SDS-PAGE电泳实验步骤

SDS-PAGE电泳实验步骤
SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质

一、实验目的

学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。

二、实验原理

蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。

聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。

如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是:

M

r =K(10-b·m) logM

r

=LogK—b·R

m

式中M

r

——蛋白质的分子量;

logK——截距;

b——斜率;

R

m

——相对迁移率。

实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

的对数之间呈线性关系。蛋白质的相对迁移率R

=蛋白质样品的迁移距离/染料(溴

m

酚蓝)迁移距离。这样,在同一电场中进行电泳,把标准蛋白质的相对迁移率与相应的蛋白质分子量对数作图,由未知蛋白的相对迁移率可从标准曲线上求出它的分子量。

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)法测定蛋白质的分子量具有简便、快速、重复性好的优点,是目前一般实验室常用的测定蛋白质分子量的方法。

三、试剂及主要器材

1.主要试剂

1)标准蛋白混合液

内含:兔磷酸化酶B(Mw 97,400),牛血清蛋白(Mw 66,200),兔肌动蛋白(Mw 43,000),牛磷酸酐酶(Mw 31,000)和鸡蛋清溶菌酶(Mw 14,400)

2)30%凝胶贮备液:丙烯酰胺(Acr)29.2g,亚甲基双丙烯酰胺(Bis)0.8g,加双蒸水至100mL。外包锡纸,4℃冰箱保存,30天内使用。

3)分离胶缓冲液(1.5mol/L): Tris 18.17g,加双蒸水溶解,6mol/L HCl调pH8.8,

定容100mL。4℃冰箱保存

4)浓缩胶缓冲液(0.5mol/L): Tris 6.06g,加水溶解,6mol/L HCl调pH6.8,并

定容到100mL。4℃冰箱保存

5)电极缓冲液(pH8.3):SDS lg,Tris 3g,Gly 14.4g,加双蒸水溶解并定容到1000mL。

4℃冰箱保存。

6)10%SDS,室温保存

7)质量浓度10%过硫酸铵(新鲜配制)

8)上样缓冲液:0.5mol/L Tris-HCl pH6.8 1.25mL,甘油2mL,10%SDS 2mL,

β-巯基乙醇1mL,0.1%溴酚蓝0.5mL,加蒸馏水定溶至10mL。

9)0.25%考马斯亮蓝R-250染色液:0.25g考马斯亮蓝R250,加入91ml50%甲醇,

9ml冰醋酸

10)脱色液:50ml甲醇,75ml冰醋酸与875ml双蒸水混合

11)未知分子量的蛋白质样品(1mg/mL )

2.实验器材

1)DYCZ-24D垂直板电泳槽(北京市六一仪器厂)

2)电泳仪

3)长滴管及微量加样器

4)烧杯(250mL、500m1)、量筒(500mL、250m1)、培养皿(15cm l5cm)

5)注射器等

四、实验操作

1.装板

将密封用硅胶框放在平玻璃上,然后将凹型玻璃与平玻璃重叠,将两块玻璃立起来使底端接触桌面,用手将两块玻璃夹住放入电泳槽内,然后插入斜插板到适中程度, 即可灌胶。

2.凝胶的聚合

分离胶和浓缩胶的制备:按下表中溶液的顺序及比例,配置10%的分离胶和4.8%的浓缩胶。

按上表各液加入混匀后配制成分离胶后,将凝胶液沿凝胶腔的长玻璃板的内面缓缓用滴管滴入,小心不要产生气泡。将胶液加到距短玻璃板上沿2cm处为止,约5mL。然后用细滴管或注射器仔细注入少量水,约0.5-1mL。室温放置聚合30-40min。

待分离胶聚合后,用滤纸条轻轻吸去分离胶表面的水分,按上表制备浓缩胶。用长滴管小心加到分离胶的上面,插入样品模子(梳子);待浓缩胶聚合后,小心拔出样品模子。

3.蛋白质样品的处理

若标准蛋白质或欲分离的蛋白质样品是固体,称取lmg的样品溶解于lmL 0.5mol /L pH6.8Tris-盐酸缓冲液或蒸馏水中;若样品是液体,要测定蛋白质浓度,按1.0~1.5mg/mL溶液比例,取蛋白质样液与样品处理液等体积混匀。本实验所用样品为15~20μg的标准蛋白样品溶液,放置在0.5mL的离心管中,加入15—20μl的样品处理液。在100℃水浴中处理2min,冷却至室温后备用。

吸取未知分子量的蛋白质样品20μl,按照标准蛋白的处理方法进行处理。

4.加样

SDS-聚丙烯酰胺凝胶垂直板型电泳的加样方法

用手夹住两块玻璃板,上提斜插板使其松开,然后取下玻璃胶室去掉密封用硅胶框,注意在上述过程中手始终给玻璃胶室一个夹紧力,再将玻璃胶室凹面朝里置入电泳槽,插入斜板,将缓冲液加至内槽玻璃凹面以上,外槽缓冲液加到距平板玻璃上沿3mm处即可,注意避免在电泳槽内出现气泡。

加样时可用加样器斜靠在提手边缘的凹槽内,以准确定位加样位置,或用微量注射器依次在各样品槽内加样,各加10~15μl(含蛋白质10~15μg),稀溶液可加20~30μl (还要根据胶的厚度灵活掌握)。

