固定化铁,锰和钴卟啉配合物在MCM - 41和其催化环己烯氧化反应的过氧化氢

固定化铁,锰和钴卟啉配合物在MCM - 41和其催化环己烯氧化反应的过氧化氢
固定化铁,锰和钴卟啉配合物在MCM - 41和其催化环己烯氧化反应的过氧化氢

Available online at https://www.360docs.net/doc/218279609.html, Journal of Molecular Catalysis A:Chemical282(2008)

149–157

Immobilization of Fe,Mn and Co tetraphenylporphyrin complexes in MCM-41and their catalytic activity in cyclohexene

oxidation reaction by hydrogen peroxide

Andr′e ia A.Costa a,Grace F.Ghesti a,Julio L.de Macedo a,Valdeilson S.Braga b,

Marcello M.Santos a,Jos′e A.Dias a,S′?lvia C.L.Dias a,?

a Instituto de Qu′?mica,Laborat′o rio de Cat′a lise,Universidade de Bras′?lia,Caixa Postal4478,Bras′?lia,DF70904-970,Brazil1

b Instituto de Ci?e ncias Ambientais e Desenvolvimento Sustent′a vel,Universidade Federal da Bahia,Barreiras,BA47805-100,Brazil

Received16October2007;received in revised form14December2007;accepted17December2007

Available online31December2007

Abstract

Metalloporphyrin catalysts are able to carry out selective oxidation of organic substrates with several oxidizing agents.Recently,mesoporous materials have been studied as supports because they present high speci?c surface area,better dispersion and regeneration properties.This work presents the results of synthesis,characterization and application of three metalloporphyrin catalysts(FeTPPCl,MnTPPCl and CoTPP, where TPP=tetraphenylporphyrin)anchored on MCM-41,in the reaction of cyclohexene oxidation with hydrogen peroxide.A modi?ed sol–gel preparation was chosen for the synthesis of the MCM-41mesoporous material,as well as the anchoring was followed by Soxhlet extraction to ensure strong adsorption of the complex.The supported materials were much more stable than pure metalloporphyrins.The synthesized catalysts were characterized by UV–vis,FTIR,XRD,ICP-AES,29Si MAS-NMR and thermal analysis,before and after incorporation.Evidence of the metalloporphyrin immobilization was con?rmed by elemental analysis and their activity in the oxidation reaction.FeTPPCl/MCM-41showed higher conversion than CoTPP/MCM-41and MnTPPCl/MCM-41.However,MnTPPCl/MCM-41even in low concentration on the support showed a good conversion for the direct oxidation of cyclohexene with the highest turnover number(1.54×105).All catalysts showed similar selectivity that favors allylic oxidation products over epoxidation.No leaching of the metalloporphyrins was observed after the reaction.

?2007Elsevier B.V.All rights reserved.

Keywords:Metalloporphyrins;Molecular sieves;MCM-41;Cyclohexene oxidation;Hydrogen peroxide

1.Introduction

Nowadays,governmental projects and new legislations demand large investment in green chemistry procedures and environmental friendly technologies.One of the most interest-ing areas in catalysis is the development of inorganic–organic hybrid materials for catalytic oxidation reactions[1–5].

The selective oxidation of hydrocarbons and other organic compounds is still a challenge in chemical industries and academic?eld.Different types of metalloporphyrins and phtalo-cyanines have been largely studied for their ability in oxidation

?Corresponding author.Tel.:+556133072162;fax:+556133686901.

E-mail addresses:vsbraga@ufba.br(V.S.Braga),scdias@unb.br

(S.C.L.Dias).

1http://www.unb.br/iq/labpesq/qi/labcatalise.htm.reactions.New trends on catalysis preparations involve the immobilization of these molecules into molecular sieves to mimic biological systems like enzymes.An increasing under-standing of enzymes behavior along with the growing need for catalysts that can activate aliphatic C H bonds for selective oxidation have grown importance on biological systems with synthetic or biomimetic analogs[2,6,7].

Several systems containing supported macromolecules have been reported in literature.Among them,metalloporphyrin complexes present an important role in the?eld of oxida-tion reactions due to their inherent properties,and because many natural products contain similar groups(e.g.,heme group, chlorophyll,vitamin B12,etc.)[8].In the aim to achieve more stabilized and active systems,a number of supports have been tested.Nakagaki et al.[9,10]reported the incorporation of metalloporphyrins into porous vycor glass and zeolites,and studied their activity in the oxidation reactions of cyclohexane

1381-1169/$–see front matter?2007Elsevier B.V.All rights reserved. doi:10.1016/j.molcata.2007.12.024

150 A.A.Costa et al./Journal of Molecular Catalysis A:Chemical282(2008)149–157

and cyclohexene.Poltowiscz and Haber extended the study by immobilization of metalloporphyrins on silica gel,polystyrene, montmorillonite K-10and zeolite NaX showing that the support in?uences on the yield and selectivity of the products[11].

MCM-41(Mobil Composition of Mater)is a molecular meso-porous sieve that has arisen as a new material for heterogeneous catalysis,with uniform pore size,high surface area and high capacity of adsorption[12–16].These properties provide a wide variety of applications,especially when mechanical and chem-ical stabilities are required.The large pores and high amount of silanol groups of MCM-41enhance its ability to immo-bilize macromolecules,such as metalloporphyrins.Recently, several authors have reported the application of macromolecules supported on MCM-41.Kulkarni and co-workers studied the immobilization of iron-porphyrin complexes inside the pores of MCM-41using various synthetic procedures[17].Nur and co-workers assigned that the ordered structure of MCM-41may contribute to a high selectivity in the oxidation of benzene to phenol using an iron-porphyrin encapsulated catalyst[18]. Other authors established the high ef?ciency of these materials, showing their potential as active catalysts in oxidation reactions [2,8,19,20].

The work reported here presents the results of synthe-sis,characterization and application of three metallopor-phyrin catalysts(FeTPPCl,MnTPPCl and CoTPP,where TPP=tetraphenylporphyrin)anchored on MCM-41in the reac-tion of cyclohexene oxidation with H2O2.The synthesized catalysts were characterized by UV–vis,FTIR,XRD,ICP-AES, 29Si MAS-NMR and thermal analysis(TG/DTG),before and

after incorporation on MCM-41.

2.Experimental

2.1.Synthesis of MCM-41

MCM-41was synthesized as reported previously[14,21] with some modi?cations.In a3l round bottom?ask,510ml of NH4OH(Vetec)were mixed with675ml of Quartex water.To this mixture,18.25ml of cetyltrimethylamonium chloride(CTAC,Aldrich)was added under mild conditions (30–35?C)and constant magnetic stirring.After a few min-utes,25ml of tetraethylorthosilicate(TEOS,Aldrich)were added dropwise.After2h,the resulting product was?ltered and washed with Quartex water until it was chloride free (AgNO3test).The material was dried and calcined at550?C for5h(10?C min?1)in a muf?e furnace(model3P-S,EDG Equipments).The molar ratio of the Si-MCM-41synthesis was 525(H2O):69(NH4OH):0.125(CTAC):1(TEOS).

2.2.Preparation of ligand and the complexes

The procedure used for porphyrin preparation was based on Adler’s method[22].8ml of freshly destilated pyrrol,350ml of propionic acid and12ml of benzaldehyde were added to a?ask, and the solution was kept under re?ux conditions for30min. After the reaction,the free base meso-tetraphenilporphyrin (TPP)was?ltered and repeatedly washed with methanol and hot water.Finally,the solid was puri?ed by a sublimation tech-nique using a horizontal furnace,where single needle crystals of TPP were obtained[22].

The metalation procedure was followed as well,with some modi?cations[23].The puri?ed TPP was allowed to re?ux,with a small excess of the metal chlorides(molar ratio of1:3)in45ml of dimethylformamide.After4h of re?ux and2h of ice bath, 45ml of cold water was added and an immediate precipitation of the solid occurred.The structure of the complexes was con?rmed by FTIR,UV–vis and1H NMR.

2.3.Preparation of catalysts

In order to immobilize the complexes within the MCM-41, 0.2g of metalloporphyrin(FeTPPCl,MnTPPCl or CoTPP)in dichlorometane were slowly added to2g of MCM–41in50ml of dichlorometane.The mixture was kept under magnetic stir-ring for48h,and then under re?ux conditions for1h.The solid product was then washed in a Soxhlet apparatus for48h with300ml of dichlorometane,in order to remove the weakly adsorbed metallocomplexes on the mesoporous surface.Finally, the shallow-green solids were dried in air at room temperature.

2.4.Oxidation reactions

Oxidation reactions were carried out at atmospheric pres-sure under re?ux conditions mixing10mmol of cyclohexene, 12mmol of oxidizing agent(H2O2),0.1g of the catalyst and3ml of acetonitrile[8].At?rst,solvent,substrate and catalyst were introduced into the reaction?ask followed by stirring.After a few minutes,the oxidant agent was slowly added to the reaction. The solid was?ltered after8h,and the solution was then submit-ted to chromatographic analysis.GC-FID(GC-17A,Shimadzu) with CBP1-PONA column(50m×0.15mm×0.42?m)was used to determine the cyclohexene conversion and GC-MS (QP5050A,Shimadzu,same column type)was used to identify the reaction products.

