镁 气孔-英文

镁 气孔-英文
镁 气孔-英文

E?ect of microporosity on the tensile properties of AZ91

magnesium alloy

Choong Do Lee

a,*

,Kwang Seon Shin

b

a

Technical Development Division,GM Daewoo Auto &Technology (GMDAT),199-1Cheongcheon-dong,Bupyong-gu,Incheon 403-714,Republic of Korea b

Magnesium Technology Innovation Center,Department of Materials Science and Engineering,Seoul National University,San 56-1,Shillim-dong,

Gwanac-gu,Seoul 151-744,Republic of Korea

Received 19July 2006;received in revised form 23March 2007;accepted 26March 2007

Available online 25May 2007

Abstract

The e?ect of microporosity on the tensile deformation of as-cast AZ91magnesium alloy was investigated through systematic exper-imental approaches and theoretical predictions of a constitutive model for tension instability.The strain rate sensitivity was measured at room temperature by the incremental strain rate change test,and the microporosity was quantitatively obtained by fractography analysis on fractured surfaces.The tensile strength and elongation of as-cast AZ91alloy have a strong inverse parabolic dependence on micro-porosity variation.The constitutive model can exactly predict the tensile deformation of AZ91alloy through a practical estimation of strain-related terms and load carrying capacity by quantitative fractography.The overall plastic deformation of AZ91alloy depends fun-damentally upon not only the variation of load carrying capacity,but also on the strain hardening exponent and strain rate sensitivity.The contribution of strain rate sensitivity to plastic deformation becomes increasingly signi?cant with a decreased strain hardening abil-ity.As the strain rate sensitivity of the conventional material is very low but not zero,the constitutive model for the exact prediction of plastic deformation should take the strain rate sensitivity term into account.ó2007Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

Keywords:Magnesium alloy;Plastic deformation;Microporosity

1.Introduction

From the viewpoint of load carrying capacity,the tensile properties of castings are very sensitively dependent on the existence of internal casting defects such as micro-voids and shrinkage holes,which are unavoidable in the conven-tional casting process [1–3].Due to widespread weight reduction trends in the transportation industry,these inter-nal discontinuities have been recognized as a decisive factor for the mechanical properties of structural components such as thin-walled or small integrated castings.Therefore,many experimental studies have focused on the mechanical properties of typical light alloys such as aluminum [4–10]

and magnesium alloys [11,12]and on creating theoretical predictions for a constitutive model [5,6,11].

As is well known,the accuracy of the description of the distribution of stresses around internal discontinuities is intrinsically decided by the exact estimation of load carry-ing capacity [8,11–16].Herrera and Kondic [8]suggested that the microporosity measured from the projected area of micro-voids on fractured surfaces could re?ect the vari-ation of load carrying capacity more exactly than measure-ments based on bulk density [13–15].Surappa et al.[4]and Ca

′ceres [5,6]reported that the plastic deformation of Al–7%Si–0.4%Mg alloy is practically related to the variation of load carrying capacity by a shape factor and the distri-bution of micro-voids.Also,Gokhale and Patel [16–18]emphasized the e?ectiveness of fractography analyses on fractured surfaces in providing exact descriptions of load carrying capacity.In particular,they con?rmed the signif-icance of fractography analyses through comparisons

1359-6454/$30.00ó2007Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.actamat.2007.03.026

*

Corresponding author.

E-mail address:choongdo.lee@https://www.360docs.net/doc/267334284.html, (C.D.Lee).

https://www.360docs.net/doc/267334284.html,/locate/actamat

Acta Materialia 55(2007)

4293–4303

between the projected area of micro-voids and bulk poros-ity of AZ91and AM50alloys[16,18].

On the other hand,the tensile instability of material containing internal discontinuities has been investigated in depth by Ghosh[2]and Ghosh’s constitutive model has been experimentally veri?ed by Ca′ceres[5].They reported that the constitutive prediction based upon Ghosh’s model agreed relatively well with the experimental results,even though the strain rate sensitivity(SRS)term was not considered.However,most metallic materials have a very low SRS-value at room temperature[1].This sug-gests that SRS makes a practical contribution to plastic deformation,even though overall plastic deformation depends preferentially upon strain hardening ability and load carrying capacity.Ghosh proved that the stress distri-bution neighboring internal discontinuities depends more sensitively upon the variation of SRS with decreasing strain hardening ability and load carrying capacity.Therefore, the constitutive model should take into account SRS,the strain hardening exponent(SHE)and load carrying capac-ity in order to exactly estimate plastic deformation behavior.

Numerous studies have been performed on the e?ects of microporosity on the mechanical properties of magnesium alloy[11,16,18–21].Even though several studies described the obvious dependence of tensile properties on micropo-rosity variation,the practical contribution of SRS and strain hardening related terms to tensile deformation is still unclear and not yet thoroughly understood.The present study aims to investigate the e?ect of internal micro-voids on the tensile property of as-cast magnesium alloy and to clarify the practical contribution of SRS and strain harden-ing ability to plastic deformation behavior through a veri-?cation of the experimental results using a constitutive model.

2.Theoretical background and experimental procedures 2.1.Constitutive model of tension instability

Except for the thermal contribution,the constitutive equation of a simple power relationship between true stress and strain is primarily concerned with the strain and strain related terms,and can be expressed as follows[1]:

r?K e n_e me1Twhere r and e are true stress and true strain and_e is the true strain rate,i.e.,(o e/o t)in numerical form.In Eq.(1),n and m represent SHE and SRS,which are numerically de?ned in Eqs.(2a)and(2b),respectively:

n?eo ln r=o ln eT

_e;T

e2aT

m?eo ln r=o ln_eT

e;T

e2bTUnder the assumption that the material containing internal discontinuities experiences a tensile load under axial local equilibrium,the conventional equation for stress distribu-tion can be expressed in terms of load carrying area as the following equation[1,2,6,11]:

r ie1àfTA0eàe i?r h A0eàe he3Twhere r i,e i and r h,e h are true stress and strain within the void region and outside the void region,respectively,and A0is the initial cross-sectional area with a microporosity f.

Combining Eqs.(1)and(3),the stress distribution equa-tion can be simply expressed as the following equation [1,2]:

e1àfTeàe i e n

i

_e m

i

?eàe h e n

h

_e m

h

e4TDi?erentiating Eq.(4)over time leads to a general formula which is fundamentally time independent[2]:

e1àfT1=m eàe i=m e n=m

i

d e i?eàe h=m e n=m

h

d e he5TThe relative increase of e i and e h can be calculated by the Newton–Raphson iteration on Eq.(5)and it can also be obtained by various methods as a form of strain pro?le, which consists of the relative increase of D e i and D e h for gi-ven values of m,n and f.

The well-known basic formula of the Newton–Raphson equation is simply given by

x it1?x ià?fex iT=f0ex iT e6TSince the relative increase D e i is the di?erence of strain be-tween the(i+1)th and(i)th steps,(e i+1àe i),the relative increase D e i is obtained according to Eqs.(7a)and(7b), by substituting Eq.(5)into the basic formula of the New-ton–Raphson equation:

D e i?e1àfT1=m eàe i=m e n=m

i

D e iàeàe h=m e n=m

h

D e h

h i

.

e1àfT1=me1=mTeàe i=m D e i n e n=mà1

i

àe n=m

i

h i

e7aT

e1àfT1=me1=mTeàe i=m D e2

i

n e n=mà1

i

àe n=m

i

àe1àfT1=m eàe i=m e n=m

i

D e i

?eàe h=m e n=m

h

D e he7bTRearranging Eq.(7b),the?nal formula for the relative in-crease of D e h can be written as:

D e h?e1àfT1=m eàe i=m D e ieD e i=mTe n=m

i

h

àeD e i=mTn e n=mà1

i

àe n=m

i

i.

eàe h=m e n=m

h

h i

e8TAdditionally,since the true uniform strain of sound mate-rial is equivalent to SHE under maximum loading condi-

tions,the tensile stress,r?

f

,with a microporosity f can be expressed as the following equation from the simple power curve relationship[5,6,11]:

r?

f

=r??ee?

i

=e hTn?ee?=i nTne9T

where e?

i

is the premature true strain which has a micropo-rosity f,and r*and e h are the maximum true stress(ulti-mate tensile strength,UTS)and maximum strain to fracture(elongation)of sound material,respectively.From

4294 C.D.Lee,K.S.Shin/Acta Materialia55(2007)4293–4303

the viewpoint of tension instability,the numerical form for the calculation of UTS is divided into two alternatives for the relative magnitude between SHE and true uniform strain e h,as in the following equations:

r?f =r??ee?

i

=e hTnee h6nTe10aT

r?f =r??ee?

i

=nTnee h P nTe10bT

2.2.Materials and specimen preparation

The raw material used in the present study was commer-cial grade AZ91D alloy(Norsk Hydro Co.),the chemical composition of which is listed in Table1.The test specimen was prepared by a gravity-casting process under an argon atmosphere using a metallic cylindrical mold(inner diame-ter50mm and125mm,respectively)and a cone type mold (height,125mm;upper diameter,75mm;lower diameter, 10mm)preheated to$100°C.The pouring temperature of the melt was controlled from690to750°C along with inoculation treatment(C2Cl6).

