SolidWorks 蜗杆参数方程式驱动建模

SolidWorks 蜗杆参数方程式驱动建模
SolidWorks 蜗杆参数方程式驱动建模

蜗杆轴方程式参数驱动建模

第一步:绘图前先输入下列关系式:

【工具】→【方程式】→【添加】,输入【m=3.5'模数】,确定。跟着点【编辑所有】输入以下的方程式:(复制→粘贴)

q=9 '蜗杆直径系数

z1=1 '蜗杆头数(齿数)

z2=30 '蜗轮齿数

c=0.2 '径向间隙系数

ha=1 '齿顶高系数

x=0 '变位系数(只能取x=±0.5或x=±1)

点确定。(以后改动这几个参数就可以重新生成新的零件)

第二步:画草图旋转出蜗杆轴主体如图所示,标注尺寸时在蜗杆齿顶圆直径输入方程式【m*(q+2*ha) '蜗杆齿顶圆直径】。可以连倒角圆角一起出。

【插入】→【曲线】→【螺旋线】

双击螺旋线,双击螺距20,添加方程式【PI*m'螺距(即蜗杆轴节(蜗轮周节))】

第四步:以螺旋线起头画出蜗杆齿形截面图:中心线离原点高度为蜗杆分度圆半径,方程式为【m*q /2'分度圆半径】,分别标注添加方程式【ha*m'蜗杆齿顶高】、【(ha+c)*m'蜗杆齿根高】、分度圆齿厚【PI*m/2'分度圆齿厚螺距/2】(要先画出两个点来标注)。以这草图和螺旋线扫描切除出齿形。

然后再完成键槽、加工中心孔、材料等等。

最后的结果:

本模型所用的方程式:('这个符号是用来加备注的,跟方程式一起输入方便知道是什么)"m"=3.5 '模数

"q"=9 '蜗杆直径系数

"z1"=1 '蜗杆头数(齿数)

"z2"=30 '蜗轮齿数

"c"=0.2 '径向间隙系数

"ha"=1 '齿顶高系数

"x"=0 '变位系数(只能取x=±0.5或x=±1)

"D1@草图1" ="m"*("q"+2*"ha") '蜗杆齿顶圆直径

"D1@基准面1" = PI*"m"'螺距

"D4@螺旋线/涡状线1" =PI*"m" '螺距(即蜗杆轴节(蜗轮周节))"D3@螺旋线/涡状线1" ="D10@草图1"+2*PI*"m" ' 螺旋长度

"D1@草图3" = "m"*"q"/2 '蜗杆分度圆半径

"D3@草图3" = "ha"*"m" '蜗杆齿顶高

"D4@草图3" = ("ha"+"c")*"m"'蜗杆齿根高

"D5@草图3" = PI*"m"/2'分度圆齿厚

"D1@基准面2" = "D5@草图1"/2

SolidWorks Simulation图解应用教程(三)

SolidWorks Simulation图解应用教程(三) 在上一期中,我们用一个实例来详细介绍了应用SolidWorks Simulation进行零件线性静态分析的全过程,本期将为您介绍轴承的静态分析过程。 一、轴承的线性静态分析 1.启动SolidWorks软件及SolidWorks Simulation插件 通过开始菜单或桌面快捷方式打开SolidWorks软件并新建一个零件,然后启动SolidWorks Simulation插件,如图1 所示。 2.分别新建如图2~图5所示零件 3.装配轴承并按如图6所示建立简化(即半剖)配置 图1 启动软件及Simulation插件

图2 内圈及将内表面水平分割为两部分

图3 外圈 4.线性静态分析 (1)准备工作。因为本例我们将给轴承添加一轴承载荷,根据轴承载荷的特点,需作如下准备工作。 1)将轴承内圈内表面分割为上、下两部分,如图2所示; 2)将滚动体表面也分为上、下两部分(因为后续的约束会用到); 3)建立如图7所示坐标系(后续载荷指定会用到); 4)建立如图8所示的基准面(约束滚动体会用到),最后激活半剖配置。 (2)单击“S i m u l a t i o n”标签,切换到该插件的命令管理器页,如 图9所示。单击“算例”按钮下方的小三角,在下级菜单中单击“新算例”按钮,如图10所示,在左侧特征管理树中出现如图11所示的对话框。

图4 滚动体及将表面水平分割为两部分

图5 保持架

图6 装配轴承并建立半剖配置 (3)在“名称”栏中,可输入您所想设定的分析算例的名称。我们选择的是“静态”按钮(该按钮默认即为选中状态)。在上述两项设置完成后单击“确定”按钮。我们可以发现,插件的命令管理器发生了变化,如图12所示。 ( 4 ) 指定各个零件不同的材质。单击“ 零件”前的“+”号,展开所有零件,如图13所示,然后“右键”单击“保持架-1”,如图14所示,在快捷菜单中选择“应用/编辑材料”命令。在“材料”对话框中选择“A I S I 1020”,该材料的机械属性出现在对话框右侧的“属性”标签中。如图15所示,然后单击“确定”按钮完成材料的指定。 如果你所用材料的性能参数与软件自带的有出入,可按上期方法进行设定,本期不再重复。同样按上述方法,赋予滚动体、内外圈的材料为:镀铬不锈钢(均在钢的下级目录中)。