2.5.Catalysts characterization

2.5.1.UV–vis

UV–vis spectra were obtained on a Thermo Spectronic spec-trophotometer model Genesys10UV,from300–700nm using 1cm quartz cuvette.

2.5.2.FTIR

FTIR spectra were recorded on a Bomen–Hartman&Braun, Michelson MB-100spectrometer.The measurements were per-formed using KBr pellets(128scans with a4cm?1resolution).

2.5.

3.29Si magic angle spinning(MAS)-NMR

NMR experiments were performed at7.05T with a Varian Mercury Plus NMR spectrometer equipped with a7mm Varian probe and zirconia rotors.29Si MAS spectra were recorded at a speed of3kHz,pulse duration of7.5?s(π/2),a recycle delay of20s,and500scans were acquired for each spectrum.The spectra were external referenced to kaolin(?91.5ppm).MAS-

A.A.Costa et al./Journal of Molecular Catalysis A:Chemical282(2008)149–157151

NMR data were deconvoluted using a Gaussian mathematical ?t.

2.5.4.Thermal analysis

TG/DTG curves were obtained in a2960Simultaneous DSC-TGA(TA Instruments)using synthetic air(99.999%)as purge gas(100ml min?1).The analyses were made from ambient tem-perature(~26?C)up to900?C at10?C min?1,and?-Al2O3 was used as reference material.

2.5.5.X-ray diffraction analysis

The XRD analysis was made at2?min?1with a Rigaku difractometer,model D/MAX-2A/C with radiation Cu K?at 40kV and20mA.

2.5.6.Elemental analysis

The amount of adsorbed metalloporphyrin in the mesoporous molecular sieves of MCM-41was determined by atomic emis-sion spectroscopy with inductive coupled plasma(ICP-AES, Spectro?ame–FVM?3).The samples were digested by a tra-ditional acid method(HF,HNO3,HClO4and HCl),diluted adequately and analysed for Fe,Mn and Co[24].

3.Results and discussion

3.1.Characterization of the complexes

Iron,manganese and cobalt were chosen as metal centers to the metalloporphyrin complexes due to their reported oxidation properties[11,25].The synthetic procedure for metallopor-phyrins preparation is widely known and the metallocomplexes were easily obtained[22,23].

UV–vis and FTIR spectroscopies were used to evidence the formation of the complexes.UV–vis absorption measurements for all the complexes were in agreement with the literature val-ues(Table1)[26].In addition to this,FTIR measurements of the free base porphyrin and their respective complexes of iron,manganese and cobalt show some characteristic bands that are directly related with the obtained metalloporphyrins: (a)the absence of the band at3300cm?1,which is related to N–H stretching in the metallocomplexes spectra,indicates that the intramolecular hydrogen bonds usually present in the free base porphyrin do not exist after metal complexation;(b)the increase in the intensity of the bands at~1350cm?1,related to C N stretching[27];(c)the displacement of the intense band near to1000cm?1to higher wavenumbers is a strong Table1

Experimental and theoretical(literature)values for Soret bands obtained by UV–vis analysis

Metalloporphyrin Soret band maximum(nm)

Experimental Literature a FeTPPCl417418 CoTPP408and526409and524 MnTPPCl583and619583and618 a Obtained from reference[26].evidence of the metalloporphyrin complexes formation and stability.

3.2.Characterization of the support

X-ray diffraction(XRD)analyses of the synthesized meso-porous material revealed the typical three peak pattern of the MCM-41,with a strong re?ection at2.4?(100),and two others with low intensity at4.2?(110)and4.7?(200).A study reported by Cai and co-workers[14]shows that the highly ordered hexag-onal channel array of these materials are strongly dependent of the molar ratio water/template.In the present work,an ideal value of4200(H2O:CTAC),as suggested by Cai,was used to prepare a well-ordered MCM-41material.

FTIR spectrum of as synthesized MCM-41clearly shows that the bands related to the carbon long chain template molecules were removed after the thermal treatment.The absence of bands around3200and1400cm?1indicates that the activation of the support was effective for the formation of a free template bidi-mensional structure,where the silanol groups are available to anchor the metalloporphyrin complexes.Supplementary data are provided for the characterization of the complexes and the support.

3.3.Synthesis of heterogenised metalloporphyrins

Among various methods employed to incorporate metal complexes inside the pores of molecular sieves,meso-tetraphenylporphyrins of iron,cobalt and manganese were immobilized through an anchoring method.Since MCM-41 mesoporous materials have pore sizes larger than20?A,the direct encapsulation of metalloporphyrins inside the mesoporous material can be achieved[17].The amount of metalloporphyrin on the support was determined by elemental analysis(ICP-AES),and the results showed as percentages(mass%:mass%) are depicted in Table2.

The catalysts were prepared on a ratio of1:10(metallopor-phyrin/support)and functionalization was not performed either on the support or in the complex.Although similar washings were carried out with the Soxhlet system in each case,it could be observed different results for iron,cobalt and manganese por-phyrins incorporation.This is related to the interaction of each complex with the MCM-41.

FTIR spectra(Fig.1)were obtained in order to observe the interactions between silanol groups on the surface sup-port and metalloporphyrin complexes.The bands observed at 475,800,960and1098cm?1,which are related to?(Si–O–Si),?s(Si–O–Si),?(Si–OH)and?as(Si–O–Si),respectively,are the Table2

ICP-AES results for the metals after metalloporphyrins immobilization Complex Amount anchored on

MCM-41(mass%)

MnTPPCl0.14

FeTPPCl 2.06

CoTPP 5.42

152 A.A.Costa et al./Journal of Molecular Catalysis A:Chemical 282(2008)

149–157

Fig.1.FTIR spectra of synthesized catalysts at room tempetature:(1)MCM-41;(2)CoTPP/MCM-41;(3)FeTPPCl/MCM-41;(4)MnTPPCl/MCM-41.

main features of MCM-41[21].Although slight changes could be observed at 1000and 1200cm ?1,the band assigned around 950cm ?1is the one that indicates the presence of organic groups on the MCM-41surface [18]by a shift to lower wavenum-bers.Due to the low amount of metalloporphyrins anchored on the surface support,this main characteristic of the immobilized complexes could not be observed.

29Si MAS-NMR spectra elucidated better the interactions between the complexes and the support.After careful decon-volution of NMR data,it was possible to obtain the relative areas of each peak and thus calculate important parameters for the studied materials,such as condensation degree [28],rela-tive proportion of different silicon environments [29]and molar percentage of silanol groups [15].

In all cases,it was veri?ed changes on MCM-41silicon envi-ronments after complex immobilizations.The chemical shifts related to Q 4,Q 3and Q 2environments,i.e.Si(4Si),Si(3Si,1OH)and Si(2Si,2OH),respectively,were observed at ca.?105,?95and ?86ppm.

Calcination procedures of MCM-41naturally lead to an increase of Q 4environment due to the condensation

of

Fig.2.

29Si MAS-NMR result for MCM-41calcinated at 550?C/5

h/air.

Fig.3.29Si MAS-NMR result for MCM-41calcinated at 550?C/5h/air,treated with CH 2Cl 2and dried at room temperature.

silanol groups and formation of siloxane in the structure (Eq.(1)).Figs.2–6show that the relative chemical environments were clearly affected by complex immobilizations.Analyzing Tables 2and 3,one can observe that an increase in metallo-porphyrin amount leads to a decrease in the molar percentage of silanol groups.Considering that the condensation degree parameter allows a correlation between the relative chemical environments of the samples,it can be seen that the inter-action between metalloporphyrins and the support leads to a pseudo Q 4environment.This occurs because the interaction between metalloporphyrin and silanol groups generates mod-i?ed Q 3environment,which are computed as Q 4environments (Fig.7).According to Table 3,there is a considerable increase in Q 4values that corroborates the above statement.2Si–OH ?→

Si–O–Si +H 2O

(1)

Considering that catalyst applications are dependent on the ther-mal properties [30],thermal analyses were also used to verify the stability of the complexes and the supported catalysts designed for oxidation reactions.The thermal behavior of MCM-41

has

Fig.4.

29Si

MAS-NMR result for FeTPPCl supported on MCM-41.

A.A.Costa et al./Journal of Molecular Catalysis A:Chemical 282(2008)149–157

153

Table 3

Relative proportion areas of 29Si MAS-NMR peaks related to the different silicon chemical environments Samples

Relative proportion of the chemical environment Q 2

Q 3Q 4(Q 3+Q 2)/Q 4a SiOH (mol%-Si)b MCM-41(CH 2Cl 2)1340.964.6MnTPPCl/MCM-411480.745.3FeTPPCl/MCM-4114100.536.6CoTPP/MCM-41

1

5

15

0.4

34.7

a Condensation degree [28].

b

Amount of silanol groups relative to total Si =[(2Q 2+Q 3)/(Q 2+Q 3+Q 4)]×100%[15]

.

Fig.5.

29Si

MAS-NMR result for CoTPP supported on MCM-41.

been investigated and it presents a mass loss in the range from 25to 950?C,related to the dehydration followed by dehydrox-ilation of silanol groups [15].