After casting,roughly machined test specimens were grouped into several porosity levels by measuring the bulk density using the Archimedes method.The test specimens were prepared up to an extremely high porosity level, which in practice is di?cult to achieve in a conventional casting process,in order to avoid narrowness of porosity range restricting understanding of the dependence of ten-sile properties on microporosity variation.The tensile spec-imen was then fabricated as a rectangular shape with a gauge length of20mm and a width of4mm.2.3.Tension test and measurement of microporosity

The tension test was performed at room temperature with an extensometer at a strain rate of4.2·10à4sà1. The SRS of AZ91alloy was measured through the incre-mental strain rate change method at room temperature [1].In the strain rate change test,the initial strain rate was 4.2·10à4sà1and the second strain rate was 4.2·10à3sà1at engineering strains of0.5%, 1.0%and 2.4%.The SHE was measured by linear?tting to the slope between true stress and strain on log–log scale[1]and the nominal value of SHE was expressed as an average value for the entire specimen.

The projected area of micro-voids on the fractured sur-faces was measured through quantitative fractography by scanning electron microscope(SEM)observation for entire specimens.The microporosity was de?ned as the ratio of micro-void area to the initial cross-sectional area of the test

Table1

Chemical composition of AZ91alloys

Alloy Element

Al(wt.%)Zn(wt.%)Mn(wt.%)Si(wt.%)Fe(ppm)Cu(ppm)Ni(ppm)Be(ppm)Mg(ppm)

AZ91D8.90.740.180.009332195

Balance

Fig.1.Optical micrograph of micro-voids in as-cast AZ91

alloy.

Fig. 2.Typical morphologies of interdendritic micro-voids(a)and

clustered micro-voids(b)by SEM observation of the fractured surface.

C.D.Lee,K.S.Shin/Acta Materialia55(2007)4293–43034295

specimen.Also,the observation by optical microscopy was conducted on the longitudinal section of tensile deformed specimens in order to describe the fracture path and mech-anism,with a microstructural observation.

3.Experimental results and theoretical predictions

3.1.Morphology of micro-voids and fractography

Fig.1shows an optical micrograph for a cluster of micro-voids which were formed along the grain boundary and at the grain corner of as-cast alloy.As shown,the over-all contours of interdendritic shrinkage voids are very sim-ilar to the morphology of Mg17Al12precipitate.These voids are formed by the de?ciency of the interdendritic feeding of the liquid phase on solidi?cation[7,8,22].Typical SEM images of the fractured surface of as-cast AZ91alloy are presented in Fig.2.Fig.2a shows that the fracture surface of as-cast AZ91alloy is composed of a facet surface by frac-ture of Mg17Al12precipitate with a small-deformed area of a-Mg matrix.Also,it shows that the interdendritic shrink-age voids are widely distributed over the entire fractured surface.Moreover,Fig.2b shows typical morphology for some clusters of interdendritic micro-voids in tensile frac-ture surfaces which have extremely high porosity levels. From comparison between Figs.1and2,it is noted that the volumetric porosity measured by microstructural obser-vation cannot but present very limited and inexact informa-tion on the description of the load carrying capacity by the distribution aspect and shape of micro-voids[4].This is par-ticularly true in the case where micro-voids are locally clus-tered or have a high aspect ratio[4,16].

3.2.Tensile properties of as-cast magnesium alloy and theoretical prediction

Fig.3demonstrates the dependence of yield strength on microporosity variation.As shown,the yield strength of as-cast AZ91alloy has a linear dependence on the micropo-rosity and this dependence is similar to the level predicted by the variation of load carrying capacity[9,10,21].

The SRS of as-cast AZ91alloy at room temperature is listed in Table2.The nominal SRS value of as-cast AZ91 alloy is very low,0.002–0.004under the several engineering strains in this experiment.The nominal SHE and strength coe?cients of as-cast AZ91alloy are0.27and530MPa, respectively.These values are relatively higher value than those of Al–7%Si–0.4%Mg alloy(n=0.101and K=372MPa)[4,5].

Fig.4exhibits experimental results for the dependence of elongation(a)and UTS(b)on microporosity variation, with constitutive predictions for n=0.27and m=0.005. The maximum values of UTS and elongation used in the constitutive prediction were obtained from regression anal-yses based on the experimental results,i.e.,240MPa and 6.0%,respectively.As shown in Fig.4,the elongation and UTS of as-cast AZ91alloy have an inverse parabolic dependence on the microporosity variation.The theoretical prediction is in relatively good agreement with the experi-mental results,even though there is a slight divergence between the experimental results and the constitutive pre-dictions as the microporosity increases,especially in the case of UTS.

4.Discussion

4.1.Strain rate sensitivity and strain hardening ability

On the assumption that the material containing internal discontinuities undergoes tensile loading under local

axial

Fig.3.Dependence of yield strength on microporosity variation.

Table2

Strain rate sensitivity of as-cast AZ91alloy for several engineering strains

Engineering strain(%)0.5 1.0 2.4

Strain rate sensitivity0.002±0.0010.004±0.0010.004±0.001 4296 C.D.Lee,K.S.Shin/Acta Materialia55(2007)4293–4303

equilibrium,the individual contributions of SRS and SHE on overall plastic deformation can be described schemati-cally as the strain pro?les shown in Fig.5.In Fig.5,the iso-strain line implies the strain pro?le of a defect-free sound material,i.e.,there is no di?erence between strain within the void region and strain outside the void region (e h =e i ).Fig.5a explains the e?ect of SRS on the overall contour of the strain pro?le for given values of n and f .As shown,the strain pro?le abruptly deviates from the iso-strain line (e h =e i )as the SRS decreases to lower values,even at lower strain levels outside the void region e h .This means that the local plastic strain adjacent to the internal void can be increased to the utmost limit,even though the nominal true strain is very low.

The contribution of SHE to the overall contour of the strain pro?le is revealed in Fig.5b.The strain pro?le for given m and f values gets closer to the iso-strain line (e h =e i )as the strain hardening exponent increases.In con-trast,the in?ection point of the strain pro?le that deviates

from the iso-strain line (e h =e i )is drastically decreased as SHE decreases.

For simplicity,however,the constitutive equation can be expressed as Eq.(11),except for the SRS term [5]

e1àf Te àe i e n i _e m i ?e

àe h e n h _e m

h e4Te1àf Te àe i e n i ?e

àe h e n

h e11T

Although Eq.(11)can easily o?er a numerical solution for theoretical prediction [5],it can only suggest a stationary strain pro?le,which is decided by SHE at a given micropo-rosity.This dependence of strain pro?le on the variation of SRS is schematically described in Fig.6.