5.电泳

加样完毕,盖好上盖,连接电泳仪,打开电泳仪开关后,样品进胶前电流控制在15~20mA,大约15~20min;样品中的溴酚蓝指示剂到达分离胶之后,电流升到30~45mA,电泳过程保持电流稳定。当溴酚蓝指示剂迁移到距前沿1~2cm处即停止电泳,约1-2小时。如室温高,打开电泳槽循环水,降低电泳温度。

6.染色、脱色

电泳结束后,关掉电源,取出玻璃板,在长短两块玻璃板下角空隙内,用刀轻

轻撬动,即将胶面与一块玻璃板分开,然后轻轻将胶片托起,指示剂区带中心插入

铜丝作为标志,放入大培养皿中染色,使用0.25%的考马斯亮蓝染液,染色2~4h,必要时可过夜。

弃去染色液,用蒸馏水把胶面漂洗几次,然后加入脱色液,进行扩散脱色,经

常换脱色液,直至蛋白质带清晰为止。

7.结果处理

1)测量脱色后凝胶板的长度和每个蛋白质样品移动距离(即蛋白质带中心到加样孔

的距离),测量指示染料迁移的距离。

2)按以下公式计算蛋白质样品的相对迁移率(Rm)

相对迁移率=样品迁移距离(cm)/染料迁移距离(cm)

3)标准曲线的制作:以各标准蛋白质相对迁移率为横坐标,蛋白质分子量的对数为

纵坐标在半对数坐标纸上做图,得到一条标准曲线。

4)测定蛋白质样品的分子量:根据待测蛋白质样品的相对迁移率,从标准曲线上查

得该蛋白质的分子量。

五、思考题

1.聚丙烯酰胺盘状凝胶电泳的几个不连续性是什么?

2.电泳时的三个物理效应是什么?是怎样造成的?

3.电泳后上下槽缓冲液可否混合后再使用?为什么?

4.上样缓冲液中加入甘油的作用是什么?

5.贮液配制及贮存应注意什么?

6.过硫酸铵、7%乙酸和考马斯亮蓝在实验中有什么作用?

附:不同分离胶的配制方法

分离胶的浓度20% 15% 12% 10% 7.5% 双蒸水/ml 0.75 2.35 3.35 4.05 4.85

1.5mol/L

Tris-Hcl(pH8.8)/ml 2.5 2.5 2.5 2.5 2.5 10%SDS/ml 0.1 0.1 0.1 0.1 0.1

凝胶储备液

(Acr/Bis)/ml 6.6 5.0 4.0 3.3 2.5 10%过硫酸铵/ul 50 50 50 50 50 TEMED/ul 5 5 5 5 5 总体积/ml 10 10 10 10 10

毛细管电泳实验报告

毛细管电泳实验报告 高乃群S0 实验目的 1.了解毛细管电泳实验的原理 2.掌握毛细管电泳仪的操作方法,并设计样品组分的分析过程. 3.学会处理实验数据,分析实验结果. 实验原理C E所用的石英毛细管柱, 在pH>3情况下, 其内表面带负电, 和溶液接触时形成了一双电层。在高电压作用下, 双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗, 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和, 正离子的运动方向和电渗流一致, 故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳流速度, 故它将在中性粒子之后流出, 从而因各种粒子迁移速度不同而实现分离。 电渗是CE中推动流体前进的驱动力, 它使整个流体像一个塞子一样以均匀速度向前运动, 使整个流型呈近似扁平型的“塞式流”。它使溶质区带在毛细管内原则上不会扩张。 一般来说温度每提高1℃, 将使淌度增加2% (所谓淌度, 即指溶质在单位时间间隔内和单位电场上移动的距离)。降低缓冲液浓度可降低电流强度, 使温差变化减小。高离子强度缓冲液可阻止蛋白质吸附于管壁, 并可产生柱上浓度聚焦效应, 防止峰扩张, 改善峰形。减小管径在一定程度上缓解了由高电场引起的热量积聚, 但细管径使进样量减少, 造成进样、检测等技术上的困难。因此, 加快散热是减小自热引起的温差的重要途径。

实验设备:电泳仪。仪器及试剂: 缓冲溶液(buffer):20 mmol/L Na 2B 4 O 7 缓冲溶液。1mol/L NaOH溶液,二次 去离子水。未知样饮料(雪碧和醒目) 1.实验步骤仪器的预热和毛细管的冲洗:打开仪器和配套的工作站。工作温度设置为30℃,不加电压,冲洗毛细管,顺序依次是:1 mol/L NaOH溶液5 min, 二次水5 min,10 mmol/L NaH 2PO 4 -Na 2 HPO 4 1:1缓冲溶液5 min,冲洗过程中出 口(outlet)对准废液的位置,并不要升高托架。 2.混合标样的配制:毛细管冲洗的同时,配制标样苯甲酸浓度依次为、、、、1 mg/ml。 3.做标准曲线:待毛细管冲洗完毕,取1 ml混合标样,置于塑料样品管,放在电泳仪进口(Inlet)托架上sample的位置,然后调整出口(outlet)对准缓冲溶液(buffer),升高托架并固定,然后开始进样。进样压力30 mbar,进样时间5 s。进样后将进口(Inlet)托架的位置换回缓冲溶液(buffer),切记换回buffer 的位置!选择方法,修改合适的文件说明,然后开始分析,电压25 kV,时间约10 min。 4.未知浓度混合样品的测定:方法与条件同上,测试未知浓度混合样品,分析时间约25min,据苯甲酸钠标准曲线测雪碧与醒目这两种饮料中的苯甲酸钠的