Further investigation using TG/DTG and DTA curves (Table 4)showed that the catalysts of FeTPPCl,CoTPP and MnTPPCl are stable up to 256,293and 352?C,respectively.The initial mass loss (from 1up to 3%)for the metalloporphyrin complexes is related to adsorbed water and small impurities on the structure,such as,free ligand,pyrrol,etc.The partial mass losses,related to the decomposition stages (I,II and III in Table 4),are associated to the sequential thermal degradation of the porphyrin macrocycles.The different thermal behavior observed for these samples is associated to the distinct metal centers.Wei et al.[30]showed that the thermal decomposition reaction rate of the porphyrin at the same temperature is

greatly

Fig.6.

29Si

MAS-NMR result for MnTPPCl supported on MCM-41.

affected by the incorporation of a metal center.The formation of metal oxide residues is observed after the complete decompo-sition of the macrocycle (ca.87%).All mass losses determined experimentally were in agreement with the calculated theoretical values.

After impregnation on MCM-41,an increase on the decom-position temperature was observed (Figs.8–10).For iron immobilized complex,the initial decomposition changed from 256to 350?C after immobilization.This process produced an increase of almost 100?C on the stabilization of the com-plex.Similar behavior was observed for manganese (increase of 168?C),and for cobalt complex after impregnation there was no mass loss above 200?C.In fact,a second mass loss below 200?C was observed only for the immobilized cobalt complex.This can be related to the stabilization of the complex after the interaction between the metal and the OH silanol group of

MCM-

Fig.7.

29Si

MAS-NMR Q 4(a),Q 3(b)and Q 4simulated (c),where Me is the metalloporphyrin.

154 A.A.Costa et al./Journal of Molecular Catalysis A:Chemical282(2008)149–157

Table4

Thermal decomposition of metalloporphyrin complexes

Sample Stage: T(?C)DTG(?C)DTA a(?C)Mass loss(%)Residue

Partial Initial Total

MnTPPCl I:352–478437;443432;44422.1

1.887.3Mn3O4

II:478–583549;56554565.2

FeTPPCl I:256–404354;39439125.5

2.986.6Fe3O4

II:404–492424;456421;44861.1

CoTPP I:293–479442;46345334.0

II:479–51149949815.0

1.088.7Co3O4

III:511–58557355539.7

a All peaks are exothermic.

Fig.8.TG/DTG and DTA curves for CoTPP/MCM-41.

Fig.9.TG/DTG and DTA curves for MnTPPCl/MCM-41.

A.A.Costa et al./Journal of Molecular Catalysis A:Chemical282(2008)149–157

155

Fig.10.TG/DTG and DTA curves for FeTPPCl/MCM-41.

41.Among the three metals,cobalt would present the weakest interaction while manganese would present the strongest inter-action,based on hard–soft acid–base,according to the following series of hardness:Co(II)

3.4.Oxidation reactions

Selective oxidations of hydrocarbons under mild conditions have great academic interest and industrial value[19].A num-ber of oxidation systems that mimic cytochrome P-450using iron,manganese and cobalt metalloporphyrins have already been reported[25].Recent results show that metalloporphyrin complexes immobilized into zeolite channels present particular properties due to the isolation of active sites,avoiding catalyst self-deactivation through dimmerization.In addition,the hetero-geneization of these complexes is a way to protect them from the oxidative reaction media[3,4,8,11].After the reaction,the systems were tested for leaching of the metalloporphyrins.No metal was detected in the solutions,which con?rms the ef?-ciency of the procedure for incorporation of metalloporphyrins into MCM-41.

Hydrogen peroxide was chosen in this work as a clean oxidant agent,since the use of non-expensive and environmental friendly reactants(e.g.,molecular oxygen,alkyl peroxides)are very important in modern catalysis.Moreover,hydrogen peroxide molecules generate water as by product,showing its biological value[31].

The results of catalytic cyclohexene conversion by iron, manganese and cobalt metalloporphyrins encapsulated into MCM-41mesopores are described in Table5.In order to com-pare the results,two blank experiments were performed.Blank 1consisted of the oxidant agent and blank2was composed of the oxidant agent and pure MCM-41.These systems were stud-ied to con?rm the complex activities in the reaction.A very low amount of substrate was converted in the blank reactions, showing that the supported metalloporphyrin complexes are the active centers for cyclohexene oxidation reaction.

Data of catalytic oxidation reactions of cyclohexene with H2O2,selectivity and turnover numbers(TON)are presented in Table6.All studied catalysts showed a remarkable activity on cyclohexene oxidation reactions.Although FeTPPCl/MCM-41showed the highest conversion compared to Co and Mn catalysts,the MnTPPCl/MCM-41catalyst,even in low concen-tration on the support,was the most active in the direct oxidation of cyclohexene,in agreement to literature[25].Although under adverse conditions,CoTPP/MCM-41showed a good activity in the cyclohexene oxidation reaction,since it is mainly active in one-electron redox processes(e.g.,activation of dioxygen); whereas Mn and FeTPP/MCM-41show similar properties and are able to activate single oxygen donors(such as hydrogen peroxide)in a two-electron redox process[25].

The selectivity of products for alkene oxygenation mech-anism is dependent of several parameters(e.g.,reaction conditions,porphyrin structure,central cation,solvent,oxidant agent,co-catalyst).The formation of two oxidizing interme-diates(hydroperoxy-and oxo-species)from the interaction of metalloporphyrin with H2O2has been proposed in litera-ture[32–34].Rebelo et al.[34]showed that the selectivity of metalloporphyrin catalysts depends on the formation of these two intermediate species.The mechanism proposed involves at ?rst,the formation of hydroperoxy-species,followed by either Table5

Results of cyclohexene oxidation reactions

Catalyst Cyclohexene Conversion(%) Blank a 1.0

MCM-41b8.2

FeTPPCl/MCM-4125.8

CoTPP/MCM-4111.8

MnTPPCl/MCM-4115.3

a Reaction condition:12mmol of H2O2,10mmol of cyclohexene and3ml of acetonitrile.

b Reaction condition:0.1g of MCM-41,12mmol of H2O2,10mmol of cyclo-hexene and3ml of acetonitrile.

156 A.A.Costa et al./Journal of Molecular Catalysis A:Chemical 282(2008)149–157

Table 6

Catalytic behavior of metalloporphyrin complexes anchored on MCM-41Supported catalyst Fe Mn Co Conversion (%)25.8

15.3

11.8

Selectivity (%)

25.9

20.1

23.9

46.046.0

39.0

28.133.937.1

TON a

1.76×104 1.54×105

2.93×103

a

TON =mmol of the products to mmol of metal content on the catalyst.

the oxygen transfer to the substrates or the development of

highly active oxo-species.Indeed,the use of protic solvents and iron as central cation in the absence of co-catalyst favors hydroperoxy-species,meanwhile the use of aprotic solvents,manganese (central cation)in the presence of co-catalyst favors oxo-species.

The selectivity pattern (cyclohexenone and cyclohexanol)suggests that the metalloporphyrins were mostly anchored on the internal pore wall surface of MCM-41.According to Zimowska et al.[3],porphyrin species anchored on the internal pore wall are more selective for cyclohexanol and cyclohexenone than epoxidation products.A favorable orientation of the cyclohex-ene molecule and the anchored metalloporphyrin complex in order to form the epoxide intermediate becomes restricted within the MCM-41channels.Thus,epoxidation products are favor-able through external surface impregnation of the complexes.These results are in agreement with literature data,in which the ef?ciency of the process is controlled mainly by the diffu-sion of reagents and products into the mesopores of the support [2].

4.Conclusions

The present work showed the results of synthesis,charac-terization and application of three metalloporphyrin catalysts (FeTPPCl,MnTPPCl and CoTPP)anchored on MCM-41,in the oxidation reaction of cyclohexene with hydrogen perox-ide.The adopted strategy to obtain the catalysts suggests that these materials appear as good catalysts for the reported oxida-tion reaction.29Si MAS-NMR and FTIR studies showed that the interaction between the metalloporphyrins and the support leads to modi?cations in MCM-41chemical environment,and an increase in metalloporphyrin amount leads to a decrease in the molar percentage of silanol groups due to its direct interac-tion.Thermal analysis was also used to study the complexes and the supported catalysts,and the results indicate that the thermal

stability is directly affected by the metal center and an increase on the stability is observed after anchoring.

FeTPPCl/MCM-41presented the highest conversion (25.8%)and MnTPPCl/MCM-41was the most active catalyst in the direct oxidation of cyclohexene (TON =1.54×105).The distribution of the oxidation products (cyclohexenone and cyclo-hexanol)indicates that the porphyrin species were anchored on the internal pore surface of MCM-41.No leaching of metallo-porphyrins was observed after the reaction.Acknowledgments

We acknowledge CNPq for scholarships to doctorate stu-dents (A.A.Costa and G.F.Ghesti)and the ?nancial support provided by UnB-IQ (FUNPE),FINATEC,FINEP/CTPetro,FINEP/CTInfra,and MCT/CNPq.The authors would like to thank Professors Edi Mendes Guimar?a es from Laborat′o rio de

Difrac ??a o de Raios-X and Geraldo Boaventura from Laborat′o rio de Geoqu′?mica (IG/UnB)for XRD and ICP-AES measurements.Appendix A.Supplementary data

Supplementary data associated with this article can be found,in the online version,at doi:10.1016/j.molcata.2007.12.024.References

[1]A.Maldotti,A.Molinari,G.Varani,M.Lenarda,L.Storaro,F.Bigi,R.