【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计

本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS提供了强大的参数化建模功能。在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。 进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法: (1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中,根据参数化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。然后根据返回的分析结果进行参数化分析,得出一个或多个参数变化对样机性能的影响。再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3种类型的参数化分析方法包括:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。 10.2.1 设计研究(Design study) 在建立好参数化模型后,当取不同的设计变量,或者当设计变量值的大小发生改变时,仿真过程中,样机的性能将会发生变化。而样机的性能怎样变化,这是设计研究主要考虑的内容。在设计研究过程中,设计变量按照一定的规则在一定的范围内进行取值。根据设计变

solidwork让弹簧弹起来

在SolidWorks中绘制弹簧,对很多SolidWorks的使用者来说并不会陌生,大家会首先想到使用螺旋线命令,绘制出螺旋线路径,再使用扫描命令将实体做出来。对于这种做法绘制的弹簧,需要我们输入相应的长度,圈数或螺距,当我们在装配体中将弹簧放置在图示两个零件中时,需将弹簧长度调整为两个弹簧接触面的距离L,才能符合设计意图装配。如图1所示 对于弹簧接触面的距离L,在很多结构上是需要经常变化的,为了保持结构的合理性,需要控制弹簧的伸缩长度,当每次L变化时,都要重新测量,调整整个弹簧的长度。这样会使我们的整个效率变得低下。那有没有什么好办法可以使L变化时,整个弹簧能够自动得进行伸长或压缩呢?答案是肯定的,我们可以用SolidWorks的扫描命令中的“沿路径扭转”选项来绘制出这样的弹簧。下面我们介绍一下绘制方法。 1.在装配体中建一新零件,选择一经过轴心的平面,在其中一个弹簧接触面上绘制一条直线做为扫描

轮廓,定义几何关系,如图2所示 2.再建立一个新草图绘制一直线为扫描路径,注意直线两端需要分别与上下两弹簧接触面建立重合关系,如图2所示 3.使用曲面扫描命令,选择草图1为轮廓,草图2为路径,在选项中的“方向/扭转控制”中选择“沿路径扭转”,定义方式选择旋转10圈,如图4示

4.确定后会产生一个螺旋曲面,此曲面的边缘线为双螺旋结构,这时再利用其中一条螺旋线为路径,绘制一草图圆为轮廓创建出弹簧,如图5示

5.将高出弹簧接触面的部分切除,如图6示 6.这样我们就完成了可“弹”弹簧的设计,我们将弹簧接触面的距离L变小,重建模型,这样弹簧就被压缩下去了,如图7示。

SolidWorks让弹簧弹起来

SolidWorks让弹簧“弹”起来 在SolidWorks中绘制弹簧,对很多SolidWorks的使用者来说并不会陌生,大家会首先想到使用螺旋线命令,绘制出螺旋线路径,再使用扫描命令将实体做出来。对于这种做法绘制的弹簧,需要我们输入相应的长度,圈数或螺距,当我们在装配体中将弹簧放置在图示两个零件中时,需将弹簧长度调整为两个弹簧接触面的距离L,才能符合设计意图装配。如图1所示 对于弹簧接触面的距离L,在很多结构上是需要经常变化的,为了保持结构的合理性,需要控制弹簧的伸缩长度,当每次L变化时,都要重新测量,调整整个弹簧的长度。这样会使我们的整个效率变得低下。 那有没有什么好办法可以使L变化时,整个弹簧能够自动得进行伸长或压缩呢?答案是肯定的,我们可以用SolidWorks的扫描命令中的“沿路径扭转”选项来绘制出这样的弹簧。下面我们介绍一下绘制方法。 1.在装配体中建一新零件,选择一经过轴心的平面,在其中一个弹簧接触面上绘制一条直线做为扫描轮廓,定义几何关系,如图2所示 2.再建立一个新草图绘制一直线为扫描路径,注意直线两端需要分别与上下两弹簧接触面建立重合关系,如图2所示

3.使用曲面扫描命令,选择草图1为轮廓,草图2为路径,在选项中的“方向/扭转控制”中选择“沿路径扭转”,定义方式选择旋转10圈,如图4示 4.确定后会产生一个螺旋曲面,此曲面的边缘线为双螺旋结构,这时再利用其中一条螺旋线为路径,绘制一草图圆为轮廓创建出弹簧,如图5示

