稳定时间<15s. 4.3设备大修周期不低于四年,小修不低于一年,使用寿命不低于三十年; 4.4供方配套的水泵在技术规范内运行时,流量、扬程和效率等性能都能予以保证,流量在额定值时,扬程、汽蚀余量的偏差应符合行业标准和国家标准; 4.5泵在工作范围内的振动应符合现行泵的振动测量与评价方法的C 级。 4.6泵在工作范围内的噪声测定和评价应符合现行泵的噪声测量与评

价方法的C级。 4.7水泵采用机械密封;与泵配套的电机应采用Y系列节能电机;防护等级IP44,绝缘等级F级。 4.8配套电机应满足国标GB755-87《旋转电机基本技术要求》及有关部标、企业标准; 4.9水泵工作方式:两台泵定时转换,时间间隔为24小时. 4.10投标方应有消防产品资质证书. 5供货范围 5.1 维持水泵2台(包括电机、地脚螺栓) 隔膜压力水罐1套(包括地脚螺栓) 底座1套 连接管道及附件1套 5.2 备品备件 6.主要部件材质 叶轮: QT400-15 泵体: HT200 主轴: 2Cr13 底座: HT200 7质量要求 7.1供方应采取有效措施,保证产品符合本规范的要求,设备每一部件及每道工序都要经检验,检验结果应满足有关标准、规范的要求; 7.2供方在设备出厂前应进行整机性能试验,并提前通知需方参与试验,以证明其操作性能、运转性能良好,特性曲线符合设计要求; 7.3泵及配套电机控制设备质保期为一年,在质保期内若发生质量问题,供方应免费维修与更换; 8资料提供

消防稳压设备说明书

供水稳压设备说明书 大庆唯真机电机电设备制造有限公司

稳压供水设备说明书 一工作原理 “稳压压供水设备”由囊式气压罐,给水泵组和控制器三部分组合而成。当压力罐内压力低没有水时,控制器启动水泵往压力罐内注水,水位上升,罐内的空气被压缩,压力升高,当水位升高压力到设定值时,控制器随即控制水泵停机。当用户用水时,罐内净水在压缩空气的作用下向用户供水,随着罐内水量减少,压力下降,当压力下降到最低设定值时,控制器启动水泵向罐内和用户供水,这样反复动作达到了自动向用户加压供水的目的。给水泵可选用任意泵种,且既可集中安装,也可分散安装,有利于做成灵活机动的组合式结构。 二产品特点 1、自动检测,按需补水,确保用户用水,使气压罐工作在最大贮能状态。 2、特别适合于组合式结构设计,使设备现场安装方便灵活。 3、压水罐里的囊,使水与气隔离,与罐壁金属不接触,保证了食用水的卫生条件,更为突出的是避免气水混合,减少气体对供水管道和给水设备内部的锈蚀,大大增加了设备使用寿命。 4、气囊一次充气可保持长期使用,用户可不需另设充气设备。 5、能减弱水流噪音,管道阻力和水锤影响,避免气水同流引起水表空转。 三供水高度 “稳压供水设备”的供水高度与压力罐内的压力成正比。罐内每0.1MPa的压力就能使供水管网的水位升高10米,罐内压力0.6MPa时,供水高度可达60米。供水高度可以任意设定。但不能超越水泵的扬程。 四用途 广泛应用于城乡居民家庭、医院、厂矿企业、军队、乡村等单位小范围自动供水工程。是取代水塔、高位水箱的理想自来水设备,它具有加压能力强、投资少、安装方便、寿命长、自动控制等特点。

自动稳压供水设备

自动稳压供水设备 自动稳压供水设备变频控制原理 用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比,节能效果十分显着(可根据具体情况计算出来)。其优点是: 1、起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击; 2、由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命; 3、可以消除起动和停机时的水锤效应; 一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。 自动稳压供水设备系统原理 自动稳压供水设备投入使用,自来水管网的水进入稳流调节罐,罐内空气通过真空消除器自动排除,待水充满后,真空消除器自动关闭。