Maggi,A.Mazzacani,G.Sartori,J.Catal.209(2002)210–216.

[2]J.Poltowicz,K.Pamin,L.Matachowski,E.M.Serwicka,R.Mokaya,Y .

Xia,Z.Olejniczak,Catal.Today 114(2006)287–292.

[3]M.Zimowska,A.Michalik-Zym,J.Poltowicz,M.Bazarnik,K.Bahra-nowski,E.M.Serwicka,Catal.Today 124(2007)55–60.

[4]G.Huang,S.Liu,A.Wang,Y .Guo,H.Zhou,https://www.360docs.net/doc/218279609.html,mun.8(2007)

1183–1186.

[5]F.L.Benedito,S.Nakagaki,A.A.Saczk,P.G.Peralta-Zamora,C.M.M.

Costa,Appl.Catal.A 250(2003)1–11.

[6]B.Meunier,Chem.Rev.92(1992)1411–1456.

[7]J.Haber,K.Pamin,J.Poltowicz,J.Mol.Catal.A:Chem.224(2004)

153–159.

[8]F.Farzaneh,J.Taghavi,R.Malakooti,M.Ghandi,J.Mol.Catal.A:Chem.

244(2005)252–257.

[9]S.Nakagaki,A.R.Ramos,F.L.Benedito,P.G.Peralta-Zamora,A.J.G.

Zarbin,J.Mol.Catal.A:Chem.185(2002)203–210.

[10]S.Nakagaki,C.R.Xavier,A.J.Wosniak,A.S.Mangrich,F.Wypych,M.P.

Cant?a o,I.Denicol′o ,L.T.Kubota,Colloids Surf.A 168(2000)261–276.[11]J.Poltowicz,J.Haber,J.Mol.Catal.A:Chem.220(2004)43–51.

[12]J.S.Beck,J.C.Vartulli,W.J.Roth,M.E.Leonowicz,C.T.Kresge,K.D.

Schmitt,C.T.-W.Chu,D.H.Olson,E.W.Sheppard,S.B.McCullen,J.B.Higgins,J.L.Schlenke,J.Am.Chem.Soc.114(1992)10834–10843.[13]A.Corma,Chem.Rev.97(1997)2373–2420.

[14]Q.Cai,W.-Y .Lin,F.-S.Xiao,W.-Q.Pang,X.-H.Chen,B.-S.Zou,Micro-porous Mesoporous Mater.32(1999)1–15.

[15]N.Igarashi,K.A.Koyano,Y .Tanaka,S.Nakata,K.Hashimoto,T.Tatsumi,

Microporous Mesoporous Mater.59(2003)43–52.

[16]M.Luechinger,L.Frunz,G.D.Pirngruber,R.Prins,Microporous Meso-porous Mater.64(2003)203–211.

[17]V .Radha Rani,M.Radha Kishan,S.J.Kulkarni,K.V .Raghavan,Catal.

Commun.6(2005)531–538.

[18]E.J.Nassar,Y .Messaddeq,S.J.L.Ribeiro,Quim.Nova 25(2002)27–

31.

[19]H.Nur,H.Hamid,S.Endud,H.Hamdan,Z.Ramli,Mater.Chem.Phys.

96(2006)337–342.

A.A.Costa et al./Journal of Molecular Catalysis A:Chemical282(2008)149–157157

[20]D.Brunel,N.Bellocq,P.Sutra,A.Cauvel,https://www.360docs.net/doc/218279609.html,sp′e ras,P.Moreau,F.Di

Renzo,A.Galarneau,F.Fajula,Coord.Chem.Rev.178(1998)1085–1108.

[21]M.P.Souza,Thesis,Universidade de Bras′?lia,Brazil,2005.

[22]A.D.Adler,F.R.Longo,J.D.Finarelli,J.Goldmacher,J.Assour,L.Kor-

sakoff,https://www.360docs.net/doc/218279609.html,.Chem.32(1967)476.

[23]A.D.Longo,F.R.Longo,F.Kampas,J.Kim,J.Inorg.Nucl.Chem.32

(1970)2443–2445.

[24]A.A.Costa,Thesis,Universidade de Bras′?lia,Brazil,2006.

[25]E.M.Serwica,J.Poltowicz,K.Bahranowski,Z.Olejniczak,W.Jones,

Appl.Catal.A275(2004)9–14.

[26]J.E.Falk,Porphyrins and Metalloporphyrins.Their General,Physical and

Coordination Chemistry and Laboratory Methods,Elsevier,New York, 1964.

[27]A.Fuerte,A.Corma,M.Iglesias,E.Morales,F.S′a nchez,J.Mol.Catal.

A:Chem.246(2006)109–117.[28]S.Shylesh,A.P.Singh,J.Catal.244(2006)52–64.

[29]V.M.S.Gil, C.F.G.C.Geraldes,Resson?a ncia Magn′e tica Nuclear–

Fundamentos,M′e todos e Aplicac??o es,Fundac??a o Calouste Gulbenkian,Lis-boa,1987.

[30]X.Wei,X.Du,D.Chen,Z.Chen,Thermochim.Acta440(2006)181–

187.

[31]F.S.Vinhado,P.R.Martins,A.P.Masson,D.G.Abreu,E.A.Vidoto,O.R.

Nascimento,Y.Iamamoto,J.Mol.Catal.A:Chem.188(2002)141–151.

[32]I.D.Cunningham,T.N.Danks,J.N.Hay,I.Hamerton,S.Gunathilagan,

Tetrahedron57(2001)6847–6853.

[33]T.Chen,E.Kang,G.Tan,S.Liu,S.Zheng,K.Yang,S.Tong,C.Fang,F.

Xiao,Y.Yan,J.Mol.Catal.A252(2006)56–62.

[34]S.L.H.Rebelo,M.M.Pereira,M.M.Q.Sim?o es,M.G.P.M.S.Neves,J.A.S.

Cavaleiro,J.Catal.234(2005)76–87.

金属卟啉类化合物电化学性质的研究目的意义及进展

金属卟啉类化合物电化学性质的研究目的意义及进展 1研究的目的及意义 (1) 2金属卟啉类化合物电化学性质的研究进展 (2) 2.1金属卟啉类概述 (3) 2.2金属卟啉电化学研究方法 (3) 2.3金属卟啉类化合物氧还原的电催化作用 (4) 2.4中心金属离子对金属卟啉催化作用的影响 (4) 2.5取代基对金属卟啉类化合物催化作用的影响 (5) 2.6不同热处理对金属卟啉类化合物催化活性的影响 (5) 2.7不同的载体对金属卟啉类化合物催化活性的影响 (6) 2.8 金属卟啉类化合物催化机理 (7) 1研究的目的及意义 随着能源危机和环境污染日益严重,开发洁净高效的供能、储能系统迫在眉睫。燃料电池由于具有清洁、高效、可连续大功率放电的特殊性能而受到人们广泛的关注,世界各国都非常重视其技术的开发和应用,大力进行基础研究并促进产业化。中国国务院2006年2月发布的国家中长期(2006~2020年)科学和技术发展规划纲要中明确地将燃料电池技术列为今后15年重点发展的前沿技术之一。世界其它各国包括美国、加拿大、德国、以色列、日本等国相继进行了一系列关于燃料电池研究和发展的计划,如美国的“FreedomCAR”计划、“加州氢公路网计划”、“氢燃料行动”(Hydrogen Fuel Initiative)等,大大促进了燃料电池技术的发展。 氧电极是燃料电池的阴极,它是决定电池性能优劣的关键因素,而氧电极的性能又主要取决于催化剂的性能。因此,寻找经济、高效和稳定的氧还原催化剂一直是研究者追求的目标。氧还原催化剂的种类较多,但是实际应用较多的是以铂或其合金为主的催化剂,虽然铂在低温燃料电池中是一种很好的氧还原催化剂,但是它价格昂贵和易被CO毒化限制了铂作为电催化剂的应用。金属卟啉化合物具有高的共轭结构和化学稳定性,它有着与催化酶相似的结构,能促进H2O2的分解,从而使电池的工作电压提高,放电容量增加,无论在酸性还是碱性条件下,对分子氧都有良好的电催化还原活性,美国电技术公司还为它们能够克服铂