5.将高出弹簧接触面的部分切除,如图6示 6.这样我们就完成了可“弹”弹簧的设计,我们将弹簧接触面的距离L变小,重建模型,这样弹簧就被压缩下去了,如图7示。

ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计 本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计((Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight 计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS 建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS 键变量,并将这些关键变量设置为可以改变的设计变量。在分析时, 以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真, 值下样机性能的变化。 进行差数参数化建模时,在确定好影响样机性能的关键输入值后,ADAMS/View 了4种参数化的方法: (1)参数化点坐标 点坐标参数化时,修改点坐标值时,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的以已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。 值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。 上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动, 以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中, 化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。 果进行参数化分析,得出一个或多个参数变化对样机性能的影响。然后再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3 设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。

solidworks方程式草图

SolidWorks中“方程式驱动的曲线”工具的应用 潘思达SolidWords自从2007版开始,草图绘制工具中添加了“方程式驱动的曲线”工具,用户可通过定义”笛卡尔坐标系”(暂时还不支持其他坐标系) 下的方程式来生成你所需要的连续曲线。这种方法可以帮助用户设计生成所需要的精确的数学曲线图形,目前可以定义“显式的”和“参数的”两种方程式。本文将分别依次介绍这两种方程式的定义方法,以及绘制一些特殊曲线时的注意事项。 “显式方程”在定义了起点和终点处的X 值以后,Y 值会随着X 值的范围而自动得出;而“参数方程”则需要定义曲线起点和终点处对应的参数(T)值范围,X值表达式中含有变量T,同时为Y值定义另一个含有T值的表达式,这两个方程式都会在T的定义域范围内求解,从而生成需要的曲线。 下面介绍一下笛卡尔坐标系下常用的一些曲线的定义方法,通过图片可以看出所绘制曲线的关键位置的数值。对于有些在其他坐标系下定义的曲线方程,例如极坐标系方程,大家可以使用基本的数学方法先将该坐标系下的曲线方程转化到笛卡尔坐标系以后就可以重新定义该曲线了。 关于“方程式曲线”对话框其他的选项功能大家可以参照SolidWords帮助文件详细了解使用方法。 (一)显式方程 类型:正弦函数 函数解析式: 1正弦曲线是一条波浪线,k、ω和φ是常数(k、ω、φ∈R,ω≠0) 2A——振幅、(ωx+φ)——相位、φ——初相 3k——偏距、反应图像沿Y轴整体的偏移量 4ω 目标:模拟交流电的瞬时电压值得正玄曲线图像,周期,φ=,A=2 操作:新建零件文件?工具?选择绘图基准面?方程式驱动的曲线,键入如下方程。 方程式: X1=- ,X2= 函数图像:如图1-1 所示,使用尺寸标注工具得出图像关键点对应的数值

SolidWorks各种弹簧画法

今天的这个SolidWorks弹簧画法系列专题将从最简单的弹簧画法开始,由浅入深,由易到难,最终的目的是使大家都学会画不同的弹簧,更重要的是学会不同的建模思路,不再囿于为了画弹簧也学画弹簧。 不知道为什么有许多的SolidWorks的初学者老是纠结于一些相同的问题,弹簧的画法就是这其中的问题之一,我都多次被同事或学生问到过这个问题,当然是异形弹簧的画法,常规的太简单没人问。说实在的,安迪参加工作也有八年多,接触并使用SolidWorks也有六年多,工作中画过的弹簧寥寥无几,异形弹簧更是更本没有画过,这东西生产中根本就用不到,可能不同的行业情况不一样吧。不过话又说回来,虽然用得少,但是我们还是要学习的,主要要学的是那种建模的思路与方法,而不是纠结于弹簧有多少多少种方法,我会多少多少种方法,就像孔乙己的“回字有四种写法一样”被别人鄙视。言归正传,今天的这个SolidWorks弹簧画法系列专题将从最简单的弹簧画法开始,由浅入深,由易到难,最终的目的是使大家都学会画不同的弹簧,更重要的是学会不同的建模思路,不再囿于为了画弹簧也学画弹簧。 最简单的弹簧画法莫过截面沿直线旋转扫描而出,具体方法如下: 1、新建一草图,画一根直线作为截面扫描的路径;再建一新草图(必须新建草图,扫描截面与扫描的路径必须在不同的草图中,否则不能扫描),画出扫描截面。如下图所示,在这里安迪画的截面是一

正六边形,你也可以用其它形状,这里只是用来说明这种方法有普适性。 spring1-1 2、扫描:(见下图)扫描选项里选择Twist Along Path(沿路径旋转),这个是关键,如果默认Follow Path(沿路径)选项是扫不出来的。下面的两个选项按钮是用来选择旋转参数的,是用度、弧度还是圈数,意即截面在整个扫描过程中旋转了多少量。怎么样,是不是很简单。

SolidWorks 蜗杆参数方程式驱动建模

蜗杆轴方程式参数驱动建模 第一步:绘图前先输入下列关系式: 【工具】→【方程式】→【添加】,输入【m=3.5'模数】,确定。跟着点【编辑所有】输入以下的方程式:(复制→粘贴) q=9 '蜗杆直径系数 z1=1 '蜗杆头数(齿数) z2=30 '蜗轮齿数 c=0.2 '径向间隙系数 ha=1 '齿顶高系数 x=0 '变位系数(只能取x=±0.5或x=±1) 点确定。(以后改动这几个参数就可以重新生成新的零件) 第二步:画草图旋转出蜗杆轴主体如图所示,标注尺寸时在蜗杆齿顶圆直径输入方程式【m*(q+2*ha) '蜗杆齿顶圆直径】。可以连倒角圆角一起出。