RNA凝胶电泳步骤及注意事项

R N A凝胶电泳步骤及注 意事项 Hessen was revised in January 2021

RNA凝胶电泳步骤及注意事项 1%的RNA琼脂糖凝胶电泳可以用来检测RNA的完整性,本实验的主要目的是熟悉植物总RNA非变性胶电泳 操作原理和操作方法与步骤。 一、实验目的 掌握植物总RNA非变性胶电泳的原理和方法。 二、实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用%%的凝胶,不同的RNA条带也能分开,但无 法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。 三、实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖, 1XTAE电泳缓冲液,μg/ml溴化乙锭(EB)10X载样缓冲液。 四、实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。 (2)在超净工作台上,用移液器吸取总RNA样品4μl于封口膜上。在实验台上再加入5μl 1×TAE电泳缓冲液及1μl 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。 试剂: (1)MOPS缓冲液(10*):L 吗啉代丙烷磺酸(MOPS) ,L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,%溴酚蓝,%二甲苯蓝。 (3)甲醛。 (4)去离子甲酰胺。v电泳槽清洗:去污剂洗干净(一般浸泡过夜)——水冲洗——乙醇干燥——3%H2O2灌满——室温放置10分钟——%DEPC水冲洗。 操作: (1) 将制胶用具用70%乙醇冲冼一遍,晾干备用。 (2) 配制琼脂糖凝胶。 ①称取琼脂糖,置干净的100ml 锥形瓶中,加入40ml蒸馏水,微波炉内加热使琼脂糖彻底溶化均匀。 ②待胶凉至60--70 ℃,依次向其中加入9ml 甲醛、5ml 10X MOPS缓冲液和溴化乙锭,混合均匀。 ③灌制琼脂糖凝胶。 (3) 样品准备: ① 取 DEPC处理过的500ul小离心管,依次加入如下试剂: 10x MOPS缓冲液2ul,甲醛,甲酰胺(去离 子)10ul,RNA 样品 ,混匀。 ② 将离心管置于60℃水浴中保10分钟,再置冰上2分钟。 ③ 向管中加入3ul 上样染料,混匀。 (4)上样。 (5)电泳:电泳槽内加入1XMOPS缓冲液,于ml 的电压下电泳。 (6)电泳结束后,在紫外灯下检查结果。 小结:RNA琼脂糖凝胶电泳中务必去除RNASE酶的污染,所有的试剂需用DEPC水配制,所用的器材也要的DEPC处理并灭菌,防止RNA被降解

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 实验名称血清蛋白醋酸纤维薄膜电泳及其定量 实验日期实验地点xx实验室 合作者xxx 指导老师xxx 评分教师签名批改日期 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。 血清蛋白质等电点分子量占总蛋白的% 清蛋白 4.64 69,000 57~72 α1-球蛋白 5.06 200,000 2~5 α2-球蛋白 5.06 300,000 4~9 β-球蛋白 5.12 90,000~150,000 6.5~12 γ-球蛋白 6.85~7.3 156,000~950,000 12~20 缓冲液pH=8.6,pI<pH。

血清蛋白带负电荷,在电场中向正极移动。 预测血清蛋白电泳区带图 血清蛋白依次分为清蛋白,球蛋白的α1、α2、β、γ五个区带 2.3.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1) 3.2.实验步骤 1.准备与点样:①取2×8cm的膜条;②亚光面距一端1.5cm处取一点样线;③充分浸透在巴比妥缓冲液中;④取出膜条,用滤纸吸去多余的缓冲液;⑤点样器下端粘上薄层血清;⑥垂直点样。 点样示意图:

WB实验步骤

蛋白电泳(制胶、SDS -PAGE 电泳) 实验材料: SDS-PAGE 凝胶制备试剂盒、电泳缓冲液、提取的蛋白或全细胞裂解液、广谱彩虹预染中分子量蛋白Marker 、SDS-PAGE Loading Buffer (还原,5×)、G250蛋白快速染色试剂、若干蒸馏水 实验仪器、耗材: 蛋白电泳仪、制胶仪、水平摇床、15ml 离心管、5ml 移液器、微量移液器、1.5ml 离心管、塑料饭盒(可在微波炉里加热使用) 配制溶液: ● 配制10%APS 溶液:-20度保存 0.5g APS + 5ml 蒸馏水、2.5g APS + 25ml 蒸馏水 ● 配制200 ml 电泳缓冲液:CW0045 Tris-Glycine SDS (ph8.3,10×) 20 ml Tris-Glycine SDS + 180 ml 蒸馏水 ● 配制1 ml loading buffer : 200 ul 5×loading buffer +800 ul 蒸馏水 实验步骤: 一.制胶: 1. 参照凝胶模具说明书,装配好凝胶模具。 2. 根据分离蛋白的大小配制分离胶和浓缩胶。 3. 配制 10%分离胶: 将不同体积的30%Acr-Bis(29:1)、分离胶缓冲液和双蒸水在小烧杯或试管中混合。 加入10%APS 和TEMED ,轻轻搅拌使其混匀,避免产生气泡。

4.待胶灌至距离玻璃板顶端1.5cm的时候停止灌胶,加入蒸馏水水封。静置40分钟至 1小时。 5.待分离胶凝固后(水层胶层中间出现折线),倒掉蒸馏水,用滤纸将水溶液吸干。 6.配制5%浓缩胶: 7.将浓缩胶溶液加至分离胶的上面,直至凝胶溶液到达前玻璃板的顶端。 注意:灌胶速度要快,防止凝胶。 8.将梳子插入凝胶内,避免产生气泡。静置20分钟,等待浓缩胶聚合。 9.待凝胶聚合后,小心地拔出梳子,以免破坏加样孔。赶走气泡。 二.SDS-PAGE电泳: 1. 在电泳槽的内外槽灌至电泳缓冲液。 2. 制备样品: 1)蛋白样品: 根据植物蛋白或动物组织蛋白定量结果,计算蛋白提取液加入量,制备上样溶液。 蛋白提取液+ 5×上样缓冲液+ 蒸馏水,上样量为40-60ug。 制备的样品,煮沸5分钟,12,000 rpm离心5分钟,取上清,上样。