天然铁锰氧化物及氢氧化物环境矿物学研究

收稿日期:19990913;修订日期:20000110 作者简介:鲁安怀(1962—  ),男,博士,教授,矿物学专业,环境矿物学与环境矿物材料研究方向。基金项目:科学技术部攀登特别支持费资助项目(99019);国家自然科学基金资助项目(49972017);矿物岩石材 料国家专业实验室开放基金资助项目 天然铁锰氧化物及氢氧化物 环境矿物学研究 鲁安怀,卢晓英,任子平,韩丽荣,方勤方,韩 勇 (中国地质大学矿物岩石材料国家专业实验室,北京100083) 摘 要:带有表面电荷及含有变价元素的天然铁锰氧化物及氢氧化物具有良好的表面吸附与 氧化还原等化学活性。在不同介质条件下,它们能不同程度地表现出对Cr 6+,Pb 2+,Hg 2+, Cd 2+,As 3+,Cu 2+,Zn 2+,Co 2+,Ni 2+等重金属离子有吸附作用和对NO -3,PO 3-4,F -,S 2-等阴离子有吸附作用与氧化作用,并对苯酚、乙烷、乙烯、合成有机酸等有机物具有吸附和转化降解 作用,还对CO 2,NO x 和SO 2等具有分解转化作用。利用这些矿物的环境属性治理水体、土壤 及大气污染的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广 阔的环境矿物学研究与应用前景。 关键词:天然铁锰氧化物及氢氧化物;环境矿物学;水体;土壤;大气;污染治理 中图分类号:P58714;X4 文献标识码:A 文章编号:10052321(2000)02047311 环境矿物学是研究天然矿物与地球表面各个圈层之间交互作用及其反映自然演变、防治生态破坏、净化环境污染及参与生物作用的科学。环境矿物学主要研究内容包括研究矿物作为反映不同时间空间尺度上环境变化的信息载体,研究矿物影响人类健康与破坏生态环境的本质及其防治方法,研究开发矿物具有治理环境污染与修复环境质量的基本性能以及研究纳米级别上矿物与生物发生交互作用的微观细节与机理等[1]。天然铁锰氧化物与氢氧化物的代表性矿物种主要有磁铁矿、赤铁矿、针铁矿、软锰矿和硬锰矿等,在自然界分布广泛。过去人们对如何从这些矿物中提取有用组分———资源属性作过深入研究,如今对这些矿物在环境评价与污染治理中开发有用性能———环境属性正在开展有益的探讨[2,3]。事实上它们也正在成为天然矿物净化污染方法方面的重点研究对象之一[4~9]。 本文就天然铁锰氧化物与氢氧化物在水体、土壤及大气污染治理领域利用的国内外研究现状进行综述,旨在进一步提高和扩大天然铁锰氧化物与氢氧化物环境矿物学的研究水平与应用前景。 1 水体污染治理 地表水体污染是构成目前环境污染现状令人十分担忧的一个问题。地下水高氟、高砷— 374—第7卷第2期2000年4月地学前缘(中国地质大学,北京)Earth Science Frontiers (China University of G eosciences ,Beijing )Vol.7No.2Apr.2000

国家标准《镍、钴、锰三元素复合氧化物》编制说明

国家标准 《镍、钴、锰三元素复合氧化物》 编制说明 金川集团有色公司 二00九年二月

1.任务来源 本标准计划是由中国有色金属工业协会中色协综字[2007]237号文件《关于下达2007年第二批有色金属国家标准制(修)订项目计划的通知》下达,项目序号20079113-T-610,由金川集团有限公司负责起草,计划于2009年完成。 2.编制原则 镍、钴、锰三元素复合氧化物是锂离子电池用新材料,我国目前尚无相应的国家标准或行业标准。该标准旨在加强供需双方的技术理解和交流,指导和规范产品的生产和贸易,满足市场相关领域的不同需求。 3.编制情况 标准格式按GB/T1.1-2000标准要求编写。标准制定起草工作开展后,主要查阅了国外同类产品标准和国内有关企业技术资料,进行了收集、整理、对比分析,并对国内的生产和使用状况进行调研整合后,经起草单位与用户多次探讨、协商,与2009年2月提出该“标准预审稿”。 4.产品行业背景 锂离子蓄电池具有比能量大、单体工作电压高、工作温度范围宽、循环寿命长、自放电小、对环境污染小等优点,在便携式电器和电动汽车等领域有着广阔的应用前景。随着对现有材料和电池设计技术的改进以及新材料的出现,锂离子电池应用范围将不断拓展,它将作为最具发展前景的新能源服务于人类,已成为本世纪的研发热点。

锂离子电池正极材料LiNi x Co y Mn1-x-y O2具有同LiCoO2和LiNiO2一样的α-NaFeO2结构和理论比容量,但是这种材料具有LiCoO2、LiNiO2等其它正极材料所无法比拟的优势。1. 钴酸锂由于价格昂贵、安全性能差而不适合作为动力电池;2. 锰酸锂具有低成本、环保、安全性好等优点,但其能量密度低、循环性能差、碳做负极时锰的溶解问题突出;3. 镍酸锂合成条件要求苛刻,而且循环性能不好,安全性能差;4. 镍钴酸锂容量比钴酸锂有所提高,但制备成本高、过充存在安全性问题;5. 磷酸铁锂具有成本低廉、环境友好、安全性好等优势,但其体积能量密度较低。相比较而言,LiNi x Co y Mn1-x-y O2的理论比容量较高,约278mAh/g,循环性能好,充放电过程中体积变化小(小于2%),振实密度大,能量密度高,实际比容量可达140-180mAh/g(同镍、钴、锰比例有关),合成方法简单可行,克服了LiMn2O4、LiNiO2、LiCoO2及LiFePO4的部分缺点,因此成为锂离子二次电池,特别是小型动力电池的首选材料之一。 镍、钴、锰三元素复合氧化物主要面向锂离子电池正极材料厂商,用该材料可以合成出性能优异的LiNi x Co y Mn1-x-y O2三元素正极材料。由于三元素正极材料具有一系列的优点而深受国内外研究者的重视。目前,三元素正极材料技术刚刚成熟,2007年日本韩国的市场大概有2000吨,国内市场刚刚起步,预计08年会有一个非常大的增长,三元素正极材料及其中间体镍、钴、锰三元素复合氧化物世界主要的生产厂家有OMG、3M公司和日本田中化学等。 5.文献检索情况

沉积物中铁、锰的形态分析

实验十一沉积物中铁、锰的形态分析 前言 为了研究污染物在环境中的迁移转化、自净规律、致毒作用机理以及最后归趋等环境化学行为,不仅要了解污染物的数量,而且还要研究其存在的化学形态,因为不同的化学形态具有不同的化学行为、环境效应和生态效应。例如,对水中溶解态金属来说,甲基汞离子的毒性大于二价无机汞离子;游离铜离子的毒性大于铜的络离子;六价铬的毒性大于三价格;而五价砷的毒性则小于三价砷。对于沉积物中的结合态金属来说,交换态金属离子的毒性大于与有机质结合的金属及结合于原生矿物中的金属等。因此,在研究污染物在环境中的迁移转化等化学行为和生物效应时,不但要指出污染物的总量,同时必须指明它的化学形态及不同化学形态之间相互转化过程。 影响化学形态变化的因素很多,包括水体的物理化学性质、其他化学物种、水生生物、微生物的种类和数量、土壤、岩石、沉积物、固体悬浮颗粒物质的表面性质等,因此化学形态变化过程的研究是一个极其复杂的问题。 化学形态变化过程的研究可借助于各种能确定化学形态存在的方法,包括各种已有的化学分析方法和仪器分析方法来进行;当考虑生物代谢作用时,还要采用生物化学方法;当研究化学形态变化的环境效应、健康效应或生态效应时,还要采用毒理学方法或生态毒理学方法。此外,还可以通过化学热力学和化学动力学计算,或利用计算机软件进行相应的模型计算等方法进行模拟。还可将这些方法适当组合来进行研究。 沉积物是从水体中沉降下来的固体物质,其中所含的金属化合物,一般认为它们是难溶化合物,由于沉积物的吸附水带来的可溶性盐类的量应是极少的。除一部分来源于矿物质风化的碎屑产物外,相当一部分是在水体中由溶解态金属通过吸附、沉淀、共沉淀及生物作用转变而来的。对铁、锰来说,简单的难溶化合物形态主要有:氢氧化物、氧化物、碳酸盐、硫化物、磷酸盐、各种难溶有机螯合物以及金属单质等。沉积物中不同形态金属含量的分配比与沉积物的颗粒组成及各种金属离子自身的性质有关,更与水环境的污染程度有关。 形态分析是根据所用的溶剂体系,把物质存在的极其复杂的化学形态,以其溶解度或稳定性的差异区分为几种不同类型的化学形态加以表征。通过对沉积物中污染物的化学形态分析,能够取得它们在环境中化学行为的有价值的信息。污染物在底质中的沉积,既可能是它们在环境中的归宿,也可以是产生二次污染的污染源,这一切就取决于它们存在的化学形态的稳定性。 一实验目的 1. 明确环境污染物化学形态分析的环境化学意义。 2. 了解并掌握用化学提取法进行沉积物中铁、锰化学形态分析的方法。 3. 掌握原子吸收测定金属元素含量的原理和方法。 二实验原理 实验中选择钢铁厂最具特征铁和锰两个元素,用HF–HNO3–HClO4消煮沉积物制备的待测液,直接用乙炔–空气火焰的原子吸收分光光度法(AAS)测定溶液中的Fe和Mn。但待测液中的Al、P和高含量的Ti,对测铁有干扰,可加入