【插入】→【曲线】→【螺旋线】

双击螺旋线,双击螺距20,添加方程式【PI*m'螺距(即蜗杆轴节(蜗轮周节))】

第四步:以螺旋线起头画出蜗杆齿形截面图:中心线离原点高度为蜗杆分度圆半径,方程式为【m*q /2'分度圆半径】,分别标注添加方程式【ha*m'蜗杆齿顶高】、【(ha+c)*m'蜗杆齿根高】、分度圆齿厚【PI*m/2'分度圆齿厚螺距/2】(要先画出两个点来标注)。以这草图和螺旋线扫描切除出齿形。 然后再完成键槽、加工中心孔、材料等等。

最后的结果: 本模型所用的方程式:('这个符号是用来加备注的,跟方程式一起输入方便知道是什么)"m"=3.5 '模数 "q"=9 '蜗杆直径系数 "z1"=1 '蜗杆头数(齿数) "z2"=30 '蜗轮齿数 "c"=0.2 '径向间隙系数 "ha"=1 '齿顶高系数 "x"=0 '变位系数(只能取x=±0.5或x=±1) "D1@草图1" ="m"*("q"+2*"ha") '蜗杆齿顶圆直径 "D1@基准面1" = PI*"m"'螺距 "D4@螺旋线/涡状线1" =PI*"m" '螺距(即蜗杆轴节(蜗轮周节))"D3@螺旋线/涡状线1" ="D10@草图1"+2*PI*"m" ' 螺旋长度 "D1@草图3" = "m"*"q"/2 '蜗杆分度圆半径 "D3@草图3" = "ha"*"m" '蜗杆齿顶高 "D4@草图3" = ("ha"+"c")*"m"'蜗杆齿根高 "D5@草图3" = PI*"m"/2'分度圆齿厚 "D1@基准面2" = "D5@草图1"/2

ADAMS VIEW 参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify ,然后设置如下图。至此,模型建立完毕。 修改圆环位置

SolidWorks制作柔性弹簧

SolidWorks让弹簧弹起来 在SolidWorks中绘制弹簧,对很多SolidWorks的使用者来说并不会陌生,大家会首先想到使用螺旋线命令,绘制出螺旋线路径,再使用扫描命令将实体做出来。对于这种做法绘制的弹簧,需要我们输入相应的长度,圈数或螺距,当我们在装配体中将弹簧放置在图示两个零件中时,需将弹簧长度调整为两个弹簧接触面的距离L,才能符合设计意图装配。如图1所示 对于弹簧接触面的距离L,在很多结构上是需要经常变化的,为了保持结构的合理性,需要控制弹簧的伸缩长度,当每次L变化时,都要重新测量,调整整个弹簧的长度。这样会使我们的整个效率变得低下。 那有没有什么好办法可以使L变化时,整个弹簧能够自动得进行伸长或压缩呢?答案是肯定的,我们可以用SolidWorks 的扫描命令中的“沿路径扭转”选项来绘制出这样的弹簧。下面我们介绍一下绘制方法。 1.在装配体中建一新零件,选择一经过轴心的平面,在其中一个弹簧接触面上绘制一条直线做为扫描轮廓,定义几何关系,如图2所示 2.再建立一个新草图绘制一直线为扫描路径,注意直线两端需要分别与上下两弹簧接触面建立重合关系,如图2所示

3.使用曲面扫描命令,选择草图1为轮廓,草图2为路径,在选项中的“方向/扭转控制”中选择“沿路径扭转”,定义方式选择旋转10圈,如图4示 4.确定后会产生一个螺旋曲面,此曲面的边缘线为双螺旋结构,这时再利用其中一条螺旋线为路径,绘制一草图圆为轮廓创建出弹簧,如图5示

5.将高出弹簧接触面的部分切除,如图6示 6.这样我们就完成了可“弹”弹簧的设计,我们将弹簧接触面的距离L变小,重建模型,这样弹簧就被压缩下去了,如图7示。

solidworks用方程式驱动曲线

solidworks用方程式驱动曲线 SolidWorks自从2007版开始,草图绘制工具中添加了“方程式驱动的曲线”工具,用户可通过定义”笛卡尔坐标系”(暂时还不支持其他坐标系)下的方程式来生成你所需要的连续曲线。这种方法可以帮助用户设计生成所需要的精确数学曲线图形,目前可以定义“显式的”和“参数的”两种方程式。本文将分别依次介绍这两种方程式的定义方法,以及绘制一些特殊曲线时的注意事项。 “显式方程”在定义了起点和终点处的X 值以后,Y值会随着X值的范围而自动得出;而“参数方程”则需要定义曲线起点和终点处对应的参数(T)值范围,X值表达式中含有变量T,同时为Y值定义另一个含有T值的表达式,这两个方程式都会在T的定义域范围内求解,从而生成需要的曲线。 下面介绍一下笛卡尔坐标系下常用的一些曲线的定义方法,通过图片可以看出所绘制曲线关键位置的数值。对于有些在其他坐标系下定义的曲线方程,例如极坐标系方程,大家可以使用基本的数学方法先将该坐标系下的曲线方程转换到笛卡尔坐标系,以后就可以重新定义该曲线了。关于“方程式曲线”对话框其他的选项功能大家可以参照SolidWorks 帮助文件详细了解使用方法。 一、显式方程 1.类型:正弦函数 (1)函数解析式:。 其中,正弦曲线是一条波浪线,是常数(k 、ω、φ∈R,ω≠0);A是振幅、(ωx+φ)是相位、φ是初相;k是偏距,是反应图像沿Y轴整体的偏移量;且 (2)目标:模拟交流电的瞬时电压值得到正弦曲线图像,周期 (3)操作:新建零件文件→工具→选择绘图基准面→方程式驱动的曲线,键入如下方程。 (4)方程式: (5)函数图像:如图1所示,使用尺寸标注工具得出图像关键点对应的数值。 2.类型:一次函数 (1)函数解析式:。 其中一次函数是一条直线,y值与对应x值成正比例变化,比值为k ;k 、b 是常数,x ∈R。 (2)目标:模拟速度—位置曲线,其中k=4,b=0。 (3)操作:新建零件文件→选择基准面→驱动的曲线,键入如下方程。 (4)方程式:

solidworks2017全套视频教程

第一章:Solidworks 2017新手入门 01-solidworks2017-界面介绍 02-solidworks2017-鼠标键盘的基本操作 第二章:Solidworks 2017草图设计教程 01-solidworks2017-进入退出草图及草图的编辑02-solidworks2017-点和直线的绘制 03-solidworks2017-圆的两种画法 04-solidworks2017-绘制样条线 05-solidworks2017-矩形的绘制 06-solidworks2017-绘制圆弧 07-solidworks2017-椭圆抛物线圆锥曲线 08-solidworks2017-写字 09-solidworks2017-槽口和多边形绘制 10-solidworks2017-圆角和倒角 11-solidworks2017-剪裁实体延伸实体 12-solidworks2017-转换实体引用和交叉曲线 13-solidworks2017-等距实体和曲面上偏移 14-solidworks2017-镜像实体 15-solidworks2017-线性草图阵列和圆周草图阵列16-solidworks2017-缩放平移旋转伸展实体 17-solidworks2017-尺寸标注

19-solidworks2017-完全约束草图 20-solidworks2017-草图的合法性检查与修复 21-solidworks2017-草图实战练习1 22-solidworks2017-草图实战练习2 23-solidworks2017-草图实战练习3 24-solidworks2017-3D草图初步认识第三章:Solidworks 2017实体建模01-solidworks2017-创建基准参考面 02-solidworks2017-创建基准轴 03-solidworks2017-创建坐标系和创建质心 04-solidworks2017-创建点 05-solidworks2017-拉伸凸台 06-solidworks2017-拉伸切除 07-solidworks2017-旋转凸台 08-solidworks2017旋转切除 09-solidworks2017-扫描 10-solidworks2017-扫描切除 11-solidworks2017-放样凸台 12-solidworks2017-放样切割 13-solidworks2017-边界凸台 14-solidworks2017-边界切除 15-solidworks2017-异形孔和螺纹线

SolidWorks_2012最全方程式应用

SolidWorks 2012方程式应用简介 2012-02-19 18:03:19| 分类:CAD | 标签:|字号大中小订阅 SolidWorks 2012中的方程式做了较大浮动的更新,重新设计了对话框,能够用比较简单和有效的进行方程式的设置和管理;但是以前的一些操作习惯可能不再适合,下面就新的方程式的应用做简要的应用说明(一个矩形体,长为宽的2倍,高为宽的3倍,长、宽设置方程式): 1:如何添加方程式? 以前的通过工具栏和菜单的方式仍然可以,但是双击尺寸点下拉框的方式就不再存在了,改成了和EXCEL一样的通过“=”的方式激活方程式,比以前更快捷了。 方式1: 方式2:单击工具> 方程式 方式3:直接在长度尺寸输入栏输入“=”,即会出现下图所示的函数和文件属性快捷键,如果不需要,则直接点击宽度参数,下图所示,此矩形长度数值为矩形宽度的2倍 想比较老版本的选择下拉框中的编辑方程式,弹出对话框的方式,此方法比以前的操作更灵活简便; 注意(不过此方法经过测试仅适用于草图尺寸,对于特征尺寸就不能依次操作了,如矩形体的高度数值就不能直接点“=”号设置) 方式4:通过属性栏的方程式文件夹,点右键,管理方程式:

如此矩形体高度等于草图中矩形宽度的3倍,则可以直接在上图的方程式下方的添加方程式中空白处单击左键 操作完成后,如下图所示: 以上的4种方式,第1、2、4都可以适用于全部的方程式编辑,第三种仅适用于草图尺寸添加; 2:如何添加以前的“共享数值或叫链接值” 在SolidWorks 2011(含)之前的版本中,如果零件中有多个尺寸或者特征值相同并同步变更就可以使用“共享链接数值”,链接同到一个名称的数值,只要变更其中的一个,其他的同步自动变更,以下面的例子为例,介绍SolidWorks 2012的操作方法;(一个圆柱,高度和圆的直径想等,更改任何一个,另一个也自动变更) 在草图中画一个圆,然后标注直径,在弹出的对话框中,输入直径名称,点回车,即可弹出新建整体变量的对话框;