PCR反应及琼脂糖电泳实验报告

多聚酶链式反应(PCR)扩增DNA片段及琼脂糖凝胶电泳产物检测 一、实验目的: 1、了解PCR技术的基本操作 2、理解PCR的原理 3、讨论PCR的应用 二、实验原理: PCR是一种在体外模拟细胞内环境进行迅速扩增DNA片段的技术,这一技术需要模板、四种脱氧核苷酸等组分条件外,还需要不同温度环境以进行DNA的解旋和聚 1、PCR反应组分 细胞内DNA复制条件分析: 2、PCR反应条件

PCR利用了DNA的热变性原理,通过控制温度来控制双链的解聚与结合,现在使用的PCR 仪实质上也是一台能够自动调控温度的仪器。 PCR一般经历三十多次循环,每次循环可以分为三个基本步骤──变性、复性和延伸。 (!)变性(模板DNA解旋) 模板DNA经加热至90℃以上。一定时间后,使模板DNA双链解离,使成为单链,以便于它与引物结合,为下轮反应作准备。 (2)复性(退火) 模板DNA经加热变性成单链后,温度降到50℃左右,引物与模板DNA单链的互补序列配对结合。 (3)延伸 DNA模板-引物结合物在TaqDNA聚合酶的作用下以脱氧核苷酸为原料,以母链为模板,按碱基互补配对的原则与半保留复制的原理,合成一条新的DNA链。 3、PCR产物的检测 (1)紫外分光光度计 DNA在260nm的紫外波段有一强烈的吸收峰,可以通过与蒸馏水的对比进而计算扩增出DNA的含量。 (2)琼脂糖凝胶电泳 DNA在电厂作用下,可以由电源的负极向正极泳动,泳动的速度与DNA片段的长度成负相关,与电压强度成正比,因此可以分离不同长度的DNA。在有DNA marker(不同已知碱基

对大小的DNA片段的混合物)的条件下,由于不同碱基大小的DNA片段在琼脂糖凝胶上涌动的速度不同,因此电泳完毕后会出现在胶块的不同位置。通过将扩增出的DNA片段与已知的条带做比较,可以大概推测出该片段的碱基对的大小。如果要进一步检测其大小,可以换另外规格的DNA marker 继续电泳。核酸荧光染料可以与DNA嵌合,一起电泳,DNA图谱观察仪可以激发特定的蓝色光源,荧光染料在该光照射下可见到荧光,荧光的亮度与DNA大小成正比。 三、实验仪器及试剂 7种PCR组分微量可调移液器离心管 PCR仪水平电泳槽电泳仪电源紫外分光光度计 250ml锥形瓶(封口膜) 记号笔卫生纸 四、实验步骤 1、DNA体外扩增 (1) 将所有试剂管瞬时离心一次(4000r/min,1min),使管壁没有残留药品,在引物 I 和引物II的离心管内用移液器各加入40ul双蒸水(ddH2O),混匀后瞬时离心一次。所有的离心管都摆到双面板上。 (2)向装有Taq DNA 聚合酶的离心管按下表加入以下成分: 原有的Taq DNA 聚合酶有15ul,此时混合液体系共计500ul,此步骤由第一、二组同学合作完成。(在实验老师的监督指导下操作,确保此后其他同学的实验顺利进行) (3)共分25组,第一、二组的同学并入其他小组进行实验。每组取20ul的上述混合液于的离心管中,加入15ul的液体石蜡封闭体系,以防止在加热过程中蒸发。 (4) 对自己组的离心管上进行标记之后,放到PCR仪上进行DNA扩增。 2、琼脂糖凝胶电泳检测DNA (1)用蒸馏水将电泳槽和梳子冲洗干净,放在水平桌面上,并架好梳子。 (2)配制浓度为1%(1 g/100 mL)的琼脂糖凝胶2块。在锥形瓶中,称取1g的琼脂糖粉,加入100ml 1x电泳缓冲液,用封口膜封住瓶口后在微波炉内加热,使琼脂糖粉熔化,