As shown in Fig.6,the constitutive model with di?erent SRS values [(a)m =0.005,(b)m =0.1]shows an obvious divergence among strain pro?les with regard to the varia-tion of SHE and microporosity.The constitutive model that does not take SRS into account,however,can only produce a ?xed strain pro?le.This is because the SHE alone domi-nates the stress distribution neighboring micro-voids at

a

https://www.360docs.net/doc/267334284.html,parison between the experimental results and calculated values of elongation (a)and UTS (b)on microporosity for n =0.27and m =0.005.

C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–43034297

given microporosity.Since the SRS of conventional metallic material is very low but not zero,the practical contribution to the strain pro?le is less sensitive than that based upon the assumption that SRS is zero,i.e.,without considering SRS

in the constitutive model (_e m h or i ?1,for m =0).

Furthermore,regarding the e?ect of SRS on tensile deformation,Mabuchi et al.[23]reported that the ?ne-grained AZ91alloy exhibits super-plasticity by grain boundary sliding with increasing SRS up to 0.4–0.5and ele-vated temperature.This super-plasticity is described as a typical feature of a strain pro?le whereby the strain within the void region steadily increases along the iso-strain line (e h =e i )with increasing SRS,as shown in Fig.6b.4.2.Quanti?cation of load carrying capacity

As shown in Figs.1and 2,the morphology of interden-dritic shrinkage voids in as-cast AZ91alloy has a high aspect ratio compared to that of trapped gas holes.The overall porosity level of as-cast magnesium alloy is a?ected

by the existence of interdendritic shrinkage voids.Gokhale and his colleagues [16,18]reported that the bulk porosities of 3%and 1.36%in AM50and AZ91alloys corresponded to the fractional areas of the fractured surface of 11%and 9%,respectively.

The e?ect of the morphology of micro-voids on tensile deformation can be simply estimated by introducing the aspect ratio (A.R.).The A.R.of an ellipsoid is de?ned as the ratio of the length of the long axis,l long-axis ,to that of the short axis,l short-axis ,as in the following equation:A :R :?l long-axis =l short-axis

e12T

With the assumption that the sphere (A.R.=1,r x =r y =r z )and ellipsoid (A.R.>1,r x =r y ?r z )have the same volume,the area ratio between the ellipsoid and sphere increases according to the third power of the A.R.,i.e.,

A ellipsoid =A sphere ?eA :R :T1=3

e13

T

Fig.5.Deviation of strain pro?le from the iso-strain line on variation of strain rate sensitivity (a)and strain hardening exponent (b).

4298 C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–4303

The ?uctuation of load carrying capacity based on the A.R.can in?uence the overall contour of the strain pro?le.Fig.7a indicates that the strain pro?le is considerably a?ected by the variation of A.R.,even at the same level of microporosity.Fig.7b also exhibits the dependence of fracture strain on the variation of the A.R.of micro-voids.As shown,the di?erence of the fracture strain between the sphere and ellipsoid increases more and more remarkably,even at the same level of microporosity as the A.R.of ellip-soidal micro-void increases to 30.In particular,as shown in Fig.7c,the increase of the A.R.induces an obvious di?er-ence in the normalized strain of ellipsoidal micro-voids compared to those of spheres.Thus,the complicated mor-phology of the micro-voids may lead to error in the estima-tion of load carrying capacity and may eventually lead to misunderstanding and controversy concerning the practical role of micro-voids as typical stress concentration factors on mechanical properties.Therefore,quantitative fractog-raphy,including SEM observation,can be recommended as an e?ective methodology for the exact measurement of load carrying capacity [16–18].

4.3.Mg 17Al 12precipitate on plastic deformation

Fig.8shows a typical microstructure on a longitudinal section of a tensile deformed specimen.This image shows a fracture aspect where the crack initiation of the Mg 17Al 12precipitate occurs in the direction normal to the loading axis with severe deformation of the a -Mg matrix.This fracture mode of as-cast magnesium alloy is very similar to the frac-ture mechanism of Al–Si alloys [24–26].With the increased stress level under axial tensile loading,the accumulation of plastic deformation in the a -Mg matrix preferentially in-duces premature fracture of Mg 17Al 12precipitate.Addition-ally,the premature crack formed in the Mg 17Al 12precipitate propagates along the crystallographic planes of the a -Mg matrix by the accumulation of local plastic deformation.Finally,macroscopic fracture is accomplished through the agglomeration of the adjacent growing cracks [20,27].

Even though micro-voids play a signi?cant role as a major stress concentration source in overall tensile defor-mation,crack initiation in the Mg 17Al 12precipitate may introduce an additional decrease in load carrying

capacity.

Fig.6.Dependence of strain pro?les on the variation of the strain rate sensitivity term in the constitutive model:(a)m =0.005;(b)m =0.1.

C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–43034299

Unfortunately,it is very di?cult to estimate exactly the additional decrease in load carrying capacity caused by crack initiation at the Mg 17Al 12precipitate.This additional decrease in load carrying capacity will be a source of diver-

gence between the constitutive prediction and experimental results,as shown in Fig.4.

In order to exclude the concomitant e?ect by crack ini-tiation at the Mg 17Al 12precipitate,the tensile property

of

Fig.7.Deviation of strain pro?les from (a)the iso-strain line (e h =e i ),(b)strain to fracture and (c)normalized strain with the variation of aspect ratio.

4300 C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–4303

fully solution-treated alloy was also estimated by measur-ing SRS and SHE.For AZ91alloy on solution treat-ment,the nominal SRS value,m ,is 0.004±0.001and

the nominal SHE value,n ,is 0.4±0.02.The maximum values of UTS and elongation obtained from regression analyses of experimental results are 260MPa and 9.5%,respectively.For the given values of n =0.4and m =0.005,Fig.9shows that there is a strong correspon-dence between the experimental results and the constitu-tive prediction.This could con?rm the additional decrease of load carrying capacity caused by premature fracture of Mg 17Al 12precipitate and its practical contri-bution to overall plastic deformation.

4.4.Constitutive prediction for the defect-free condition In strain pro?les,the strain outside the void region in practice means the observed strain,i.e.,the fractured strain on tensile deformation.The localized strain within the void region,e ?i ,which corresponds to the fractured strain,can be obtained from the constitutive equation for each microporosity.Fig.10shows the modi?ed strain pro?le between localized strain within the void region and fractured strain for several experimental data

shown

Fig.8.Morphology of cracks formed at the Mg 17Al 12precipitate as seen in a longitudinal section of a tensile deformed

specimen.

https://www.360docs.net/doc/267334284.html,parison between the experimental results and calculated values of (a)elongation and (b)UTS with microporosity for the projected area of n =0.4and m =0.005.

C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–43034301

in Fig.4.As shown,there is an intersection point between the iso-strain line (e h =e i )and linear-?tted aver-age values among localized strains for each strain pro?le.This means that the fractured strain of sound material does not have any internal discontinuity.This approach can obtain an average predicted strain of 6.8%as a max-imum value for defect-free AZ91alloy.Likewise,the maximum UTS of defect-free AZ91alloy can be esti-mated by substitution of the maximum strain into the strain term of Eq.(10).For a maximum strain of 6.8%,the UTS of defect-free AZ91alloy can be up to 255MPa,and the experimental results are higher than that of regression at $15MPa.5.Summary

The UTS and elongation of as-cast AZ91alloy have nonlinear and inverse parabolic dependence upon micro-porosity variation,even though the yield strength depends linearly on the load carrying capacity.The con-stitutive prediction of tensile deformation of AZ91alloy agrees relatively well with the experimental results.The premature fracture of Mg 17Al 12precipitate results in a slight deviation between the constitutive prediction and experimental results due to the in?uence of load carrying capacity on plastic deformation.However,the constitu-tive prediction can predict the overall plastic deformation of solution-treated AZ91alloy very successfully.

The practical errors in the estimation of load carrying capacity may originate from the complex morphology of micro-voids and the additional increase of discontinuity by crack initiation at the Mg 17Al 12precipitate.However,exact estimation of the load carrying capacity can be achieved by quantitative fractography through SEM obser-vation of the fractured surface.