金属卟啉催化烯烃环氧化及反应机理研究_李臻

收稿:2001年7月,收修改稿:2002年3月 *国家自然科学基金重点项目(29773056,29933050)**通讯联系人 e -mail : cg xia @ns .lzb .ac .cn 金属卟啉催化烯烃环氧化及反应机理研究* 李 臻 夏春谷 ** (中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室 兰州730000,China)摘 要 本文就铁卟啉及锰卟啉模拟酶体系近年来在催化烯烃环氧化反应机理方面的最新研究成果进行了详细阐述。均相催化剂固载化技术的应用,使金属卟啉配合物担载于无机载体上克服了卟啉的二聚、催化剂再生等难题,有力地推动了金属卟啉配合物应用研究的发展。 关键词 金属卟啉 反应机理 中间体 担载中图分类号:O 641.4;O 643.3 文献标识码:A 文章编号:1005-281X (2002)05-0384-07 Review on Mechanism of Alkene Epoxidation by Metalloporphyrins Li Zhen X ia Chungu ** (State Key Laboratory of Ox o Sy nthesis a nd Selectiv e Oxidation,Lanzhou Institute of Chemical Physics ,The Chinese Academ y o f Sciences ,Lanzhou 730000,China ) Abstract New researches o n m echanism o f alkene epoxidatio n by iro n po rphy rins and ma nga nese po r-phy rins in recent y ea rs a re presented in this paper.Imm obiliza tio n of metalloporphy rins ov er inorg anic suppo rter has many adv antages such a s prev entio n o f interm olecular reactio n a nd easy recovery of the cata-ly sts.This accelera tes the dev elo pm ent of studies o n metallo po rphy rins applications. Key words metallopo rphy rins;reaction m echa nism;interm edia tes;suppo rt 一、引 言 金属卟啉化学一直是一个十分活跃的研究领域。自然界中广泛地存在着金属卟啉配合物,人们熟知的进行氧传递作用的血红蛋白酶、氧活化和电子传递的细胞色素c 和细胞色素P-450以及过氧化氢酶均是金属铁卟啉系列;而进行光合作用的叶绿素是金属镁卟啉。各种不同金属卟啉所具有的奇异功能受到科学家们的广泛重视。通过对各种金属卟啉的结构、光谱、电化学、光化学及反应性能的研究[1,2] ,人们发现卟啉配合物在生物化学、药物化学、石油化学、有机化学、分析化学、固体化学等领域中具有重要应用。其中一个有趣的研究领域是将合成的金属卟啉作为血红素辅基的类似物,使它们能再现和模拟所有不同血红素酶参与的反应,这种相似 性成为研究金属卟啉催化反应的推动力。在金属卟 啉配合物与单氧给体组成的模拟酶催化烃类底物的加氧反应中,由于这些配合物在溶液中不稳定,容易发生氧化降解或不可逆的二聚反应,使催化活性降低,限制了它们的应用,而解决这些问题的有效办法之一是将它们固载于无机载体上。因为固载于无机载体上的金属配合物以单分子态存在,彼此互相分离,避免了二聚,可提高稳定性和催化活性;同时,又可以为催化反应提供优良的形状选择性。因此,通过金属卟啉等配合物在无机载体中的固载,可望制备出性能优良的催化剂。 二、细胞色素P -450 细胞色素P-450是一种血红蛋白,它的活性部位是可与氧结合的血红素Fe(Ⅱ)原卟啉,它通过氧 第14卷第5期2002年9月 化 学 进 展 PROGRESS IN C HEM ISTRY Vol.14No.5 Sep.,2002

生物炭-铁锰氧化物复合材料制备及去除水体砷(III)的性能研究

收稿日期: 2016-10-09基金项目:天津市应用基础与前沿技术研究计划(15JCZDJC33900);国家自然科学基金项目(41243136) 作者简介:林丽娜(1991—),女,山东菏泽人,硕士研究生,从事砷污染土壤的生物化学修复研究。E-mail : linlina91@https://www.360docs.net/doc/218279609.html, *通信作者:宋正国E-mail : forestman1218@https://www.360docs.net/doc/218279609.html, 摘 要:采用浸渍法制备了4种不同的生物炭-铁锰氧化物复合材料(F 1M 1BC 10,F 1M 3BC 20,F 1M 4BC 25,F 3M 1BC 20),采用SEM , XPS 和FTIR 表征方法分析了几种复合材料与生物炭表面性质的差异,比较了4种不同配比生物炭-铁锰氧化物复合材料对砷(Ⅲ)去除性 能,分析了不同投加量的吸附材料对砷(Ⅲ)去除效率及吸附量的差异。结果表明,与生物炭相比,炭、铁和锰不同配比的生物炭-铁锰氧化物复合材料比表面积明显增大,由61.0m 2·g -1增加到208m 2·g -1,孔径变小,由23.7nm 下降到2.76nm ;碱性官能团含量明显增加;材料表面形成了MnOx 、FeOx 。与生物炭相比,4种生物炭-铁锰氧化物复合材料对砷(Ⅲ)的动力学吸附量大小与去除率顺序 依次为F 1M 4BC 25>F 1M 3BC 20>F 1M 1BC 10>F 3M 1BC 20>BC 。F 1M 4BC 25(m 铁∶m 锰∶m 炭=1∶4∶25)是去除砷(Ⅲ)最优的复合材料,在用量为0.016g ·mL -1时,对砷(Ⅲ)的去除率可达82.6%,是生物炭去除率的2.3倍。研究表明,生物炭-铁锰氧化物复合材料是一种潜在的去除水体 砷污染的炭基材料。关键词:生物炭-铁锰氧化物复合材料;砷(Ⅲ);去除效率 中图分类号: X703.5文献标志码: A 文章编号:2095-6819(2017) 02-0182-07doi :10.13254/j.jare.2016.0238 Preparation of Biochar-Ferro Manganese Oxide Composite Material and Properties of Removal of Arsenic (芋)from Aqueous Solution LIN Li-na 1,2,HUANG Qing 1,2,LIU Zhong-qi 2,SONG Zheng-guo 2*(1.School of Land and Environmental Sciences,Shenyang Agriculture University,Shenyang 110000,China;2.Agro-Environmental Protec -tion Institute,Ministry of Agriculture,Tianjin 300191,China ) Abstract :By impregnation method for four kinds of different proportions of biochar-ferro manganese oxide composite (FMBC )material (F 1M 1BC 10,F 1M 3BC 20,F 1M 4BC 25,F 3M 1BC 20)were prepared.FMBC materials at four different ratios were characterized using SEM,XPS,and FTIR and the As (Ⅲ)removal efficiencies and adsorbing capacities were studied.When comparing the FMBC with biochar (BC ),the specif -ic surface area increased from 61.0m 2·g -1to 208m 2·g -1,the pore diameter decreased from 23.7nm to 2.76nm,and the concentration of basic functional groups increased.MnOx and FeOx were created on surface of FMBC.The As (Ⅲ)removal efficiency and adsorbing capacity us -ing different ratios of FMBC increased significantly compared with BC.The As (Ⅲ)removal efficiencies and adsorbing capacities were in the order of F 1M 4BC 25>F 1M 3BC 20>F 1M 1BC 10>F 3M 1BC 20>BC,and the As (Ⅲ)removal rate of F 1M 4BC 25 (Fe ∶Mn ∶biochar=1∶4∶25,mass ratio )(82.6%)was higher than that of BC (35.4%)when their dosage was 0.016g ·mL -1.This study demonstrated that FMBCs would be potential carbon sorbents for removing As (Ⅲ)from polluted waterbodies. Keywords :biochar-ferro manganese oxide composite ;As (Ⅲ); removal rate 农业资源与环境学报 2017年3月·第34卷·第2期: 182-188March 2017·Vol.34· No.2:182-188Journal of Agricultural Resources and Environment 林丽娜,黄 青,刘仲齐,等.生物炭-铁锰氧化物复合材料制备及去除水体砷(Ⅲ)的性能研究[J].农业资源与环境学报,2017,34(2) :182-188.LIN Li-na,HUANG Qing,LIU Zhong-qi,et al.Preparation of Biochar-Ferro Manganese Oxide Composite Material and Properties of Removal of Arsenic (Ⅲ)from Aqueous Solution[J].Journal of Agricultural Resources and Environment ,2017,34(2) :182-188.生物炭-铁锰氧化物复合材料制备及去除水体砷(Ⅲ)的性能研究 林丽娜1,2,黄 青1,2 ,刘仲齐2,宋正国2* (1.沈阳农业大学土地与环境学院,辽宁沈阳110000;2.农业部环境保护科研监测所,天津300191)

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

除铁锰现状及发展

地下水除铁锰技术的现状及发展 随着对铁锰氧化机理研究的不断深入,已开发出多种地下水除铁除锰技术,目前常用的主要有以下几种工艺方法。 1自然氧化法 自然氧化法除铁除锰就是以空气中的氧气作为氧化剂,地下水经过充分的曝气充氧后,将Fe2+氧化为Fe3+,并以氢氧化物沉淀的形式析出,再通过沉淀、过滤得以去除,除铁氧化反应见式l—l: 4Fe2++O2+2H20=4Fc3++OH﹣(1一1) 自然氧化除锰时,由于Mn2+的氧化还原电位高于Fe2+,所以在pH>9.0时,氧化速率才明显加快,而一般地下水的pH值为6.O~7.5,仅靠曝气散除C02以提高pH值的常规方法很难将水的pH提高到9.O以上,所以除锰必须另外投加碱。 自然氧化法工艺通常由曝气、反应沉淀、过滤组成,其特点是:工艺过程复杂,设备庞大,处理效果不稳定,工程投资高。因此从60年代起逐步被接触氧化法所代替。 2接触氧化法 地下水经曝气后,直接进入滤池过滤,随着运行时间的加长,滤料上逐步被铁锰氧化物包覆而形成对地下水中Fe2+、M铲+的氧化有自催化作用的“活性滤膜”。接触氧化法就是指通过活性滤膜的催化氧化作用将Fe2+、Mn2+氧化的工艺过程。 研究发现:对Fe2+氧化起催化作用的成分主要为Fe(0H)3?2H20,称为“铁质活性滤膜”,反应原理式见式1—2和l一3:对Mn2+氧化起