(完整版)SolidWorks高级培训手册(全套教程)

SolidWorks 高级培训手册 目录 基础知识 第一课介绍基础知识 第二课薄壁零件基础知识 高级零件建模 第一课复杂外形建模第一部分高级零件 第二课复杂外形建模第二部分高级零件 第三课曲面建模高级零件 钣金 钣金钣金 高级装配建模 第一课自顶向下的装配体建模高级装配 第二课在装配环境下工作高级装配 第三课装配体编辑高级装配 第四课型芯和型腔高级装配 工程图 工程图工程图 1、培训手册: SolidWorks基础知识 第一课介绍SolidWorks高级培训手册 2、基础知识 SolidWorks高级培训手册 基础知识第一课介绍 在成功地学完这一课后,你将能够: 描述一个基于特征的,参数化实体建模系统的主要特色 区分草图特征和直接生成特征 认识SolidWorks用户界面的主要内容 解释如何用不同的尺寸标注方法来表达不同的设计意图 3、基础知识 第一课介绍SolidWorks高级培训手册 4·基础知识 SolidWorks高级培训手册基础知识第一课 关于本课程本课程的目的是教授你如何使用SolidWorks自动机械设计软件来创建零件和装配体的参数化模型,以及如何绘制这些零件和装配体的工程 图。 SolidWorks是一个强劲且功能丰富的应用软件,以致于本课程不可能 覆盖此软件的每一个细节和方面。因此,本课程重点教授你成功应用SolidWorks所需的基本技能和概念。你应该把本培训手册当作系统文 档和在线帮助的补充而不是替代品。一旦你对SolidWorks的基本使用 技能有了较好的基础,你就能参考在线帮助来得到关于不常用的命令 选项的信息。 前提条件我们希望参加本课程学习的学生具有如下经验:

Adams参数化与优化分析功能介绍

Adams参数化与优化分析经典案例 在机械产品设计进程中,有各种各样的性能指标,甚至有些指标是相互制约的,因此很难通过一次设计就得到满意的结果。以往采用的手动修改方法费时费力,浪费资源。使用Adams软件,用户可以通过参数化及优化功能自动完成机械系统的设计,得出最优化的方案,大大提高设计效率。 参数化和优化是用户关注度最高的功能之一,但在Adams基本包的官方培训教程中没作重点介绍。本期信工诚向大家分享一个参数化与优化方面的经典案例,帮助大家尽快熟悉这一功能。案例摘自陈志伟编著的《MSC Adams多体动力学仿真基础与实例解析》一书中的第七章。 问题描述: 小球在一定倾角的斜板上在重力作用下滑落,研究该倾角为多少时可以顺利通过预先设置的圆环中心。 实现步骤: 1)创建部件并定义连接关系 首先创建如图1所示的分析模型。从图中可以看到各部件的尺寸,其中小球的直径为50mm,圆环的孔径为56mm(2*(40-12)mm)。圆环与大地固连,斜板与大地固连,小球与斜板之间定义接触(不考虑摩擦)。 图1 分析模型

2)参数化模型 模型参数化分为两步,第一步定义设计变量,第二步将现有模型数据用设计变量替换,实现模型参数化。本例需要定义一个独立变量(斜板角度)和两个非独立变量(小球X坐标和Y坐标)。斜板角度参数化如图2所示,小球坐标参数化如图3所示。 图2 斜板角度参数化 图3 小球坐标参数化

参数化后将斜板角度初始值改为-10,检查修改后的模型显示是否正确。如果所有的参数定义都正确的话,修改后的模型显示效果会如图4所示。 图4 修改斜板初始角度 3)定义优化目标 我们的设计目标是让小球穿过圆环,但这不是软件能读懂的机器语言。这里我们可以建立一个小球中心Marker点和圆环中心Marker的“点的点对点测量”,以测量结果的最小值作为优化目标,当测量结果的最小值小于3mm(圆环孔半径与小球半径之差)即代表小球穿过圆环。建立好测量后运行一次2秒200步的仿真,并查看测量结果。建立点对点测量界面和分析结果如图5所示。

solidworks高级教程

第1章高级草图设计1.1草图环境设置 1.1.1草图环境中工具按钮的 定制 1.1.2几何关系的捕捉 1.2草图的绘制 1.2.1样条曲线 1.2.2抛物线的绘制 1.2.3转折线的绘制 1.2.4构造几何线 1.2.5派生草图 1.2.6从选择生成草图 1.2.7通过图片生成草图 1.33d草图 1.3.1基准面上的3d草图 1.3.2曲面上的样条曲线 1.3.3面部曲线的绘制 1.3.4交叉曲线的绘制 .1.4草图的编辑 1.4.1动态镜像草图实体 1.4.2圆周草图阵列

1.4.3线性草图阵列 1.5草图的约束 1.5.1完全定义草图 1.5.2检查草图的合法性1.6块操作 1.6.1创建块的一般过程1.6.2插入块 1.6.3编辑块 1.6.4爆炸块 第2章零件设计高级功能2.1扣合特征 2.1.1装配凸台 2.1.2弹簧扣 2.1.3弹簧扣凹槽 2.1.4通风口 2.2自由形 2.3压凹 2.4弯曲 2.4.1折弯 2.4.2扭曲 2.4.3锥削