The in?uence of micro-voids and cracks on the load carrying capacity plays a more signi?cant role on overall

plastic deformation as the SHE and SRS simultaneously decrease to lower levels.Given that the SRS of conven-tional metallic material is very low but not zero,the consti-tutive model with the SRS term is less sensitive than the simple constitutive model where the SRS is not taken into consideration.Therefore,the constitutive equation should take the SRS into account in order to accurately predict the tensile properties of conventional metallic materials at room temperature.References

[1]Dieter GE.Mechanical metallurgy.3rd ed.New York:McGraw-Hill;1986.

[2]Ghosh AK.Acta Metall 1977;25:1413.[3]Ghosh AK.Acta Metall 1980;28:1443.

[4]Surappa MK,Blank E,Januet JC.Scripta Metall 1986;20:1281.

[5]Ca

′ceres CH.Scripta Metall 1995;32:1851.[6]Ca

′ceres CH,Selling BI.Mater Sci Eng A 1996;220:109.[7]Entwistle RA,Gruzleski JE,Thomas PM.In:Beeley P,editor.Proceedings of international conference on solidi?cation and cast metals.She?eld:The Metals Society;1977.p.345.

[8]Herrera A,Kondic V.In:Beeley P,editor.Proceedings of interna-tional conference on solidi?cation and cast metals.She?eld:The Metals Society;1977.p.460.

[9]Radharishna K,Seshan S,Seshadri MR.Trans India Inst Metall 1981;34:169.

[10]Pan EN,Lin CS,Loper SR.Am Foundrymen’s Soc Trans

1990;98:735.

[11]Lee CD.Met Mater Int 2002;8:283.

[12]Hotta S,Saruki K,Asano T,Nakamura MJ.Jpn Inst Light Metal

1989;39:203.

[13]Savas MA,Altintas S.Mater Sci Eng A 1993;173:227.[14]Samuel AM,Samuel FM.Mater Trans A 1995;26:2359.

[15]Avalle M,Belingardi G,Cavatorta MP,Doglione R.Int J Fatigue

2002;24:1.

[16]Gokhale AM,Patel GR.In:Subodh KD,Michael HS,editors.

Aluminum 2002,Proceedings of TMS 2002automotive alloys and aluminum sheet symposium.Warrendale (PA):TMS;2002.p.65.[17]Gokhale AM,Patel GR.Scripta Mater 2005;52:237.

[18]Lee SG,Patel GR,Gokhale AM,Sreeranganathan A,Horstemeyer

MF.Scripta Mater

2005;53:851.

Fig.10.Schematic diagram for the prediction of the maximum strain of defect-free material from curve ?tting of localized strain within the void region for several experimental fractured strains.

4302 C.D.Lee,K.S.Shin /Acta Materialia 55(2007)4293–4303

[19]Chadha G,Allison JE,Jones JW.In:Luo AA,editor.Magnesium

technology2004.Warrendale(PA):TMS;2004.p.181.

[20]Lee CD,Shin KS.Met Mater Int2003;9:21.

[21]Bu?e`re JY,Savelli S,Jouneau PM,Maire E,Fouge`res R.Mater Sci

Eng A2001;316:115.

[22]Flemings MC.Solidi?cation processing.New York:McGraw-Hill;

1974.[23]Mabuchi M,Kubota K,Higashi K.Mater Trans JIM1995;36:

1249.

[24]Gangulee A,Gurland J.Trans AIME1990;239:605.

[25]Voigt RC,Bye DR.Am Foundrymen’s Soc Trans1991;99:33.

[26]Chan KS,Jones P,Wang Q.Mater Sci Eng A2003;341:18.

[27]Gall K,Biallas G,Maier HJ,Gullett P,Horstemeyer MF,McDowell

DL,et al.Int J Fatigue2004;26:59.

C.D.Lee,K.S.Shin/Acta Materialia55(2007)4293–43034303

颜色英文缩写大全

颜色英文缩写大全缩写方式一: 缩写英文中文 BK Black黑色 BN Brown棕色 BU Blue蓝色 CR Clear透明 DKGN Dark Green深绿色 GN Green绿色 GY Gray灰色 LT BU Light Blue浅蓝色 LT GN Light Green浅绿色 OG Orange橙色 PK Pink粉红色 PL Purple紫色 RD Red红色 TN Tan褐色 VI Violet粉紫色 WT White白色 YL Yellow黄色 缩写方式二:

序号英文简写英文中文1BGE beige米色 2BLU blue蓝色 3BLK black黑色 4LAV lavender淡紫色 5BGY Blue grey蓝灰色 6LBL lightblue浅蓝色 7VLT violet紫色 8SKY skyblue天蓝色 9WHI white白色 10 GRY grey灰色 11 NAT natural自然色 12 GRN green绿色 13 LPK lightpink浅粉色 14 AQU Aqua 水绿色 15 MAG magenta洋红色 16 TUR turquoise青绿色 17 PNK pink粉色 18 CRP crystal pink晶粉 19 SKN sky nature天蓝色 20 PLT purple tulip紫色 21 OLV olive橄榄绿

22HBL hotblue亮蓝 23FUS fuchsia紫红色 24 GLD golden金色 25PUR purple紫色 26 RED red 红色 27 SAL salmon 鲜肉色 28YLW yellow黄色 缩写方式三: 序号英文简写英文中文 1 WH White白色 2 BN Brown棕色 3 GN Green 绿色 4 YE Yellow黄色 5 GY Grey灰色 6 PK Pink粉红色 7 BU Blue蓝色 8 RD Red 红色 9 BK Black黑色 10VT Violet紫色 11GN/PK Green-pink绿 /粉红色12RD/BU Red-blue红/蓝色

英语缩写方法

Z 表示"人"people/person,因为"Z"看上去像个人头,它通常被写在一个词或符号的右上角。例如:日本人:JZ。 C 表示政府,统治:government,govern 希腊字母C读/ga:ma/,近似government, 所以就用C 来表示govern, government。governmental official 可以表示为 CZ。 P 表示政治:politics, political希腊字母P读/pai/,近似politics, political。那么politician就可以表示为 PZ。 E 表示总数:total, totally, entire, entirely, on the whole, all in all, to sum up, ect. E 数学符号表示总值。 G 表示效率:efficient, effective。G为效率符号。 Q 表示"通货膨胀":inflation因为这个符号酷似一个上升的气球。 A 表示农业: agriculture. agriculture经常用到,所以用首字母代替。 B 表示商业:business。 C×表示冲突,矛盾:conflict, confrontation "C×"中的"×"表示反对,字母"C"将反对的概念缩小为conflict 和 confrontation。 W 表示工作,职业: work, employ 等。它是work的第一个字母。所以WZ就可以用来表示worker,而W(Z在字母上方表示employer,在字母下方表示employee)。 i 表示工业: industry, industrial 字母i 像只烟囱,所以用来可以用来表示工业。 U U 看酷似一个酒杯,在笔记中表示合同、协议(treaty, agreement)一般只有在谈判成功、协议成交后才会表示"举杯祝贺"。如果在U内填入2××××,就可以表示为bilateral(双边的), 填入3表示为trilateral(三边的)。填入在U中填入1表示: Unilateralism(单边主义),填入m (multiple) 表示多边主义。如果在U上加一个"/"××××表示谈判破裂。 O 表示"国家"、"民族"、"领土"等:country, state, nation, etc.gO表示进口,Og表示出口这个符号酷似一把椅子,可以表示主持、主办:chair, host, preside over。那么在此符号上加Z表示主席,主持人:chairman, host, etc. T 表示"领导人":leader, head那么head of government, head of company 便可以表示为 CT ⊙圆圈表示一个圆桌,中间一点表示一盆花,这个符号就可以表示会议、开会等:meeting,conference, negotiation,seminar,discussion,symposiumk 这个符号看上像条鱼,所以表示"捕鱼业"等合fishery 有关的词汇。 O 圆圈代表地球,横线表示赤道,所以这个符号就可以表示国际的、世界的、全球的等: international, worldwide, global, universal, etc. J 表示开心:pleasant, joyful,happy,excited, etc. L 表示不满、生气unsatisfied, discomfort, angry, sad, etc. EO 表示听到、总所周之:as we all know, as is known to all, as you have already heard of, etc. O 表示漠不关心、无动于衷:indifferent, apathetic, unconcern, don't care much, etc + 表示"多": many, lots of, a great deal of, a good many of, etc. ++(+2) 表示"多"的比较级:more +3 表示"多"的最高级:most -表示"少": little, few, lack ,in short of/ be in shortage of etc. ×表示"错误"、"失误"和"坏"的概念:wrong/incorrect, something bad, notorious, negative, etc. > 表示"多于"概念:bigger/larger/greater/more than/better than, etc. 表示"高" 概念:superior to, surpass, etc. < 表示"少于"概念:less/smaller, etc. 表示"低"概念:inferior to, etc.