自催化作用的成分主要为Mn02?xH20,反应原理式见为式1-4和1﹣5: Fe(OH)3?2H20+Fe2+=Fe(OH)2-(0Fe)?2H20+H+(1—2) Fe(OH)2+(OFe)?2H20+1/402+5/2H20=2Fe(OH)3?2H20+H+(1—3) Mn2++Mn02?xH20=Mn02?MnO?(x.1)H20+2H+(1一4) Mn02.MnO。(x-1)H20+l/202+H20=2Mn02?xH20 (1—5) 接触氧化法是对自然氧化法的一大改进。简化了自然氧化法的工艺流程,提高了除铁除锰的效果和稳定性,但在实际应用中仍存在着以下一些问题: 接触氧化法的活性滤膜需要在运行过程中逐步形成,一般形成周期称为“成熟期”。实际应用中,不同的滤料成熟期各不相同,即使对同一种滤料,工艺参数控制的不同,成熟期也相差很大,使操作运行不易控制和管理。对一般建成后需要立即达到除铁锰效果的情况无法完成。 除铁效果较好,但除锰效果较差,除锰机理有待于进一步发展与完善,尤其是当水中有铁锰的络合物时。 地下水中铁锰共存时,一般先除铁后除锰,在铁锰含量都比较低的情况下(原水含铁浓度<2mg/L,含锰浓度<1.5mg/L),单级接触氧化除铁除锰工艺可以同时去除铁锰;当原水铁锰含量较高时(含铁浓度>10mg/L,含锰浓度>3mg/L),需要采用两级接触氧化除铁除锰工艺才能完成铁锰的去除。 3生物法

土壤中铬的形态分析

土壤中铬的形态分析 作者:张涛 摘要:对土壤中Cr(?)和Cr(ó)的吸附与pH的关系进行了研究,初步探讨了其吸附机理,选择了合适的铬吸附提取剂。此外,还研究了土壤中铬的形态连续提取方法和形态分布规律,结果表明,铬在土壤中主要以残渣态、沉淀态和有机结合态形式存在。其中残渣态铬含量占总铬量的50%以上。 关键词:铬;土壤;形态;吸附;提取 Title: A study on the form extraction of chromium in soil Abstract:In the present study, the relationship between adsorption of Cr(?)and Cr(ó) in soiland pH was investigated. The mechanism for Cr adsorption in soil was discussed. The extractingreagents of Cr adsorbed in soil were screened. Sequential extraction method of Cr form in soil anddistribution pattern of Cr form in soil were also studied. Experimental results indicated that chromi-um was present in soil by means of precipitation form, residue form and organiccomptexing form.The content of Cr in residue form was more than 50 percent amount of Cr in soil. Key words:chromium; soil; form; adsorption; extraction 铬(?)有致癌作用,而铬(ó)则是人体必需的微量元素[1]。土壤中可溶性铬毒害作用较不溶性铬迅速[2]。土壤中的铬主要是3价和6价铬,3价铬最稳定。在土壤溶液中,铬(?)通常以CrO2 -4和Cr2O2 -7形式存在,一般被土壤胶体吸附较弱,具有较高的活性,对植物的毒害作用较强。而铬(ó)主要以Cr(H2O)3+6、Cr(OH2)+2、CrO-2形式存在,极易被土壤胶体吸附或形成沉淀,其活性较差,对植物的毒害作用相对较轻。在一定条件下,土壤中的铬(?)和铬(ó)可以相互转化[3]。由于土壤是一个多组分多相的复杂体系,铬在土壤中的存在形态及其迁移转化受多种因素影响。在前人工作的基础上[4,5],着重对铬的吸附和沉淀行为与pH的关系、吸附铬提取剂的选择及吸附和沉淀机理作了进一步研究。在参考文献[6,7]基础上并加以改进,把土壤中铬的存在形态区分为水溶态、交换态、碳酸盐结合态、铁锰氧化物结合态、沉淀态(包括氢氧化铬沉淀和磷酸二氢铬沉淀)、有机结合态和残渣态7种形态。建立了土壤中铬的形态连续提取方法,初步探讨了土壤中铬的形态分布和迁移转化规律。这对防治土壤中铬的污染具有重要意义。 表4 铬(ó)处理的土壤中铬的不同形态提取量 Table4 The extracting amounts of Cr with different form in soil treated by Cr(ó)mg#kg-1 提取剂Extractant棕壤Brown earth 褐土Cinnamon soil Aquatic soil Treatment对照 CK处理Treatment对照CK处理TreatmentH2O 0.01 0.21 0.01 0.25 0.02 0.281 mol#L-1NH4Ac 0.22 0.96 0.33 1.01 0.32 1.100.1 mol#L-1EDTA 0.50 4.40 3.42 10.35 3.34 11.200.1 mol#L-1NH2OH#HCl 0.23 2.10 0.36 2.46 0.38 2.212 mol#L-1HCl 4.80 31.36 8.54 36.84 8.94 35.65 10%H2O2-2 mol#L-1HCl 3.90 12.43 5.85 9.88 5.95 10.47残渣态(Residue) 16.45 25.00 24.49 32.96 23.10 28.90 表5试验结果表明,培土除水溶态和NH4Ac提取的交换态含有很少量的Cr(?)外,其他提取液均检不出Cr(?),水溶性Cr(?)转化为Cr(ó)后,再转化为非水溶性的Cr(ó),其中80%以上转化为沉淀态铬(ó),而转化为其他形态的Cr(ó)都较低,并且都低于培育土壤中相应形态Cr(ó)。这是因为在还原条件下Cr(?)转化为(ó)再转化为其他形态,Cr(ó) 表5 铬(?)处理的土壤中铬的不同形态提取量 Table5 The extracting amounts of Cr with 提取剂Extractant棕壤Brown earth褐土Cinnamon soil潮土Aquatic soil铬(?)Cr(?)全铬

环境化学复习纲要

环境化学 ——复习纲要 第一章绪论 环境化学的定义、研究内容(P4-5); 污染物的迁移和转化的定义,及主要的迁移方式和转化方式(P14-15); 环境污染物有哪些。 首批POPs名单2001年斯德哥尔摩公约 2005年在我国生效 ①滴滴涕DDT ②狄氏剂dieldrin ③异狄氏剂endrin ④艾氏剂aldrin ⑤氯丹chlordane ⑥七氯heptachlor ⑦六氯苯hexachlorobenzene (HCB) ⑧灭蚁灵mirex ⑨毒杀芬camphechlor ⑩多氯联苯polychlorinated biphenyls (PCBs) ?二恶英dioxinds ?呋喃furans 第一节大气的组成及其主要污染物 大气层的结构划分,对流层和平流层的特点;(P18-19) 大气中含S、N、C、卤素化合物的来源及消除方式,主要针对SO2、NOx、CH4、NMHC、简单卤代烃、氟氯烃类;(P21-47) 第二节大气中污染物的迁移 逆温的分类,辐射逆温的形成与特点(P47-48); 影响大气污染物迁移的因素,污染物在大气中扩散的三因素,两种乱流,三种局地环流(P54-56)。 第三节大气中污染物的转化 光反应过程(P66-67);光学第一、二定律,Einstein公式的应用(P67-68); 平流层中O3的主要来源(即O自由基消除的主要过程),大气中唯一已知O3的人为来源,大气HO2自由基的重要来源之一,卤代烃的光解产物(P70-74)。 (7)卤代烃 ①以卤代甲烷为例,初级反应如下: CH3X + hν→CH3?+ X? ②若卤代甲烷中含有一种以上的卤素,则断裂最弱键。 CH3-F > CH3-H > CH3-Cl > CH3-Br > CH3-I ③高能量短波照射时,可能会发生两个键断裂,应断两个最弱 的键。CF2Cl2 →:CF2 + 2?Cl ④即使最短波长的光,如147nm,三键断裂也不常见。