电泳实验步骤

电泳实验细节 实验步骤操作要点: ① 每组将2只50 mL 、2只100 mL 容量瓶,3只200ml 烧杯洗净待用。 ② 用100ml 的容量瓶准确配制0.10 mol/L 的KI 、AgNO 3各100 mL 待用,并配置0.010 mol/L 两种溶液各50 mL 备用。 ③ 用0.010 mol/L 的KI 和AgNO 3分别配制0.005mol/L 的KI 和AgNO 3新鲜溶液100 mL 待用。 ④ 在洗净的200 mL 烧杯中准确移入0.005 mol/L 的KI 26.0 mL ,在搅拌条件缓缓滴入22.0 ml 左右的0.005 mol/L 的AgNO 3,直至形成透明晶莹的AgI 溶胶。 ⑤ 将制备好的溶胶沿洗净的电泳管中央细管缓缓加入,使溶胶高度与电极管口插入的电极头部同高(图二中刻度6)。 ⑥ 沿电泳管的管壁(图中2)滴入0.005mol/L 的KNO 3辅助液,并且使辅助液要高出铂片约2 cm (图中刻度5),将滴加完KNO 3的溶液静置8-10分钟,观察辅助液与胶体间有无界面,无界面则重做。 ⑦ 打开电源之前,检查电源粗调旋钮是否在零位,若不在:一定要调至零点,然后再打开电源;再分别调节粗调 、细调两个旋钮,使电压稳定在160伏,电泳一段时间,使负极一端界面下降2.0 cm (即图中刻度5到刻度6),记下移动所用时间(s ).注意:关闭电源时, 电压粗调旋钮也必须调至零点,方可关掉电泳电源开关。 ⑧ 用导线测量两电极铂片间溶胶的长度。 相关公式:)]/(/[t /h 43002 L V E )(πηζ?= h :2cm ,E=81 ,V=160V , η:在试验温度下水的黏度80,L :胶体的长度 ,t :上升所用时间。

凝胶电泳实验报告模板

凝胶电泳实验报告模板

降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基因呈离子状态从这种意义上讲,D N A 和RNA多核苷酸链可叫做多聚阴离子( Polyanions ) 。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖- 磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA 分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 3.1 凝胶电泳的分类 按照分离物质来分凝胶电泳可以分为核酸凝胶电泳和蛋白质凝胶电泳;按照分离介质来分可以分为琼脂糖凝胶电泳技术和PAGE凝胶电泳。本次实验我们采用按介质的分类方法来学习的。 3.1.1琼脂糖凝胶电泳 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 2.2.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血); ②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L); ③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH

溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL 加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1); ⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1)四、结果与讨论条 4.1.结果分析本次实验得到的图谱只能够清晰的看出清蛋白和γ-球蛋白的区带,其余无法区别。原因可能如下:①醋酸纤维薄膜质量不足。②薄膜过湿,样品扩散迅速,导致样品分离不成区带。③点样太少,区带显色不明显。④电泳时间不足。 ⑤薄膜在缓冲液中浸泡的时间不足。⑤取出电泳后的薄膜过程中曾不慎将薄膜掉到地上。⑥染色时,因为现场混乱,可能导致醋酸纤维薄膜不是一张一张放入染色液的,在染色固定前,薄膜与薄膜之间重叠,造成薄膜上还未固定的血清蛋白彼此粘连。 四、结果与讨论 4.2.课后思考题 1.电泳时,点样端置于电场的正极还是负极?为什么? 答:点样端置于电场的负极。因为人体血清的蛋白质会因电槽中溶质呈碱性而带负电,要成功分离出各类各类蛋白质,理应将点样端置于电场的负极。

(完整word版)DNA的琼脂糖凝胶电泳实验原理和操作步骤

一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,学习DNA琼脂糖凝胶电泳的使用技术,掌握有关的技术和识读电泳图谱的方法。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA 核酸分子是两性解离分子,pH3.5是碱基上的氨基解离,而三个磷酸基团中只有一个磷酸解离,所以分子带正电,在电场中向负极泳动;而pH8.0-8.3时,碱基几乎不解离,而磷酸基团解离,所以核酸分子带负电,在电场中向正极泳动。不同的核酸分子的电荷密度大致相同,因此对泳动速度影响不大。在中性或碱性时,单链DNA与等长的双链DNA的泳动率大致相同。 影响核酸分子泳动率的因素主要是: 1、样品的物理性状 即分子的大小、电荷数、颗粒形状和空间构型。一般而言,电荷密度愈大,泳动率越大。但是不同核酸分子的电荷密度大致相同,所以对泳动率的影响不明显。 对线形分子来说,分子量的常用对数与泳动率成反比,用此标准样品电泳并测定其泳动率,然后进行DNA分子长度(bp)的负对数——泳动距离作标准曲线图,可以用于测定未知分子的长度大小。 DNA分子的空间构型对泳动率的影响很大,比如质粒分子,泳动率的大小顺序为:cDNA >IDNA>ocDNA但是由于琼脂糖浓度、电场强度、离子强度和溴化乙锭等的影响,会出现相反的情况。 2、支持物介质 核酸电泳通常使用琼脂糖凝胶和聚丙烯酰胺凝胶两种介质,琼脂糖是一种聚合链线性分子。含有不同浓度的琼脂糖的凝胶构成的分子筛的网孔大小不同,是于分离不同浓度范围的核酸分子。聚丙烯酰胺凝胶由丙烯酰胺(Acr)在N,N,N′-四甲基乙四胺(TEMED)和过硫酸铵