英语常识

英语常识 一、英语语法 二、3个月听力口语纯正化 三、学英语的十个小技巧 四、英语学习的实质 五、权威之言:众英语大师谈英语学习成功的秘诀 六、英语中的常见缩写词 七、常见英语洲名 八、部分国家(或地区)、语言、国民及国籍表 九、常用的前缀和后缀 十、妙语连珠90句超级英语 十一、背单词最科学的方法 十二、大学英语四级听力60个必考习语详解 十三、英文写作必背之35句型 十四、十种妙法巧记英文单词 十五、英语中的30句表扬之句 十六、73组极易拼错的英文单词 十七、100句最IN英文流行语 十八、看外国人如何含蓄表达想上厕所 十九、原来英文中的“钱”有那么多表达法

二十、怎样用合适的英文评价美女 二十一、不高兴就发泄出来吧——如何用英文表达不满 二十二、练好英语口语的六种技巧 二十三、欧美电影地道口语汇总 二十四、英语九百句 二十五、关于缘分的N种英文表达法 二十六、女人的32个秘密(中英文版) 二十七、点点英语:专业致力于四六级、口译口语、BEC、考研 二十八、办公室常用的英语口语妙句 二十九、字典上查不到的中国“特色”英语词汇 三十、字典上查不到的中国“特色”英语词汇 三十一、常用表扬30句 三十二、商务交际闪光英语口语集锦 三十三、英汉文化的十大常见差异 三十四、和老美美语对话的6种技巧 三十五、英语名人名言——人性与道德 三十六、水果英语词汇大全 三十七、春节能够用到的英文 三十八、春节常用英文 三十九、英语新年祝福语大全 四十、趣谈英语“Dog”的用法

四十一、甜甜蜜蜜说爱你——情人节英语情话大派送四十二、英语学习的六大原则 四十三、社会各界职位一览(中英文对照)

英文缩写

常见英文缩写(整理),普及常识 来源:田浩然的日志 VS:versus,versus是拉丁文,表示“相对照、相对立”等意思。这个词及其简写,后来被英文采用。此缩写在中文有很多解释,所以没有必要在中国用英文单词,反而词不达意。在汉语中,基本是对的意思。 Blog:由weblog演变而来。 BLOG:short message service,短信。另外,mms(multimedia messaging sevice)可翻译为彩信。 CEO:chief executive officer,首席执行官。 BT:BT是一种P2P共享软件,全名叫"Bit Torrent",中文全称:"比特流"又名"变态下载" 。BBS:是英文Bulletin Board System的缩写,中文意思是电子公告板系统,现在国内统称做论坛。不过,亦有歪解,即Big-Breasted Sister,请看官自行消化。 XP:是英文Experience(体验)的缩写, 自从微软发布Office XP后,成为软件流行命名概念。HTTP:hypertext transfer protocol,超文本传输协议,自WWW诞生以来,一个多姿多彩的资讯和虚拟的世界便出现在我们眼前,可是我们怎么能够更加容易地找到我们需要的资讯呢?当决定使用超文本作为WWW文档的标准格式后,于是在1990年,科学家们立即制定了能够快速查找这些超文本文档的协议,即HTTP协议。经过几年的使用与发展,得到不断的完善和扩展,目前在WWW中使用的是HTTP/1.0的第六版。 MSN:MSN 即MICROSOFT service NETWORK, 微软网络服务,是微软公司的一个门户站点. MSN作为互联网上最受欢迎的一个门户, 具备了为用户提供了在线调查、浏览和购买各种产品和服务的能力. DJ:DJ是DISCO JOCKEY(唱片骑士)的英文缩写,以DISCO为主,DJ这两个字现在已经代表了最新、最劲、最毒、最HIGH的Muisc。 URL:Uniform Resoure Locator的缩写,即统一资源定位器,它是WWW网页的地址。 MC:MC的意思是Micphone Controller的意思,翻译差不多是“控制麦克风的人”。也可以理解为Rapper,很多Rap都在自己的艺名前面加上“MC”,比如台湾的MChotdog,香港的MCYan,美国的MC Hammer等。 CS:counter-strike,在1998年之前,相信几乎没有人知道世界上存在着一个名叫Valve 的游戏开发小组,然后在经历了1998年那个令人难忘的E3之夏后,相信几乎没有玩家会不知道它的名字:《半条命》所带来的震撼感觉使一些挑剔者也不得不承认它是一款具有强烈感染力的游戏,同时《半条命》获得了超过40家媒体一致公认的“年度最佳游戏”称号,更被誉为“史诗般杰出的作品”——Half-life 更是在当今日趋竞争激烈的动作类游戏市场中与Quake系列、Unreal系列形成三足鼎立之势。 Bug:Bug一词的原意是“臭虫”或“虫子”。但是现在,在电脑系统或程序中,如果隐藏着的一些未被发现的缺陷或问题,人们也叫它“Bug”,第一代的计算机是由许多庞大且昂贵的真空管组成,并利用大量的电力来使真空管发光。可能正是由于计算机运行产生的光和热,引得一只小虫子 Bug钻进了一支真空管内,导致整个计算机无法工作。研究人员费了半天时间,总算发现原因所在,把这只小虫子从真空管中取出后,计算机又恢复正常。后来,Bug这个名词就沿用下来,表示电脑系统或程序中隐藏的错误、缺陷、漏洞或问题。 3G:3rd Generation的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。 PK:PK是英文"Player Kill"的缩写,就是玩家之间的打斗或者是“玩家杀手”。也就是说,

常用单位英文缩写及法定计量单位表

常用单位的英文缩与 长度单位:m(米)、cm(厘米)、mm(毫米) 重量单位:t(吨)、kg(千克)、g(克)、mg(毫克)、卩g微克) 容积单位:kg/m3(千克/立方米)、L(升,大写)、mL(毫升,L大写) 时间单位:d(天)、h(小时)、min(分钟)、s(秒) 面积单位:hm2(公顷)、km2(平方千米)、a (亩) 水溶液的酸碱度:pH (p小写,H大写)光照强度:lx (勒克斯)或lux (I是小写) 法定计量单位表 长度 名称毫米厘米分米米十米百米千米等数1000 微米10毫米10厘米10分米10米100米1000 米 面积 名称平方厘米平方米平方公里 等数100 平方毫米10000 平方厘米1000000 平方米 体积 名称立方厘米立方分米立方米等数1000立方毫米1000立方厘米1000立方分米 容量 名称厘升分升升十升百升千升等数10毫升- 10厘升10分升10升100升1000 升 质量 名称厘克分克克十克百克千克吨等数10毫克10厘克10分克10克100克1000 克1000千克 法定计量单位表 长度 名称厘分等数10毫10厘 寸尺 10分10寸 丈 10尺 里 150丈面积 名称平方厘平方分平方寸平方尺平方丈平方里等数100平方毫100 平方厘100平方分100 平方寸100平方尺22500 平方丈