项目名称限域反应构建晶态氧化物能量转换材料及调控机制

项目名称:限域反应构建晶态氧化物能量转换材料及调控机制 提名意见: 该项目属于无机材料与化学工程学科交叉领域。晶态氧化物能量转换材料在光电化学能转换及能量存储等领域具有重要应用,关键取决于其原子水平结构设计及控制。该项目立足于介观限域反应过程,提出特定晶面及其多级结构可控合成策略,揭示并提出光电化学能转换及储能新机制。1、提出从原子尺度精确调控晶态氧化物表面以及本体近程结构,发现独特表面原子排布及其多级结构耦合极大地提升电子传输和表面催化性能。2、提出从原子尺度精确调控“助”材料表面电子结构,发现特定表面原子排布有效促进催化反应中间产物吸脱附过程以及电子传输行为。3、提出基于氧化石墨表面含氧官能团与金属离子强配位限域反应制备金属氧化物/碳的新思路,合成具有优异光电化学转换性能的晶态氧化物/碳表面耦合多级结构。4、发展了界面限域反应控制制备杂化结构复合材料新思路,基于材料结构演化动力学模型构筑了新颖金属氧化物嵌入介孔碳复合多级结构材料。该项目在Nature Energy和Nature Commun.等期刊发表SCI论文158篇,SCI他引超过15000余次。8篇代表性论文包括Nature Commun.、Adv. Mater.和Angew. Chem. Int. Ed.等期刊,SCI总被他引2434次,6篇论文入选ESI高引论文。国际学术会议主题和邀请报告32次,授权发明专利28项。获得2014年度上海市自然科学一等奖。提名该项目为国家自然科学奖二等奖。 项目简介: 该项目属于无机材料与化学工程学科交叉领域。晶态氧化物能量转换材料在光电化学能转换及能量存储等领域具有重要应用,关键取决于其原子水平结构设计及控制。介观限域组装可以精确控制材料生长表/界面微区温度和浓度等特征,为材料原子水平结构设计及精准合成提供可能。该项目立足于介观限域反应过程,提出特定晶面及其多级结构可控合成策略,创新性合成性能优异的光化学能转换及能量存储材料新结构,揭示并提出光电化学能转换及储能新机制。 1、提出从原子尺度精确调控晶态氧化物表面以及本体近程结构,阐明晶体结构控制生长与微区传递/反应之间的耦合关系,首次可控制备高指及活性晶面主导晶态氧化物材料,发现独特表面原子排布及其多级结构耦合极大地提升电子传输和表面催化性能。 2、提出从原子尺度精确调控“助”材料表面电子结构,构建其几何电子结构与催化性能、稳定性之间的构-效关系,合成了整体光电化学性能优异的晶态氧化物材料,发现特定表面原子排布有效促进催化反应中间产物吸脱附过程以及电子传输行为。 3、提出基于氧化石墨表面含氧官能团与金属离子强配位限域反应制备金属氧化物/碳的新思路,合成具有优异光电化学转换性能的晶态氧化物/碳表面耦合多级结构,发现该耦合结构可以形成界面电场并促进电子定向迁移。

土壤中铬形态分析

土壤中铬形态分析 摘要:综述了分析铬在土壤中形态的几种方法,介绍了土壤中铬形态分析的 研究方法。讨论了土壤中铬的常见存在形态和转化,概括了土壤中铬的分析方法,介绍了铬的危害。展望了土壤中铬的形态分析的发展前景。 关键字:土壤铬形态分析 1、引言 铬在自然界广泛存在,铬是 VIB 族元素,它在土壤中的含量一般为 10~150mg/kg,但在某些蛇纹岩发育的土壤中,铬含量可高达 12.5%。工业上主要用于制造各种优质合金,也广泛用于皮革、印染、电镀、制药、油漆和涂料制造业等工业,受腐蚀后以各种排放液进入环境,使土壤环境受到不同程度污染。土壤中铬通常是以 Cr(Ⅵ)和 Cr(Ⅲ)2 种价态存在的,两者的毒性和化学行为相差甚大,Cr(Ⅵ)以阴离子的形态存在,一般不易被土壤所吸附,具有较高的活性,对植物易产生毒害,Cr(Ⅵ)被认为具有致癌作用;而 Cr(Ⅲ)极易被土壤胶体吸附和形成沉淀,其活动性差,产生的危害相对较轻,对动植物和微生物的毒性一般 Cr(Ⅵ)比 Cr(Ⅲ)大得多。 但单从价态来区分并不能反映土壤环境中铬的真实存在形态。环境中的铬分为无机铬和有机铬,其中无机铬的含量远比有机铬大得多。无机铬中常见的形态为 Cr(Ⅵ)和 Cr(Ⅲ)。三价铬是人体必需的微量元素,是葡萄糖耐量因子( GTF)的主要组成部分。人体缺铬会使糖代谢紊乱,导致糖耐量异常及糖尿病。六价铬由于其氧化性和对皮肤的高渗透性,毒害很大,被确认有致癌作用。另外铬形态分布也影响铬在环境中的迁移转化规律。因此铬的形态分析在环境科学、生命科学和生理医学等方面都具有重要的意义。 土壤是一个多组分多相的复杂体系,存在着各种结合态的铬,它们对环境的毒性和植物的有效性也是不一样的,所以,必须选用合适的提取剂把不同结合态逐级提取区分开来进行研究。当前已有大量的文献报道了铬的形态分析,目前铬形态分析方法主要包括原子吸收光谱法、分子光谱法、电化学法和质谱法等。 2、土壤中铬的常见形态及其转化 土壤中铬通常是以 Cr(Ⅵ)和 Cr(Ⅲ)2 种价态存在,除此之外土壤中还存在着各种结合态的铬。 陈英旭等在土壤中铬的形态及其转化一文中,通过土壤中不同结合态铬的逐级提取方法的研究,结果表明,较低的条件下,水溶性和代换性铬浓度显著增加, pH 4.0 左右,水溶性和代换性铬总含量青紫泥可达 36.75mg/kg,黄筋泥可达44.74mg/kg,而在 pH6.0 左右土壤中水溶性和代换性铬浓度是很低的。因为在吸附或吸附—沉淀区域内吸附的铬容易被提取出来,而在稳定沉淀区域,pH 比较高, Cr(Ⅲ)容易形成稳定沉淀态 ,难以被 H2O 和 NH4Ac 所提取,所以,在 pH高的条件下,沉淀铬量显著增加,残渣态铬量也有所增加,青紫泥和黄筋泥都是如此。由此可知自然土壤中铬的形态主要以残渣态和沉淀态为主;土壤还原条件下,土壤中铬有向有机结合态铬转化趋势,有机结合态铬随时间有所增加,水溶态和代换态铬浓度略有上升。

重金属形态分析方法

参照T essier的分析方法,确定土壤重金属形态分析方法如下: 可交换态:称取样品1.00克于10ml离心管中,加入1mol/LMgCl2溶液8ml(ph=7),在18摄氏度恒温水浴振荡器中以200次/min的速度振荡1小时,然后在离心机上以4000r/min离心30min,将上清液和沉淀分离,上清液测重金属元素,沉淀留在原离心管中。 碳酸盐态:在原离心管中加入1.0mol/LNaAc8ml(用HAc调到ph=5)在20摄氏度恒温水浴振荡器中以200次/min的速度震荡1.5小时,然后改变振荡速度至100次/min振荡16小时,用上述同样方法离心分离,上清液测重金属元素,沉淀留在原离心管中。 铁锰氧化态:用0.04mol/LNH2·HAc(4.5mol/l)溶液20ml将离心管中的沉淀转入另一支25ml离心管中,在96摄氏度的恒温箱中保持3小时(期间每隔10min 搅动一次),用上述同样方法离心分离,上清液测重金属元素,沉淀留在原离心管中。 有机态:在原25ml离心管中加入0.02mol/LHNO3 3ml,再加入30%H2O2 5ml (HNO3调到PH=2),在83摄氏度的恒温箱中保持1.5小时(期间每隔10min 搅动一次),然后再加入30%H2O2 3ml,继续在83摄氏度的恒温箱中保持1.1小时(期间每隔10min搅动一次);取出冷却到室温后加入3.2mol/LNH4Ac(3.2mol/LHNO3)5Ml,并将样品稀释到20ml,放入20摄氏度恒温水浴静置10小时,用上述同样方法离心分离,上清液测重金属元素,沉淀留在原离心管中。 残渣态:将在原25ml离心管中的沉淀转入另一支30ml的聚乙烯坩埚中,用HF、HCL、HNO3、HClO4混酸溶样。 用修改的BCR连续提取I}51,共进行4步:①用0.11 mol/L醋酸溶液提取,②用0.5-1/T 的盐酸轻胺提取,③用PH为2的过氧化氢消化后1.Omol/L醋酸氨溶液(用浓HNO,调PH值至 2)提取,④上述残渣再用王水消化提取,以上提取液中重金属含量分别用 TCP-AES测定,其中Cd和Pb用GFAAS测定,锥个提取过程用土壤标样I-oct-97 # 6进行质量控制 1. 4. 2 重金属形态分级方法 交换态:称取1 g 干燥土壤,加入8 mL 1 mol·L - 1MgCl2,在pH 7. 0 (20 ±3)℃条件下振荡30 min,取上清液待测定(第一分级)。 碳酸盐结合态:将以上残余物加入8 mL 1 mol·L - 1 NaOAc ,在pH5. 0 (20 ±3 )℃条件下,连续浸提1. 5 h 后,离心分离30 min,取上清液待测(第二分级)。Fe - Mn 氧化物结合态:将以上残余物加入0. 04mol·L - 1 NH2OHHCl 之HOAc(25%, V / V) 20 mL,在pH2. 0,温度96 ℃±2 ℃条件下,偶尔搅动反应3 h 后离心分离,取上清液待测(第三分级)。 有机结合态:将第三分级残余物加0. 02 mol·L - 1 HNO3 5 mL,再加30%(V / V)H2O2 25 mL(HNO3 调pH 为2 ) ,偶尔搅动反应1. 5 h;混合物经85 ℃水浴加热5 min,浸提6 h 后加3 mol·L - 1 NH4OAc 之HNO3(20%,V / V)液5 mL,室温下静置9. 5 h 后离心分离,取上清液待测(第四分级)。 残渣态:利用差减法计算残渣态含量,用重金属的总量减去其他4 种形态重金属含量,剩余的即确认为重金属的残渣态含量。重金属全量分析:称取风干的土壤

相关文档
最新文档