2.4.4伸展 2.5包覆2.6实体分割 2.7变形 2.7.1点变形 2.7.2曲线到曲线变形 2.7.3曲面推进变形 2.8外部参照 2.9使用方程式建模 2.9.1范例1 2.9.2范例2 2.10库特征 2.10.1使用库特征建模 2.10.2新建库特征 2.11结构钢 2.12高级功能应用范例 第3章高级曲面设计 3.1各类曲面的数学概念 3.1.1曲面参数化 3.1.2nurbs曲面 3.1.3曲面的类型 3.2曲面和实体间的相互转换

3.2.1替换面和使用曲面切除 3.2.2将曲面转换为实体 3.2.3将实体转换为曲面 3.2.4曲面和实体间转换范例 3.3曲面的高级编辑功能 3.3.1直纹曲面 3.3.2延展曲面 3.3.3剪裁曲面和面圆角 3.4输入的几何体 3.4.1输入数据常见问题和解决方法 3.4.2修复输入的几何体 3.4.3识别特征 3.5放样曲面、边界曲面和填充曲面的比较 3.5.1放样曲面 3.5.2边界曲面 3.5.3填充曲面 3.6接合与修补曲面 3.7应用范例 第4章高级装配设计 第5章高级工程图 第6章模型的外观设置与渲染第7章运动仿真及动画

基于ProE和MECHPro实现ADAMS中复杂导入模型的参数化

基于Pro/E和MECH/Pro实现ADAMS中复杂导入模型的参数化 (1)在Pro/E中建立参数和关系,以参数化零件模型和装配体模型。GUI:主菜单―工具‖—―关系‖。 (2)设置零件和装配体的单位为―毫米千克秒‖。GUI:主菜单―编辑‖—―设置‖—―单位‖,然后,在―单位制‖选项卡下选中―毫米千克秒(mmKs)‖,然后选―设置‖,弹出―改变模型单位‖对话框,选择―转换尺寸‖,单击―确定‖,最后关闭―单位管理器‖。 (3)用mech/pro接口生成刚体。GUI:―MECH/Pro‖—―Set Up Mechanism‖—―Rigid Bodies‖—―Create‖—―Automatic –All Parts‖。 (4)在零件上需添加约束副(constraint)的位置建立标记点(marker)。GUI: ―MECH/Pro‖—―Set Up Mechanism‖—―Markers‖—―Create‖,然后,依次输入名称(Name),父参考体(Parent RB),位置(Location),方向(Orientation)。建好标记点以后,要保存为.mpr文件(Mech/PRO:File—Save As)。 (5)导出模型到ADAMS。GUI:―MECH/Pro‖—―Interface‖—―ADAMS/View‖。 (6)录制宏(如果在上一步中―Only Write Files‖项选了―No‖,将自动打开ADAMS/View并导入模型,否则要在ADAMS中import文件aview)。导入模型后,要录制宏,以记录约束副(constraint)和运动(motion)等的建立过程。GUI: ―Tools‖—―Macro‖—―Record/Replay‖—―Record Start‖。模型建立的操作完成以后,结束宏的录制。GUI:―Tools‖—―Macro‖—――Record/Replay‖—―Record End‖。重命名宏并保存。GUI:―Tools‖—―Macro‖—―Write‖。宏语句范例: constraint create joint Translational & joint_name=.MPRO_model.JOINT_1 & adams_id=1 & i_part_name = .MPRO_model.Part1 & j_part_name = .MPRO_model.Part2 & location= (eval(.MPRO_model.Part1.mark_1)) & orientation= 0.0, 0.0, 0.0 (7)修改已经录制的宏。打开录制的宏,将每条location语句等号后面的坐标值改为用该坐标值对应的标记点(marker)名称的形式表示。例如:原语句为location = 100.00,200.00,300.00,更改以后变为location = (eval( model1.part1.marker1.loc))。修改以后保存。(8)改变Pro/E模型并导出到ADAMS。打开Pro/E,改变参数的值,然后再生模型,可以看到模型已经改变。打开.mpr文件(Mech/PRO:File—Open),但这时,模型上标记点(marker)的位置并未随之改变。依次选―MECH/Pro‖—―Regenerate‖,可以看到模型上标记点(marker)移到正确的位置。重复步骤(5)的操作将模型导入ADAMS。 (9)生成新的ADAMS模型。在ADAMS中执行步骤(7)中保存的宏命令(按F3键,在弹出的command window下方输入宏的名称),命令执行以后,生成新的ADAMS模型。 利用Pro/E的参数化功能和MECH/Pro接口的模型转换功能间接实现了ADAMS中复杂导入模型的参数化。如果通过编程实现上述过程的自动运行就可以将建立的模型应用到结构优化设计中。

SolidWorks 100个经典实例教程

1 图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。 图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。

图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。 图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。 图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。 图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。 2