当自来水管网压力能够满足用水要求时,系统由旁通止回阀向用水管网直接供水,水泵不工作,充分利用了自来水管网原有压力。 当用水管网用水量不断增加,自来水管网压力不能满足用水要求时,系统压力信号由远传压力表反馈给变频控制器,水泵开始运行,并且根据用水量的大小自动调节转速恒压供水。如果水泵的转速达到工频转速时,则会自动启动另一台水泵变频运转。实现了“差多少、补多少”的功能。 水泵供水时,若水泵流量小于自来水给水管网的流量,则系统保持正常供水; 用水高峰时,若水泵流量大于自来水给水管网的流量,稳流调节罐内的水作为补充水源仍能保持一定时段的正常供水,此时空气经真空消除器进入罐内,破坏了罐内的真空形成,确保自来水给水管网不产生负压;用水高峰过后,系统又恢复正常供水状态; 当自来水管网停水时,稳流调节罐内的水位不断下降,液位探测器信号反馈给变频控制器,水泵自动停机,以保护水泵机组; 夜间小流量用水且自来水给水管网压力不能满足要求时,蓄能罐可以释放其贮存能量,避免了水泵的频繁启动。蓄能罐根据自来水给水管网的压力稳定情况配置。 自动稳压供水设备安装顺序

稳压供水设备

稳压供水设备 稳压供水设备用水原理 用水高峰时,若水泵流量大于自来水给水管网的流量,v稳流调节罐内的水作为补充水源仍能保持一定时段的正常供水,此时空气经真空消除器进入罐内,破坏了罐内的真空形成,确保自来水给水管网不产生负压;用水高峰过后,系统又恢复正常供水状态; 当自来水管网停水时,赣州二次供水设备稳流调节罐内的水位不断下降,液位探测器信号反馈给变频控制器,水泵自动停机,以保护水泵机组; 夜间小流量用水且自来水给水管网压力不能满足要求时,蓄能罐可以释放其贮存能量,避免了水泵的频繁启动。蓄能罐根据自来水给水管网的压力稳定情况配置。 稳压供水设备特点 ◆减少污染。因取消了高位水箱,减少了二次污染 ◆设备投资省占地面积小本系统与其它供水方式比较,由于主要设备只是控制柜及水泵,省去了如气压供水系统中庞大的气压罐等装置,节省了大量的设备占地面积,从而大幅度节省了土建投资,而且就设备本身投资而言,供水量越大,采用变频二次变频供水设备的价格优势就越显着。

◆实现无间断供水或自动定时供水该设备可根据用户的实际工作要求,实现恒压变量供水、自动定时供水(实时时钟功能)小流量及低水位停机、消防用水及各种自我检测、自我保护和报警功能。 ◆设备运行合理、可靠性高、配置灵活GHG系列供水设备采用闭环调节控制技术,达到了恒压供水,避免了由于超压供水造成的电能浪费。变频器采用软起动工作方式,消除了直接起动对电网的冲击和干扰,降低了电机及电气元件的故障率。由于系统自身检测及保护功能完备,使设备使用寿命得以延长。变频供水系统无二次蓄水,避免了二次污染。该设备可控制1-6台泵,从而使变频容量得以降低。 ◆操作维护简便按钮操作,数字显示,非专业人员也可以方便地操作本装置,专业人员可以本说明书为掼,方便地对设备进行性能测试和简单维护。 稳压供水设备节能原理: 稳压供水设备变频调速是通过改变输入到交流电机的电源频率,从而达到调节交流电动机转速的目的。根据流体力学的基本定律可知:水泵类设备均属平方转矩负载,其转速N与流量Q、压力(扬程)H以及轴功率P具有如下关系: --Q1/Q2=N1/N2;(1) --H1/H2=(N1/N2)2;(2) --P1/P2=(N1/N2)3 ;(3) - Q1、H1、P1----水泵在N1转速时的流量、压力(或扬程)、轴功率;