电泳实验报告

电泳实验报告 This manuscript was revised on November 28, 2020

实验十二 电泳 一、目的要求 1)掌握电泳法测ζ电势的原理和技术; 2)从实验现象中加深对胶体的电学性质的理解,即在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象(因电而动)。 二、基本原理 1.电泳 由于胶粒带电,而溶胶是电中性的,则介质带与胶粒相反的电荷。在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象。影响电泳的因素有:带电粒子的大小、形状;粒子表面电荷的数目;介质中电解质的种类、离子强度,pH 值和粘度;电泳的温度和外加电压等。从电泳现象可以获得胶粒或大分子的结构、大小和形状等有关信息。 2.三种电势 0?:热力学电势(或平衡电势),固体表面相对溶液的电势,0?=f (固体表面电荷密度,电势决定离子浓度)。 :斯特恩电势。 离子是有一定大小的,而且离子与质点表面除了静电作用外,还有范德华吸引力。所以在靠近表面1-2个分子厚的区域内,反离子由于受到强烈的吸引,会牢固的结合在表面,形成一个紧密的吸附层,称为固定吸附层或斯特恩层;在斯特恩层中,除反离子外,还有一些溶剂分子同时被吸附。反离子的电性中心所形成的假想面,称为斯特恩面。在斯特恩面内,电势呈直线下降,由表面的0?直线下降到斯特恩面δ?。δ?称为斯特恩电势。 :电动电势。 当固、液两相发生相对移动时,紧密层中吸附在固体表面的反离子和溶剂分子与质点作为一个整体一起运动,其滑动面在斯特恩面稍靠外一些。滑动面与溶液本体之间的电势差,称为 ζ电势。ζ电势与δ?电势在数值上相差甚小,但却具有不同的含义。应当指出,只有在固、液两相发生相对移动时,才能呈现出ζ电势。 ζ电势的大小,反映了胶粒带电的程度。ζ电势越高,表明胶粒带电越多,其滑动面与溶液本体之间的电势差越大,扩散层也越厚。当溶液中电解质浓度增加时,介质中反离子的浓度加大,将压缩扩散层使其变薄,把更多的反离子挤进滑动面以内,使ζ电

血红蛋白电泳实验报告

实验汇报 实验名称:血红蛋白电泳 项目名称:两种碱性血红蛋白样品处理方法的电泳结果 实验时间:2018年9月17日 实验室:龙泉驿区妇幼保健院检验科 实验人员:杨松 报告单位:成都温伦科技有限公司 一、实验目的: 1、掌握生理盐水处理血红蛋白样品的方法 2、掌握四氯化碳处理血红蛋白样品的方法 3、掌握电泳仪实验的操作 4、分析两种碱性血红蛋白样品处理方法电泳结果的不同 二、实验原理: 血红蛋白电泳就是利用在电场的作用下, 由于待分离样品中各种分子带电性质以及分子本身大小, 形状等性质的差异, 使带电分子产生不同的迁移速度, 从而对样品进行分离, 鉴定或提纯的技术,在临床检验中, 主要用于分离各类蛋白分子。 三、实验方法: 琼脂糖电泳法 四、实验器械: 样品:10个EDTA抗凝管抽取的病人全血样品 试剂:0.9%生理盐水500ml,四氯化碳500ml,界面液250ml,美国Helena Spife3000血红蛋白电泳检测试剂盒 器材:移液枪,一次性移液枪头若干,EDTA抗凝管10个,玻璃试管10个设备:美国Helena Spife3000 全自动电泳仪 五、实验步骤: 1、取得医院检验科EDTA抗凝管抽取的病人全血样品10个,编号为1,2,3......10。 2、将1-10号十个个样品分别用移液枪取200ul到玻璃试管中,编号为 1-1,2-1,3-1,.....10-1。

3、将1-10号10个样品进行生理盐水前处理,处理方法如下: -用0.9%生理盐水混匀,3500 rpm离心10分钟. -吸走弃去清液。 -以上步骤连续进行三次。 -完全吸走弃去上清液。 -20ul制作后的样本+80ul溶血素,混匀。 -取溶血后的样本17ul加入样品孔。 4、将1-1到10-1号10个样品进行四氯化碳前处理,处理方法如下: -用0.9%生理盐水溶液5000μL与样品混合。 -3000rpm离心5分钟。 -弃去上清液,只留下红细胞。 -加入200ul 蒸馏水溶解红细胞。 -加入300ul 的四氯化碳,混合均匀,3000rpm离心5分钟。 -取上面萃取后的血红蛋白液17ul 加入样品孔。 5、记录下这20个样品的样品孔编号,将样品孔放入样品板,摆放进电泳槽中,放上加样刀锋,添加界面液,放上琼脂板,掀开琼脂板保护膜,吸取多余界面液,放上碳棒,关上电泳槽的盖子,启动设备开始电泳。 6、大约30分钟后,电泳完成,取出碳棒放好,铲掉琼脂板上的盐桥,取出琼脂板,放入染色槽中进行染色脱色干燥。 7、大约30分钟后,染色脱色干燥完成,取出琼脂板,放入扫描仪中进行扫描,用PT软件进行分析数据,记录数据。 六、实验数据: 七、实验结果: 采用前处理方法二(四氯化碳)处理的血红蛋白,相对于前处理方法一(生理盐水)处理的血红蛋白,电泳结果HbA2偏高,HbA1偏低,电泳条带更加聚集。