3 图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。 图16提示:①旋转生成齿轮主体→切除拉伸键槽→画一个齿的曲线→扫描生成一个齿→阵列其它齿。 ②从库中提取→保存零件。 图17 图18 图17提示:旋转主体→切除拉伸孔。

Solidworks进阶高级钣金设计之展开教程

Solidworks进阶高级钣金设计之展开教程 作者:无维网wld 我公司主要生产小的金属接擦件,各种各样的接擦件种类很多,大多数都是形状比较复杂的弯曲件。 三维软件用ProE,我来公司后竭力推荐SOLIDWORKS,于是公司从2003年开始试用SOLIDWORKS绘图,但是不尽人意,因为SOLIDWORKS 板金命令中的“移动.复制”功能不可用!这是非常遗憾的,当然可以不用而一笔一笔画下去,但这非常耗时耗功耗力,傻瓜才去干!如果改用实体来画,比较省力,但实体转板金又转不过来,再把图形导入ProE,OK!板金转换成功! 老板火了,大喝卸去SOLIDWORKS,仍用ProE! 我吃憋了,因为我用ProE不习惯,只能让别人去搞,我搞搞二维图形。 (老板有老板的担心,因为同一图形用两种软件转来转去就怕出了问题不能及时发现,那损失就大了。) 现在我传上一个很简单的零件,该零件我公司已经冲了二百多万件,我在业余时间用SOLIDWORKS画了一下,具体图形都在这个文件包内,有说明,烦请各位高手有空帮帮忙,能否全部用SOLIDWORKS做出? 此图我曾经发给上海的“晓科科技”,但它们搞了好多天没有解决,结果发了一份假图来骗我。 前几天(9月11日)我参加了苏州举行的“SOLIDWORKS2008创新日

大会”,在会议休息时我把图纸拷入大会的电脑中,他们答应抽空看看,但到现在也没有回音。 唉!“创新日”也好,“怀旧日”也罢,软件的好坏应当看是否“基本实用”用绘图软件者绝大部分是为老板打工者,是为了争口饭吃。用软件是根据各公司实际情况仅用其一部分功能而已,不可能全面用到。老百姓绝大部分不可能去搞科研的,SOLIDWORKS功能再强大,能设计“神六.神七号”,能造原子蛋!老百姓只能听听而已,最基本的功能不全,那就失去一部分人气了。 听说SOLIDWORKS2009又好的不得了,马上要粉墨登场了,期盼在板金功能上能解决这些问题。 ========================================= 原来标题是“SOLIDWORKS板金功能特弱!”(注意惊叹号) 这标题个人觉得太难听(不像提问;像在说出事实), 闷人来改一改吧,先向wld想说声不好意思了。 ??by 闷人 ========================================= aton版主: 我不知道你是用什么方法转成板金特征的?我转就出现提示:“一个或多个折弯无法展开......”,可能我用的是D版吧?请原谅! 我把上海“晓科科技”发的原件奉上,我就是按照他的方法做的,不能成功!现在想想不能怪人家,毕竟人家抽时间来帮了你,在此顺带向“晓科科技”赔不是!

SolidWorks让弹簧“弹”起来

PAGE 1 OF 4 香港总公司: 深圳分公司: 广州分公司: 东莞分公司: 苏州分公司: SolidWorks让弹簧 让弹簧“ “弹”起来 作者:Eric Huang 职位:应用工程师公司名称:智诚科技(ICT)在SolidWorks中绘制弹簧,对很多SolidWorks的使用者来说并不会陌生,大家会首先想到使用螺旋线命令,绘制出螺旋线路径,再使用扫描命令将实体做出来。对于这种做法绘制的弹簧,需要我们输入相应的长度,圈数或螺距,当我们在装配体中将弹簧放置在图示两个零件中时,需将弹簧长度调整为两个弹簧接触面的距离L,才能符合设计意图装配。如图1所示 对于弹簧接触面的距离L,在很多结构上是需要经常变化的,为了保持结构的合理性,需要控制弹簧的伸缩长度,当每次L变化时,都要重新测量,调整整个弹簧的长度。这样会使我们的整个效率变得低下。 那有没有什么好办法可以使L变化时,整个弹簧能够自动得进行伸长或压缩呢?答案是肯定的,我们可以用SolidWorks的扫描命令中的“沿路径扭转”选项来绘制出这样的弹簧。下面我们介绍一下绘制方法。 1.在装配体中建一新零件,选择一经过轴心的平面,在其中一个弹簧接触面上绘制一条直线做为扫描轮廓,定义几何关系,如图2所示 2.再建立一个新草图绘制一直线为扫描路径,注意直线两端需要分别与上下两弹簧接触面建立重合关系,如图2所示

PAGE 2 OF 4 香港总公司: 深圳分公司: 广州分公司: 东莞分公司: 苏州分公司: 3.使用曲面扫描命令,选择草图1为轮廓,草图2为路径,在选项中的“方向/扭转控制”中选择“沿路径扭转”,定义方式选择旋转10圈,如图4示 4.确定后会产生一个螺旋曲面,此曲面的边缘线为双螺旋结构,这时再利用其中一条螺旋线为路径,绘制一草图圆为轮廓创建出弹簧,如图5示

相关文档
最新文档