ZW(L)立式消防增压稳压供水设备工作原理及性能介绍

ZW(L)立式消防增压稳压供水设备工作原理及性能介绍 ZW(L)立式消防增压稳压供水设备介绍: ZW(L)立式消防增压稳压供水设备,ZW(W)卧式消防增压稳压供水设备,具体型号如 下:ZW(L)-I-X-7,ZW(L)-I-Z-10,ZW(L)-I-X-10,ZW(L)-I-X-13,ZW(L)-II-XZ-10 ZW(L)立式消防增压稳压供水设备详细描述: ZW(L)立式消防增压稳压供水设备,ZW(W)卧式消防增压稳压供水设备,具体型号如 下:ZW(L)-I-X-7,ZW(L)-I-Z-10,ZW(L)-I-X-10,ZW(L)-I-X- 13,ZW(L)-II-XZ-10,ZW(L)-I-XZ-13,ZW(L)-II-Z-A,ZW(L)-II-Z-A-B,ZW(L)-II-Z-C,ZW(L)-II-Z -D,ZW(L)-II-X-E,ZW(L)-II-X-A,ZW(L)-II-X-B,ZW(W)-II-X-C,ZW(W)-II-X-D,ZW(W)-II-X-E,Z W(W)-II-XZ-A,ZW(W)-II-XZ-B,ZW(W)-II-XZ-C,ZW(W)-II-XZ-D,ZW(W)-II-XZ-E. ◆ZW(L)立式消防增压稳压供水设备工作原理: 隔膜式气压给水设备,是利用无毒胶囊作为气水隔离的新型设备,一次充气,常年运行使用。工作时起动补水泵,水室进水,水压升高,气室的气体被压缩隔膜伸长;当水压下降时,气室气体膨胀,隔膜收缩,压迫水室出水。这样周而复始,通过电接点压力表和电控箱控制水泵运行,达到额定的压力和连续供水。当发生火警,打开消火栓时,立即喷出消防充实水柱,同时电接点压力表发出信号,启动消防泵供所需消防水。 ◆ZW(L)立式消防增压稳压供水设备特点: 1、泵、电控柜、隔膜式气压罐、组合管网四位一体,并配带有隔振器,无需预埋地脚孔,上海莲功泵业制造有限公司设计人员只需算好参数即可查得设备型号、基础尺寸等。电气设计人员无需再进行控制线路设计,只设计泵房内进线和到设备的走线。选用方便,可大大缩短设计人员的设计周期和施工人员的施工时间。 2、隔膜式气压罐一次性充气持久耐用,水气隔离能预防水质的污染。 3、ZW(L)立式消防增压稳压供水设备占地面积小,投资省,全自动运行,无需专人看管。 4、ZW(L)立式消防增压稳压供水设备有双电源接口,双路电源自动(手动)切换,设备可根据设计要求制作。 5、ZW(L)立式消防增压稳压供水设备具有自动保护及故障切换功能。任何一台水泵发生故障(电气故障或水力故障)均能启动备用泵。 6、可与消防中心连接(根据设计需要)。 7、可以根据客户的需要选择罐、稳压方式、控制功能。 8、电气主要元气件采用国产或进口名牌企业产品,质量可靠、运行稳定。 ◆产品结构该设备由稳压泵两台(根据设计要求可设一台)为一用一备,隔膜式稳压罐一台,电控柜一台,仪表阀门及组合管网各一套,组成了隔膜式稳压供水设备。◆设备选型ZW(L、W)本设备根据建设部标准图集98S205基础的性能参数做为参考,推出了两种设备型号, ①ZW(L)、ZW(W)稳压按照建设部图集98S205图集号所设计的型号; ②企业根据消防GA30-92、GA30-2002相关标准及给水设备标准规范编制的设备型号。在这里删除了

消防增压稳压供水设备性能参数表

消防增压稳压供水设备性能参数表 产品名称:ZW(L)-I-XZ-10嘉威消防增压稳压设备 产品描述: ZW(L)-I-XZ-10消防增压稳压设备其中SYB系列变频恒压变量变频调速供水系统(含生产、生活、消防专用、消防合用)是湖南嘉威供水设备最新的研究成果,采用先进的微机控制和交流变压变频技术,是机电、微机控制为一体的全自动给水设备。在这基础上采用人手触摸式液晶显示器自动控制系统,无需专人看管,自动化程度陆路较高,设有故障自动报警,控制备用系统投入工作等功能,是新一代高科技真正的自动控制系统设备。 其配的水泵为:25LGW3-10×4流量为:M3/H 10*4:扬程,10米X4段=40米 产品结构:该设备由稳压泵两台(根据设计要求可设一台)为一用一备,隔膜式稳压罐一台,电控柜一台,仪表阀门及组合管网各一套,组成了隔膜式稳压供水设备。 设备选型:ZW(L、W)本设备根据建设部标准图集98S205基础的性能参数做为参考,推出了两种设备型号,①ZW(L)、ZW(W)系列稳压按照建设部图集98S205图集号所设计的型号;②企业根据消防GA30-92、GA30-2002相关标准及给水设备标准规范编制的设备型号。在这里删除了稳压罐、水泵的垄断性型号,给设计及用户一个产品选择的竞争空间。本公司为您推荐以下型号产品使用,如:LG、GDL、CDL、ISG等型号。用户可以根据水位水箱间的位置选择合适的设备。 ZW(L)-I-XZ-10消防增压稳压设备性能参数表:

ZW(W)消防专用增压稳压给水设备(卧式隔膜罐)性能参数表。

说明:①PS1——增压稳压水泵启动压力MPa;PS2——增压稳压水泵停止压力Mpa;②表中Ⅰ型一般设在高位水箱间,Ⅱ型一般设在消防泵阀或出水池间,水泵压力的选择可根据实际情况而定,设备的尺寸应根据设备间实际面积而定。③本设备稳压水容积都大于50L。

恒压供水设备

恒压供水设备 恒压供水设备优势: 1、停电不断水:供电线路停电时,系统通过BYPASS旁通等手段实现停电不断水,即停电时系统自动前换为市政自来水压力供水。 2、高度自动化:恒压供水设备能实现全自动控制,具有手动/自动切换、压力调整、恒压、高低电压保护、欠相保护、漏电保护、过载保护、过热保护、缺水失压保护、漏水侦测补偿、不用水停车、瞬间跳闸保护。并可根据用户需求配备主辅泵定时轮换、LED显示等功能、RS485总线接口,可视化远程调整、检测和维护。 3、压力可调整,供水恒压:系统在供水过程中可根据用户需求将供水压力调高或调低,经调整设定压力值后本设备能够实时通过传感器侦测管道压力,将侦测值和设定值进行比较运算,确定水泵投入台数和变频器输出频率一实现恒压。无论市政自来水管网压力如何变化,设备始终保证二次供水管网的压力恒定,以避免用户端随市政管网压力波动。 恒压供水设备组成部分: 1、组合式不锈钢水箱(带泵房)。 2、智能化电气控制系统。 3、低噪音不锈钢多级离心泵。 4、恒压变频进水装置及防倒流装置。 5、不锈钢成套管路。 6、压力、液位信号采集、反馈设施。 恒压供水设备安装说明: 1.设备要求按图正确的与系统安装,泵房温度不得低于0摄氏度,不高于40摄氏度,设备应高于地面50-100mm,留有排水沟,各水泵应有单独的吸水管,地上水池加闸阀,以便维修。 2.安装尽量少用弯头,以减少不必要的损失。 3.该设备经厂方技术人员调试完毕后,交付用户的专门管理人员负责,专用消防设备,必须定制严格管理制度,以达到一有火情,立即启动。 恒压供水设备硬件构成:

系统采用压力传感器、PLC和瑞士ABB变频器作为中心控制装置,实现所需功能。来源:输配电设备网安装在管网干线上的压力传感器,用于检测管网的水压,将压力转化为4~20 mA的电流或者是0~10V的电压信号,提供给瑞士ABB变频器。瑞士ABB变频器是水泵电机的控制设备,能按照水压恒定需要将0~50 Hz的频率信号供给水泵电机,调整其转速,变频器功能强大,即预先编置好的参数集,将使用过程中所需设定的参数数量减小到最小,参数的缺省值依应用宏的选择而不同。系统采用PID控制的应用宏,进行闭环控制。变频器根据恒压时对应的电压设定值与从压力传感器获得的反馈电流信号,利用PID 控制宏自动调节,改变频率输出值来调节所控制的水泵电机转速,以保证管网压力恒定要求。

16稳压供水装置

稳压供水装置技术描述 1. 总述 该装置以微电脑为核心,通过变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入微机,经微机运算处理后,获得最佳控制参数,通过变频器、继电器控制元件自动调整水泵机组高效率运行,既保证了良好的供水品质,又最大限度地节能。 2. 供货范围 全自动变频恒压供水设备应该是一套完整的系统,包括配套恒压罐、电动装置、变频装置、电气控制系统、连接电缆及电缆桥架等。 我方负责全自动变频恒压供水设备装配完整的系统设计,并且提供与一体化高效过滤装置相关设备相配合(包括土建、机、电、控制设备)。 1)义亭分厂 2)苏溪分厂 3. 技术参数及条件