地积 名称等数 厘 10毫 分亩 10厘10分 顷 100亩 质量 名称等数 毫 10丝 厘 10毫 分 10厘 钱两 10分10钱 斤 10两 担 100斤 容量 名称等数 勺 10撮 合 10勺 升 10合 斗 10升 石 10斗 计量单位比较表 长度比较表 1千米(公里)=2市里=0.621 英里=0.540 海里1米=3市尺=3.281 英尺 1市里=0.5 千米(公里)=0.311 英里=0.270 海里1市尺=0.333 米=1.094 英尺 1英里=1.609 千米(公里)=3.218 市里=0.869 海里1英尺=0.305 米=0.914 市尺1海里=1.852 千米(公里)=3.704 市里=1.150 英里 地积比较表 1公顷=15市亩=2.471 英亩 1市亩=6.667 公亩=0.165 英亩 1英亩=0.405 公顷=6.070 市亩 质量比较表 1千克(公斤)=2市斤=2.205 英磅 1市斤=0.5千克(公斤)=1.102 英镑 1英镑=0.454 千克(公斤)=0.907 市斤 容量比较表 1升(公制)=1市升=0.220 加仑(英制) 1加仑(英制)=4.546 升=4.546 市升

敷设方式的英文缩写

2008-7-14 21:52 最佳答案 一下是我收集的电气设计施工图中常用线路敷设方式:SR: 沿钢线槽敷设 BE: 沿屋架或跨屋架敷设 CLE: 沿柱或跨柱敷设 WE: 沿墙面敷设 CE: 沿天棚面或顶棚面敷设 ACE: 在能进入人的吊顶内敷设 BC: 暗敷设在xx CLC: 暗敷设在柱内 WC: 暗敷设在墙内

CC: 暗敷设在顶棚内 ACC: 暗敷设在不能进入的顶棚内FC: 暗敷设在地面内 SCE: 吊顶内敷设,要穿金属管一,导线穿管表示 SC-焊接钢管 MT-电线管 PC-PVC塑料硬管 FPC-阻燃塑料硬管 CT-桥架 MR-金属线槽 M-钢索 CP-金属软管 PR-塑料线槽 RC-镀锌钢管 二,导线敷设方式的表示DB-直埋

TC-电缆沟 BC-暗敷在xx CLC-暗敷在柱内 WC-暗敷在墙内 CE-沿天棚顶敷设 CC-暗敷在天棚顶内SCE-吊顶内敷设 F-地板及地坪下 SR-沿钢索 BE-沿屋架,xx WE-沿墙明敷 三,灯具安装方式的表示CS-链吊 DS-管吊 W-墙壁安装 C-吸顶 R-嵌入 S-支架 CL-柱上 沿钢线槽: SR

沿屋架或跨屋架: BE 沿柱或跨柱: CLE 穿焊接钢管敷设: SC 穿电线管敷设: MT 穿硬塑料管敷设: PC 穿阻燃半硬聚氯乙烯管敷设:FPC 电缆桥架敷设: CT 金属线槽敷设: MR 塑料线槽敷设: PR 用钢索敷设: M 穿聚氯乙烯塑料波纹电线管敷设:

KPC 穿金属软管敷设: CP 直接埋设: DB 电缆沟敷设: TC 导线敷设部位的标注 沿或跨xx(屋架)敷设:AB 暗敷在xx: BC 沿或跨柱敷设: AC 暗敷设在柱内: CLC 沿墙面敷设: WS 暗敷设在墙内: WC 沿天棚或顶板面敷设:

电信业务相关知识英文缩写释义

BOSS (Business & Operation Supporting System) 业务运营支撑系统 BSS (Business Support System) 业务支撑系统 OSS (Operator Support Systems) 运营支撑系统 MSS (Management Support System)管理支撑系统 BSN (Business Supporting Network )业务支撑网 Prodigy 中兴软创BSN产品的产品名称、研发代号 SMART CC&B的内部研发代号 (SM:Super&Multiple:超级的&多功能、多业务的 /ART: 艺术品、巧妙) 巧妙的, 聪明的, 漂亮的, 灵巧的 CC&B (Customer Care and Billing) 客户服务与计费 OCS (Online Charging System)在线计费 eOMS(electronic Operation Managerment System)电子运维系统 BPM(Business Process Management)业务流程管理 IOM (Integrated Order Management)集成定单管理 CRM (Customer Relationship Management)客户关系管理 电信业务相关知识英文缩写释义 ITSP (Internet Telephony Service Provider) IP电话业务提供商 CTG-MBOSS(CTG:China Telecommunication Group/中国电信集团)(MBOSS: MSS、BSS、OSS的缩写) EDM (Enterprise Data Model) 企业数据模型 EDA(Enterprise Data Architecture)企业数据架构 GSM (Global System For Mobile Communication)数字蜂窝通信系统 CDMA (Code Division Multiple Access)码分多址 TDMA (Time Division Multiple Access)时分多址 PDC (Primary Domain Controller)主域控制器 UMTS(Universal Mobile Telecommunications System)通用移动通信系统 WCDMA(WidebandCDMA)宽带分码多工存取 MSC(Mobile-services Switching Center)移动业务交换中心 VLR (Visitor Location Register)拜访位置寄存器 HLR (Home Location Register)归属位置寄存器 AUC (AUthentication Center)鉴权中心 EIR (Equipment Identity Register)设备标识寄存器 IMEI (International Mobile station Equipment Identity)

外贸常见英语缩写

1 C&F(cost&freight)成本加运费价 2 T/T(telegraphic transfer)电汇 3 D/P(document against payment)付款交单 4 D/A (document against acceptance)承兑交单 5 C.O (certificate of origin)一般原产地证 6 G.S.P.(generalized system of preferences)普惠制 7 CTN/CTNS(carton/cartons)纸箱 8 PCE/PCS(piece/pieces)只、个、支等 9 DL/DLS(dollar/dollars)美元 10 DOZ/DZ(dozen)一打 11 PKG(package)一包,一捆,一扎,一件等 12 WT(weight)重量 13 G.W.(gross weight)毛重 14 N.W.(net weight)净重 15 C/D (customs declaration)报关单 16 EA(each)每个,各 17 W (with)具有 18 w/o(without)没有 19 FAC(facsimile)传真 20 IMP(import)进口 21 EXP(export)出口 22 MAX (maximum)最大的、最大限度的 23 MIN (minimum)最小的,最低限度 24 M 或MED (medium)中等,中级的 25 M/V(merchant vessel)商船 26 S.S(steamship)船运 27 MT或M/T(metric ton)公吨 28 DOC (document)文件、单据 29 INT(international)国际的 30 P/L (packing list)装箱单、明细表 31 INV (invoice)发票 32 PCT (percent)百分比 33 REF (reference)参考、查价 34 EMS (express mail special)特快传递 35 STL.(style)式样、款式、类型 36 T或LTX或TX(telex)电传 37 RMB(renminbi)人民币 38 S/M (shipping marks)装船标记 39 PR或PRC(price) 价格 40 PUR (purchase)购买、购货 41 S/C(sales contract)销售确认书 42 L/C (letter of credit)信用证 43 B/L (bill of lading)提单 44 FOB (free on board)离岸价

常用单位英文缩写及法定计量单位表

常用单位英文缩写及法定 计量单位表 Revised by Liu Jing on January 12, 2021

常用单位的英文缩写长度单位:m(米)、cm(厘米)、mm(毫米) 重量单位:t(吨)、kg(千克)、g(克)、mg(毫克)、μg(微克) 容积单位:kg/m3(千克/立方米)、L(升,大写)、mL(毫升,L大写) 时间单位:d(天)、h(小时)、min(分钟)、s(秒) 面积单位:hm2(公顷)、km2(平方千米)、a(亩) 水溶液的酸碱度:pH(p小写,H大写) 光照强度:lx(勒克斯)或lux(l是小写) 法定计量单位表 长度 名 称 毫米厘米分米米十米百米千米 等数1000微 米 10毫米10厘米10分米10米100米1000米 面积 名称平方厘米平方米平方公里 等数100平方毫米10000平方厘米1000000平方米 体积 名称立方厘米立方分米立方米 等数1000立方毫米1000立方厘米1000立方分米 容量 名称厘升分升升十升百升千升等数10毫升10厘升10分升10升100升1000升 质量 名称厘克分克克十克百克千克吨 等数10毫克10厘克10分克10克100克1000克1000千克 法定计量单位表 长度 名称厘分寸尺丈里