实验6、琼脂糖凝胶电泳

实验六、琼脂糖凝胶电泳 【实验目的】 熟练掌握琼脂糖凝胶的配置和DNA凝胶电泳的方法。 【实验原理】 琼脂糖是从海澡中提取的长链状多聚物,琼脂糖凝胶点为 40~45℃。当加热至90℃左右时,即可成清亮、透明的液体,浇在模具上冷却后固化形成凝胶,琼脂糖凝胶可区分相差100bp 的 DNA片段。为了满足特殊的要求,可选择低溶点琼脂糖(<70℃,低于双链DNA的变性温度)。 带电物质在电场中向相反电极移动的现象称为电泳(electrophoresis)。各种生物大分子在一定的pH值条件下,可解离成带电荷的离子,在电场中向相反的电极移动。分子生物学领域中,琼脂糖和聚丙烯酰胺作为支持介质的凝胶电泳应用最多,它们是分离、鉴定和纯化DNA及RNA片段的主要方法。该方法操作简便、快速,可以分辨其它方法(如梯密度离心法)所无法分离的片段。直接嵌入荧光染料后,在紫外灯下可直接检出DNA片段所在的位置,如有必要,从凝胶中回收DNA片段,用于各种克隆操作。 琼脂糖和聚丙烯酰胺凝胶均可制成各种不同大小、形状和孔径的凝胶块,在不同的装置上进行电泳。琼脂糖比聚丙烯酰胺凝胶的分辨率低,但其分离范围广,约200bp~50kb的DNA。琼脂糖凝胶电泳通常在水平装置上进行。聚丙烯酰胺分离小片段(5~500bp)的效果较好,甚至可以分辨相差1bp的DNA片段。长度大于10 000kb的DNA片段,可以通过电场方向呈周期性变化,在脉冲电场胶中进行电泳。 【试剂和器材】 试剂:灭菌重蒸水;TE缓冲液;琼脂糖;核酸染料;;DNAmarker;6×上样缓冲液(0.25%溴酚蓝、0.25%二甲苯青FF、30%甘油) 器材:移液器;水平电泳槽;电泳仪,枪头,移液器,锥形瓶,微波炉,制胶槽,梳子,水平电泳仪,稳压器,凝胶成像系统 【实验步骤】 (1)称取1 g琼脂糖加入250mL锥形瓶中,量取100 ml 1× TAE电泳缓冲液加入锥形瓶。 (2)微波炉加热并多次摇晃锥形瓶使琼脂糖充分溶解。

琼脂糖凝胶电泳实验

琼脂糖凝胶电泳实验 2011-11-03 09:43:56 来源:生物秀评论:0 我要评论 实验二琼脂糖凝胶电泳实验【实验目的】(1)学习琼脂糖凝胶电泳的基本原理;(2)掌握使用水平式电 泳仪的方法;(3)学习在含有甲醛的凝胶上进行RNA电泳的方法。【实验原理】琼脂糖凝胶电泳是基因工 程实验室中分离鉴定核酸的常规方法。核酸是两性电解质,其等电点为pH2-2.5,在常规的… 实验二琼脂糖凝胶电泳实验 【实验目的】 (1)学习琼脂糖凝胶电泳的基本原理; (2)掌握使用水平式电泳仪的方法; (3)学习在含有甲醛的凝胶上进行RNA电泳的方法。 【实验原理】 琼脂糖凝胶电泳是基因工程实验室中分离鉴定核酸的常规方法。核酸是两性电解质,其等电点 为pH2-2.5,在常规的电泳缓冲液中(pH约8.5),核酸分子带负电荷,在电场中向正极移动。 核酸分子在琼脂糖凝胶中泳动时,具有电荷效应和分子筛效应,但主要为分子筛效应。因此,核酸分子的迁移率由下列几种因素决定: (1)DNA的分子大小。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中移动,因而迁移得越慢。 (2) DNA分子的构象。当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关 ,还和它本身构象有关。相同分子量的线状、开环和超螺旋质粒DNA在琼脂糖凝胶中移动的速度是不一样的,超螺旋DNA移动得最快,而开环状DNA移动最慢。如在电泳鉴定质粒纯度时发 现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。 (3)电源电压。在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强 度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 (4)离子强度影响。电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存 在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动;在高离子强度的缓冲液中(如误加10 X 电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。 溴化乙啶(Ethidium bromide, EB) (1) 能插入DNA分子中形成复合物,在波长为254nm紫外 光照射下EB能发射荧光,而且荧光的强度正比于核酸的含量,如将已知浓度的标准样品作电泳

琼脂糖凝胶电泳实验

琼脂糖凝胶电泳实验技巧 核酸分子是两性解离分子,在高于其等电点的电泳缓冲液中,基其碱基不解离,而磷酸基团全部解离,核酸分子因而带负电荷,电泳时向正极迁移。琼脂糖主要多海洋植物琼脂中提取而来并经糖基化修饰,为一种聚合链线性分了,使用琼脂糖凝胶作为电泳支持介质,发挥分子筛功能,使得大小和构象不同的核酸分子的迁移率出现较大差异,从而达到分离的目的。琼脂糖凝胶电泳操作简单、快速、通过调整其使用浓度,使得分辨率达到大多实验的要求。因此成为分离、鉴定、纯化核酸分子的常用方法。 一、操作过程中要注意以下一些问题。 1、凝胶制作 凝胶浓度 凝胶的浓度据实验需要而变,一般在%%之间,没有用完的凝胶可以再次融化,但随着融化次数的增加,水分丢失也越多,凝胶浓度则会越来越高,导致实验结果不稳定。补水办法:一是在容器上标记煮胶前的刻度,煮胶后补充水分到原刻度;二是在煮胶前称重,煮胶后补充水至原重量。粗略一点的办法是通过多次较恒定的煮胶条件得出一个经验补水值,以保证凝胶浓度基本维持在原浓度。如果条带要回收最好不要用回收胶。 梳板的选用 一般每个制胶模具均配有多个齿型不同的梳板。梳齿宽厚,形成的点样孔容积较大,用于DNA片段回收实验等;相反,梳齿窄而薄,形成的点样孔容积就较小,用于PCR产物、酶切产物鉴定等。回收的话还可以将几个齿用透明胶带粘起来,形成一个窄而长的大孔以加大点样量提高回收率。梳板的选择主要是看上样量的多少而定。一般来说,上样量小时尽量选择薄的梳板制胶,此时电泳条带致密清晰,便于结果分析。另外,每次制胶时都要注意梳齿与底板的距离至少要 1mm,否则,拔梳板时易损坏凝胶孔底层,导致点样后样品渗漏。当然,点样孔的破坏还与拔梳板的时间和方法有关,一般凝胶需冷却30min以上方可拔出梳板,应急的情况下可以将成型的凝胶块入4度冰箱中冷却15min左右,拔梳板的方法是将制胶槽放置在电泳槽中的电泳缓冲液中,然后垂直向上慢慢用力,因为有液体的润滑作用,梳板易拔出且不易损坏点样孔。 2、点样