4. 设备材质 恒压罐Q235A防腐设备底座Q235A防腐螺母、垫圈不锈钢304 螺栓、基础螺栓不锈钢2Cr13 5. 设计与结构

①回用水由回用水泵输送至污泥脱水机房及绿化用水点,为保证各用水点有足 够压力的回用水,本工程采用变频供水方式。选用本公司生产的HPL变频恒压变流量供水设备 ②HPL变频供水装置结构:该装置由控制柜、水泵机组、气压水罐、压力传感 器和管路阀门等组成。 ③HPL变频供水装置系统原理:该装置以微电脑为核心,通过变频器、继电器、 接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入微机,经微机运算处理后,获得最佳控制参数,通过变频器、继电器控制元件自动调整水泵机组高效率运行,既保证了良好的供水性能,又最大限度地节能。 ④设备选型(单套设备参数,共2套): ?型号:HPL-50 外形尺寸:1500*3300mm 流量:6.2-106.2m3/h,扬程:40m,装机功率11×2+2.2×1KW。 ?水泵机组:立式离心泵80DL×2型2台,40DL×31台,气压罐1只。 单泵技术参数:Q=50m3/h,H=40m,N=11KW;Q=6.2m3/h,H=36m,N=2.2KW ?继电器控制柜1台,变频器控制柜1台; ?水泵生产厂家:上海连成泵业有限公司或同等 6. 抗腐蚀 全部材料应适用于污水腐蚀环境,未经保护或非防腐性材料按一般技术条件基本要求有关条款进行处理。 7. 电气控制系统 通过变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入微机,经微机运算处理后,获得最佳控制参数,启动供水泵或通过恒压罐补水。

消防给水系统中增压和稳压设施的设计

消防给水系统中增压和稳压设施的设计 选择高位消防水箱时要考虑到作用,一般会利用重力自流式消防水箱。建筑物会在最高 部位恰当设置高位消防水箱,注意满足相关标准与要求。以防有火灾发生时可在最短时间内 扑灭火源,防止因火势蔓延而造成严重经济与人员伤亡。《高层民用建筑设计防火规范》以 及《自动喷水灭火系统设计规范》等,都有对消防水箱设置作出明确规定,增压设施以及稳 压设施是满足高层建筑防火需求的有效方式,因此需要将其合理加设于消防给水系统当中。 一、如何确定气压水罐容积 首先,不同类型的消防给水系统应有不同的消防增压设施。在独立设置的自动喷水灭火 系统中,其增压设施出水管道也应独立设置,不应共用气压水罐。《高层民用建筑设计防火规范》7.4.8.2条规定:"气压水罐的调节水容积宜为450L。"这过于笼统,在大多数工程项目中不 会出现消火栓系统和自动喷水灭火系统共用的情况,这是因为《自动喷水灭火系统设计规范》 中明确规定了"(自动喷水灭火)系统应设独立的供水泵"。 其次,建议将气压水罐的设置要求根据不同的系统形式区别对待,《高层民用建筑设计防火规范》对气压给水设备的调节容积是按2支水枪和5只喷头30s的用水量计算。因此,针对 不同的消防给水系统形式,其规定建议改为:消防稳压罐的调节水容积对室内消火栓给水系统 不应小于300L,对自动喷水灭火系统不应小于150L,对室内消火栓给水系统和自动喷水灭火系 统合用消防泵或消防稳压罐的给水方式不应小于450L。 最后,在《固定消防给水设备》的国家产品标准中,固定消防给水设备目前分为5个部分,即消防气压给水设备、消防自动恒压给水设备、消防增压稳压给水设备、消防气体顶压给水 设备、消防双动力给水设备。用于高位消防水箱的是"消防增压稳压给水设备"。在消防气压 给水中,消防设计规范要求的是气压水罐的有效容积,而气压水罐应设有消防储水容积、稳压 水容积、缓冲水容积,补气式气压水罐还应有不动水容积。这些消防储水容积才是消防给水的 有效容积。 二、确定增压水泵的流量与扬程 1.合理控制增压水泵流量 首先,将增压水泵或者是局部稳压设施科学设置在高位,是水箱增压给水方式的主要方法。因高位消防水箱无法满足规定标准与要求,因此需要恰当设置增压水泵或者气压水罐。 这是弥补高位消防水箱高度设置不足的有效方式。在解决水箱设置高度问题方面,水箱增压 给水方式起到的作用相当明显,但是这并不能弥补其中存在的不足。辅助供水设施会在原有 基础上有所提升。在利用稳压泵给水方式时,需要结合高位消防水箱现状,科学设置稳压泵,这会给系统带来较大压力,使其长期处于高压的状态之中。稳压泵在工作时所面临的水流压 力呈现出长期较为稳定的状态,因此在作业时仍旧需要利用消防泵来保障自身水压。与高压 消防给水系统之间存在本质上的差异。可靠性较强以及系统简单,是高压给水方式的明显优 势与特征。可发挥自身作用与价值,逐步解决高位消防水箱在设置中存在的问题。这对消防 维护人员提出较高要求,需要在原有基础上加大设备维护与保养力度。 其次,设增压水泵只是解决局部水压不足,在消防时仍需启动消防泵。高位消防水箱储存的水量只是满足初期消防用水量的需求,故不能用增压水泵来替代消防泵的启动运行。在消火 栓给水系统中,增压水泵的流量不应大于单个消火栓的流量,也就是通常按5L/s来确定增压水 泵的流量。在自动喷水灭火系统中,存在设高位消防水箱和不设高位消防水箱增压的情况。 最后,当设有高位消防水箱时,增压水泵的流量主要起气压供水补水的作用。从这个角度分析,平时气压供水的补水量是有限的。同样,灭火工况时,自动喷水灭火系统也不应因增压水 泵的启动限制消防泵的及时启动,不应用增压泵替代消防泵的运行,因此其增压水泵的流量也