等数10毫10厘10分10寸10尺150丈 面积 名称平方厘平方分平方寸平方尺平方丈平方里 等数100 平方毫100 平方厘100 平方分100 平方寸100 平方尺22500 平方丈 地积 名称厘分亩顷 等数10毫10厘10分100亩 质量 名称毫厘分钱两斤担 等数10丝10毫10厘10分10钱10两100斤 容量 名称勺合升斗石 等数10撮10勺10合10升10斗 计量单位比较表 长度比较表 1千米(公里)=2市里=英里=海里 1米=3市尺=英尺 1市里=千米(公里)=英里=海里 1市尺=米=英尺 1英里=千米(公里)=市里=海里 1英尺=米=市尺 1海里=千米(公里)=市里=英里 地积比较表 1公顷=15市亩=英亩 1市亩=公亩=英亩 1英亩=公顷=市亩 质量比较表 1千克(公斤)=2市斤=英磅 1市斤=千克(公斤)=英镑 1英镑=千克(公斤)=市斤 容量比较表 1升(公制)=1市升=加仑(英制) 1加仑(英制)=升=市升

外贸英语知识缩写大全

差额 c/- (or c/s)---------------cases 箱 bar. or 桶; 琵琶桶 ca.; c/s; or cases 箱 . clause---------------Both to blame collision clause 船舶互撞条款 C/D----------------cash against documents 付款交单 B/C-----------------------Bills for collection 托收单据 取消 ; 注销 Christ 公元前 ,Assurance, Freight down 转下 成本加保费. 运费价 draft 银行汇票 , cancelled,cancellation取消 ; 注销 Bill----------------------Discounted 贴现票据 取消 ; 注销 dates inclusive 包括首尾两日 商品目录 bdle. ; 把; 捆 C/B------------------------clean bill 光票 . ; B/E ; B. of Exchange 汇票 before delivery 先付款后交单 forward 接下页 centimetre 立方厘米;立方公分 B/G-----------------------Bonded goods 保税货物 copy 复写纸;副本(指复写纸复印的)

bg. ; b/s-----------------bag(s) 袋 of Commerce 商会 银行业务 Commodity Inspection Bureau 中国商品检验局 篮; 筐 C/d------------------------carried down 转下 bl.; (s) 包 cent-----------------------centum(L.) 一百 Blading-------------------Bill of Lading 提单 Cert. ; ; certified 证明书; 证明 大厦 feet 立方英尺 B/L Bill of Lading 提单 C/f------------------------Carried forward 接后; 结转 (下页 ) 包 , barrels 桶 商议; bot. ; bott. ; btl--------bottle 瓶 C.& and Freight 成本加运费价格 商标; 牌 CFS; Freight Station 集装箱中转站; 货运站 破碎 公毫 桶 ; 琵琶桶 's proportion of General Average 共同海损分摊额 b/s-----------------------bags; bales 袋 ; 包 货物 Bs/L----------------------Bills of Lading 提单 (复数)

颜色英文缩写大全

颜色英文缩写大全 缩写方式一: 缩写英文中文 BK Black 黑色 BN Brown 棕色 BU Blue 蓝色 CR Clear 透明 DKGN Dark Green 深绿色 GN Green 绿色 GY Gray 灰色 LT BU Light Blue 浅蓝色 LT GN Light Green 浅绿色

OG Orange 橙色 PK Pink 粉红色 PL Purple 紫色 RD Red 红色 TN Tan 褐色 VI Violet 粉紫色 WT White 白色 YL Yellow 黄色

缩写方式二: 序号英文简写英文中文 1 BGE beige 米色 2 BLU blue 蓝色 3 BLK black 黑色 4 LAV lavender 淡紫色 5 BGY Blue grey 蓝灰色 6 LBL lightblue 浅蓝色 7 VLT violet 紫色 8 SKY skyblue 天蓝色 9 WHI white 白色 10 GRY grey 灰色 11 NAT natural 自然色 12 GRN green 绿色 13 LPK lightpink 浅粉色 14 AQU Aqua 水绿色 15 MAG magenta 洋红色 16 TUR turquoise 青绿色 17 PNK pink 粉色 18 CRP crystal pink 晶粉 19 SKN sky nature 天蓝色 20 PLT purple tulip 紫色

21 OLV olive 橄榄绿 22 HBL hotblue 亮蓝 23 FUS fuchsia 紫红色 24 GLD golden 金色 25 PUR purple 紫色 26 RED red 红色 27 SAL salmon 鲜肉色 28 YLW yellow 黄色

9月的英文缩写是什么方式

9月的英文缩写是什么方式 在英语的学习中,月份的学习是比较早接触的,那么你知道9月的英文缩写是什么吗?现在跟一起学习关于9月的英语知识吧。 Sep. Sept. 9月的英文缩写是什么例句1. I've booked it for Thurs. 8th Sept. 我预订了9月8号星期四的票。 2. Our school will begin on Sept. 3. 我们学校将在九月三日开学. 3. The commission cited Sept. 11 heroes as a group. 这个委员会把“9-11事件”的英雄作为一个整体进行奖励. 4. On Sept. 11, all three kinds of heroism came to light. 在9月11日, 3种类型的英雄主义行为都有所体现. 5. Sept and Josef carried the senseless king into a cellar. 萨普特和约瑟夫把昏迷不醒的国王抬到地下室去. 6. And the bravery on Sept. 11 can teach us a lot about ourselves. 而且人们在9月11日的英雄表现让我们更多地了解了我们自己. 7. Delivery of the first plane is expected Sept. 30, the

second nine months later. 第一架飞机可望于1990年9月30日交货, 第二架的交货期在九个月之后. 8. Teacher's Day is on Sept. 10. 教师节是9月10日. 9. Andgained the ISO 9001 Quality System Certificate in Sept. 2001. 2001年9月通过ISO9001质量体系认证. 10. On Sept 5 , 2002, Haimowitz is celebrating his 100 th birthday. 2002年9月5日, 海莫威茨在庆祝他的百岁寿辰. 11. SQ 788 on Sept. 1 st from London to Taipei. 九月一日,从伦敦到台北的SQ788班机. 12. Authorities suspect Tunstall was slain on or about Sept. 15. 警方怀疑汤斯顿大约是在9月15日遭到杀害的. 13. New Zealand relayed the news to China on Sept. 9. 新西兰方面于9月9日将消息反馈给中国. 14. The movie is set to be released in Taiwan on Sept. 29. 因此在美国上映时,票房平平. 15. Already , since Sept. 11, Avon's stock has fallen 10 %.

英语常见缩写

PC:个人计算机Personal Computer CPU:中央处理器Central Processing Unit CPU Fan:中央处理器的“散热器”(Fan) MB:主机板MotherBoard RAM:内存Random Access Memory,以PC-代号划分规格,如PC-133,PC-1066,PC-2700 HDD:硬盘Hard Disk Drive FDD:软盘Floopy Disk Drive CD-ROM:光驱Compact Disk Read Only Memory DVD-ROM:DVD光驱Digital Versatile Disk Read Only Memory CD-RW:刻录机Compact Disk ReWriter VGA:显示卡(显示卡正式用语应为Display Card)

AUD:声卡(声卡正式用语应为Sound Card) LAN:网卡(网卡正式用语应为Network Card) MODM:数据卡或调制解调器Modem HUB:集线器 WebCam:网络摄影机 Capture:影音采集卡 Case:机箱 Power:电源 Moniter:屏幕, CRT为显像管屏幕, LCD为液晶屏幕

USB:通用串行总线 Universal Serial Bus,用来连接外围装置 IEEE1394:新的高速序列总线规格Institute of Electrical and Electronic Engineers Mouse:鼠标,常见接口规格为PS/2与USB KB:键盘,常见接口规格为PS/2与 USB Speaker:喇叭 Printer:打印机 Scanner:扫描仪 UPS:不断电系统 IDE:指IDE接口规格 Integrated Device Electronics,IDE接口装置泛指采用IDE接口的各种设备 SCSI:指SCSI接口规格 Small Computer System Interface,SCSI接口装置泛指采用SCSI接口的各种设备