凝胶电泳实验报告模板

重庆大学研究生专业实验教学 实验报告书 实验课程名称:凝胶电泳实验 实验指导教师: 学院: 专业及类别:生物学 学号: 姓名: 实验日期: 成绩: 重庆大学研究生院制

一、实验目的 1.理解凝胶电泳的分类及琼脂糖和聚丙烯酰胺凝胶电泳实验的基本原理。 2.熟练琼脂糖凝胶电泳实验的基本操作。 3.通过实验了解凝胶电泳实验的注意事项并在以后的实验中尽量避免。 4.利用琼脂糖凝胶电泳检测DNA纯度、浓度和分子量以及分离大小不同的DNA 片段。 5.了解聚丙烯酰胺凝胶电泳测定DNA和蛋白分子量大小的方法。 二、实验材料、用具及试剂 1.材料:菌落PCR产物(待检测DNA片段); 2.用具:①琼脂糖凝胶电泳:电泳仪,水平板型电泳槽,电子天平,微量移液器 (10μl),枪头,三角瓶,点样板,梳子,微波炉, 凝胶成像仪; ②聚丙烯酰胺凝胶电泳:垂直板电泳槽,稳压稳流电泳仪,梳子; 3.试剂:琼脂糖,1×TAE缓冲液,载样缓冲液(Loading buffer),goldviwe染料, DL5,000 DNA Marker (Takara)。 三、实验原理 核酸凝胶电泳是分子克隆核心技术之一,用于分离、鉴定和纯化DNA或RNA 片段,具有以下优点:便于分离、便于检测和便于回收。其工作原理相对而言比较简单、主要用到了物理学的电荷理论。 当一种分子被放置在电场当中时,它们就会以一定的速度移向适当的电极,这种电泳分子在电场作用下的迁移速度,叫做电泳的迁移率。它同电场的强度和电泳分子本身所携带的净电荷数成正比。也就是说,电场强度越大、电泳分子所携带的净电荷数量越多,其迁移的速度也就越快,反之则较慢。由于在电泳中使用了一种无反应活性的稳定的支持介质,如琼脂糖凝胶和聚丙烯酰胺胶等,从而

PCR电泳实验步骤

水稻DNA提取,扩增与电泳实验 一、1掌握DNA的提取技术2掌握PCR的相关操作3掌握了解电泳操作方法和步骤 二、实验原理:1、提取DNA一般用水稻幼叶,先用机械方法液氮研磨植物组织使组织细胞破碎,然后加TPS抽提液水浴提取DNA,最后用无水乙醇沉淀DNA即可。(DNA提取原理)2、DNA在高温时可以发生变性解链,当温度降低后又可以复性成为双链。(PCR原理)3、琼脂糖凝胶电泳:借助琼脂糖凝胶的分子筛作用,核酸片段因其分子量或分子形状不同,电泳移动速度有差异而分离。 三、实验仪器和药品 液氮、镊子、手套、移液枪、枪头2ML和1.5ML离心管、水稻幼叶、研磨棒、琼脂糖、天平、PCR仪、Loading Buffer染色剂、灭菌双蒸水、摇床、离心仪、Taq酶、Mg2+Buffer、dNTP 溶液、引物、TPS抽提液、无水乙醇、电泳槽、GoldView、TBE溶液、微波炉、锥形瓶、量筒、PCR板、PCR盖、水浴箱、Marker 四、实验步骤 1、DNA提取 (1)取水稻叶子少量置于2ML离心管内,加入液氮研磨,带磨成粉状后,加1MLTPS抽提液,然后将离心管放入75℃恒温水浴箱中至少半小时。同时将无水乙醇放入-40℃下冷冻(2)水域结束后,取出离心管放入离心仪中,13600r/min离心12min,然后小心的取出离心管,将上清液转移到1.5ml离心管中0.5ml,加入600ul冷冻的无水乙醇,放入-80℃下冻10min,拿出放入离心仪13600r/min离心5min (3)到处上清液,倒置,晾干约3h (4)加入双灭菌水60ml,放入摇床中振荡一夜。 2、PCR (1)按所需配料表,向PCR板中加入双蒸水,mix,前引物,后引物,然后加入提取的DNA,混匀 (2)将PCR板放入PCR仪中运行SSR程序 3、电泳 (1)称取0.3g琼脂糖和30mlTBE溶液。混匀倒入锥形瓶中,加热溶解混匀。待冷却至不烫手时加入GoldView,混匀,倒入已经插好梳子的配胶槽中,冷却30min至1h (2)将冷却好的凝胶拔掉梳子后放入电泳槽中(将有点样孔的一端靠近负极)然后按照顺序点样,每个样的用来那个为4ul,在中间的空上点Marker溶液3ul (3)打开电泳开关,电泳32min左右 (4)电泳结束后,将胶取出,放入透视镜下照射,拍照,读带 五注意事项 1、提取dna的时候用乙醇是沉淀时,必须将乙醇冰冻 2、在PCR之前加2ulDNA时要将枪头插入液面下

相关文档
最新文档