消防增压稳压供水设备中泵的主备用切换方法

消防供水设备中泵的主备用切换方法 消防泵是消防供水系统中的心脏。在消防供水设备中,设置消防备用泵可以增加整个系统的安全性,有利于提高整个消防给水系统的可靠性。根据国家标准《建筑设计防火规范》(GBJ 16-87)的规定,除室外消防用水量不超过25 L/s的工厂、仓库和七层至九层的单元住宅外,固定消防水泵应设有备用泵,其工作能力不应小于一台主要泵。《高层民用建筑设计防火规范》(GB50045-95)中7.5.3条也规定,消防给水系统应设置备用消防水泵。消防泵的主备用切换是实现消防备用泵投人工作的重要手段,也是消防给水系统可靠、安全运行的重要环节。 1.消防泵的主备用切换方法 从消防泵启动信号的采集和控制角度来看,设计中消防泵的主备用切换主要有两种方法。其关键是控制信号来源的选择,它可分为电流信号控制方法和压力信号控制方法。通常消防泵的主备用泵均需按互为备用的方式进行设计。 电流信号控制方法是现在消防设计中消防泵主备用切换的常用方法。它通过对水泵的电动机电流信号反馈,来判断消防泵是否工作。当电机短路(断电)、电流过大时,电源自动切换至另一台水泵机组的电机,停止第一台消防泵的工作,启动另一台消防泵工作。 压力信号控制方法是在消防泵的出水总管上设置电节点压力表,如图1,消防泵主备用的切换是由该压力表的信号来判断的。当消防泵控制箱接到动作指令,立刻启动任一台消防泵,若消防泵工作后的电节点压力表指示的压力未能达到设定的压力值时,控制箱将自动切换到另一台消防泵,启动工作。 当然,电气消防泵控制的原理中可任意指定一台消防泵为主泵或备用泵。电流信号控制方法在目前国内采用最早、最多,而压力信号控制方法在国外的自动喷水灭火系统开始运用,压力信号控制方法对消防给水系统的自动控制提供了可靠的方式。 2.主备用切换方法的比较 2.1 消防泵出现故障的原因分析消防泵出现的故障最终结果是消防泵不能正常给水。造成消防泵故障的主要原因可分为两类,一类是电机故障,另一类是水泵故障。 在电机故障中,有电源问题,如供电不正常造成的断电、电压过高或过低等;电机本身问题,如由于电机损坏无法运行;电机过载问题,电机带动的水泵轴功率过大或管道堵塞,形成电流过大而停止工作等等。 在水泵故障中,可能是由于水泵轴承、叶轮等问题造成。根据工程实践的经验,电机故障的概率要较水泵故障的概率高。 2.2 消防泵主备用切换方法的分析 采用电流信号控制方法,其优点是能及时反映电机的故障。而电机的故障也是水泵机组的主要故障。但这种方法并不能说明消防泵实际是否出水。

相关主题
相关文档
最新文档