焊接方法英文缩写

AW——ARC WELDIN—G —电弧焊 AHW ------ a tomic hydroge n welding -- 原子氢焊 BMAW --- b are metal arc welding ------ 无保护金属丝电弧焊 CAW ---- carbon arc welding ----- 碳弧焊 CAW- ------ gas carbon arc weldin ----- 气保护碳弧焊 CAW- ------ hielded carbon arc weldin-------- 有保护碳弧焊 CAW-T ---- twin carbon arc weldi ng -- 双碳极间电弧焊 EG ------ lectrogas welding ------- 气电立焊 FCAW ---- f lux cored arc welding ---- ■药芯焊丝电弧焊 FCW-G --- gas-shielded flux cored arc weldin ——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc weldin ---- 自保护药芯焊丝电弧焊GMAW——gas metal arc weldin ------ 熔化极气体保护电弧焊 GMAW-P——pulsed arc熔化极气体保护脉冲电弧焊 GMAW-S --- short circuit ing arc ---- 熔化极气体保护短路过度电弧焊 GTAW ---- g as tun gsten arc weldin ------ 钨极气体保护电弧焊 GTAW-Ppulsed arc——钨极气体保护脉冲电弧焊 PAW ---- p lasma arc weldin ------ 等离子弧焊 SMAW ---- hielded metal arc welding ------ 焊条电弧焊 S ------- stud arc welding ---- 螺栓电弧焊 SAW ---- submerged arc weldin ----- ■埋弧焊 SAW-S ---- series ---- 横列双丝埋弧焊

英语中的冷知识:这5个缩写词 你肯定闻所未闻

英语中的冷知识:这5个缩写词你肯定闻所未闻 来源:牛津字典博客 We’re all familiar with contractions. Plenty are signalled by an apostrophe and others don’t hide their origins with any notable ingenuity – such as I’m, you’re, they’ll etc. But some everyday words have dispensed with markers of their shortenings, to the extent that you may well not have realized that they ever started as anything else. 我们对缩写并不陌生,很多以撇号表明缩略,有些则无新意可言,直接可看出其来源,如I?m, you?re, they?ll ("我是、你是、他们是")等。但有些日常词汇已不用缩略标记,你很有可能都意识不到这些词最初以别样的形式存在。 don and doff 穿戴 Saying that you?ll don your coat or doff your hat might be a little old-fashioned, but you?ll probably still recognize them as meaning …put on? and …take off?. What you might not have realized is that the words were originally contractions of essentially those definitions: do on and do off.

电脑中常用英文缩写的含义

计算机英语 第一节著名计算机公司 1、Microsoft: 微软公司。有时缩略为MS,是全球最著名的软件商,美国软件巨头微软公司的名字。Microsoft是由两个英语单词组成:Micro 意为“微小”,Soft意为“软件”,微软(Microsoft)是专门生产软件的公司。当今90%以上的微机都是装载Microsoft的操作系统,如Windows XP、Windows 2003、Windows7、Windows8等。 2、Intel:英特尔公司,是世界上最大的CPU(中央处理器,被人们称为电脑的心脏)及相关芯片制造商。80%左右的电脑都是使用Intel公司生产的CPU。 3、AMD:超微公司,世界第二大CPU制造商 4、Lenovo:中国联想电脑公司,由联想及原IBM个人电脑事业部所组成。 5、Dell:美国戴尔电脑公司 6、HP:惠普,Hewlett Packard的缩写,是美国著名的惠普打印机、电脑制造商。 7、Epson:爱普生,日本爱普生打印机制造商。 8、Canon:佳能。日本著名的佳能打印机制造商。Canon英文意思为“宗教法规,标准”,可以看出佳能公司在创业之初,就决心要把自己的产品作为业界的“标准”。 9、Compaq:汉译为“康柏”,美国康柏电脑公司,它是世界上最大的电

脑公司之一,2002年被HP收购。 10、IBM:是International Business Machine Company(美国国际商用机器公司)的缩写。IBM是美国老牌电脑制造商,其产品是国际知名品牌。 11、Cisco Systems:思科系统公司是世界领先的Internet网络互联厂商,目前互联网上80%以上的骨干路由器是思科系统公司的产品。。 12、Apple:英文为“苹果”之意,美国苹果电脑公司,该公司以生产高性能专业级电脑、手机著称于世。 13、Acer:台湾著名的宏基电脑公司。 14、Sony:索尼,日本索尼公司。 15、Toshiba:东芝,日本东芝电脑公司,主要生产笔记本电脑。 16、HITACHI:日立,日本日立公司,硬盘生产厂商之一。 17、Philips:飞利浦,荷兰飞利浦公司,主要生产彩显、光驱、家用电器等。 18、Sumsung:三星,韩国三星公司,著名的彩显制造商,也生产硬盘、光驱、家用电器等。 19、LG电子:韩国LG电子公司,主要生产显示器、光驱。 20、ASUS:华硕,主要生产主板、显卡、光驱、笔记本电脑

PC 60个英文缩写

.PC:个人计算机Personal Computer .CPU:中央处理器Central Processing Unit .CPU Fan:中央处理器的“散热器”(风扇) .MB:主机板MotherBoard .RAM:内存Random Access Memory,以PC-代号划分规格,如PC-133,PC-1066 .HDD:硬盘Hard Disk Drive .FDD:软盘Floopy Disk Drive .CD-ROM:光驱Compact Disk Read Only Memory .DVD-ROM:DVD光驱Digital Versatile Disk Read Only Memory .CD-RW:刻录机Compact Disk ReWriter VGA:显示卡(显示卡正式用语应为Display Card) .AUD:声卡(声卡正式用语应为Sound Card) .LAN:网卡(网卡正式用语应为Network Card) .MODM:数据卡或调制解调器Modem .HUB:集线器 .WebCam:网络摄影机.Capture:影音采集卡.Case:机箱 .Power:电源.Moniter:屏幕CRT:为显像管屏幕LCD:为液晶屏幕 .USB:通用串行总线Universal Serial Bus,用来连接外围装置 .IEEE1394:新的高速序列总线规格Institute of Electrical and Electronic Engineers .Mouse:鼠标,常见接口规格为PS/2与USB .KB:键盘,常见接口规格为PS/2与USB .Speaker:喇叭 .Printer:打印机.Scanner:扫描仪 a fax:传真- .UPS:不断电系统 .IDE:指IDE接口规格Integrated Device .Electronics:IDE接口装置泛指采用IDE接口的各种设备 .SCSI:指SCSI接口规格Small Computer System .Interface:SCSI接口装置泛指采用SCSI接口的各种设备 .GHz:(中央处理器运算速度达)Gega赫兹/每秒 .FSB:指“前端总线(Front Side Bus)”频率,以MHz为单位 .ATA:指硬盘传输速率AT Attachment,ATA-133表示传输速率为133MB/sec .AGP:显示总线Accelerated Graphics Port:以2X,4X,8X表示传输频宽模式 .PCI:外围装置连接端口Peripheral Component Interconnect .ATX:指目前电源供应器的规格,也指主机板标准大小尺寸 .BIOS:硬件(输入/输出)基本设置程序Basic Input Output SYSTEM .CMOS:储存BIOS基本设置数据的记忆芯片Complementary MetalOxideSemiconductor .POST:开机检测Power On Self Test .OS:操作系统Operating System .Windows:窗口操作系统,图形接口.DOS:早期文字指令接口的操作系统 .fdisk:“规划硬盘扇区”-DOS指令之一 .format:“硬盘扇区格式化”-DOS指令之一 .setup.exe:“执行安装程序”-DOS指令之一 .Socket:插槽,如CPU插槽种类有SocketA,Socket478等等 .Pin:针脚,如ATA133硬盘排线是80Pin,如PC2700内存模块是168Pin .Jumper:跳线(短路端子) .bit:位(0与1这两种电路状态),计算机数据最基本的单位 .Byte:1字节等于8 bit(八个位的组合,共有256种电路状态),一个文字以8 bit来表示 .KB:等于1024 Byte .MB:等于1024 KB .GB:等于1024 MB .TB:

相关文档
最新文档