波形发生器

波形发生器
波形发生器

《单片机技术》课程设计说明书

波形发生器

院、部:电气与信息工程学院

完成时间: 2014年6月

摘要

本系统是基于AT89C52单片机的波形发生器。采用AT89C51单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(LM324)、按键和数码管等。通过按键控制可产生方波、三角波、正弦波等,同时系统上电或复位后,数码管显示P.。其设计简单、性能优好。各种各样的信号是通信领域的重

要组成部分,其中正弦波、三角波和方波等是较为常见的信号。在科学研究及教学实验中常常需要这几种信号的发生装置。为了实验、研究方便,研制一种灵活适用、功能齐全、使用方便的信号源是十分必要的。

本文介绍的是利用AT89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源。文中简要介绍了DAC0832数模转换器的结构原理和使用方法,AT89C51的基础理论,以及与设计电路有关的各种芯片。文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。

本次关于波形发生器的设计方案,不仅在理论和实践上都能满足实验的要求,而且具有很强的可行性。该信号源的特点是:体积小、价格低廉、性能稳定、实现方便、功能齐全。

关键词: AT89S52 ; DAC0832 ; LM324 ;数码管显示

ABSTRACT

This system is based on AT89C52 single-chip waveform generator. AT89C51 single chip microcomputer as control core and periphery (DAC0832) using digital/analog conversion circuit, operational amplifier circuit (LM324), buttons and digital tube, etc. Through the button control can

produce square wave, triangle wave, sine wave, etc., at the same time

or after reset, the system is powered on digital tube display p.. Its simple design, optimal performance is good. All kinds of signals is an important part in the field of communication, including sine wave, triangular wave and square wave signal is more common. In the scientific research and teaching experiments often need the several kinds of signal generator. For convenient experiment, research and develop a flexible

to apply, complete function, easy to use the signal source is very necessary.

Is introduced in this paper using AT89C52 single-chip microcomputer and digital to analog conversion device DAC0832 to produce the required different signal of low frequency signal source. This paper briefly introduces the DAC0832 digital to analog converter structure principle and use method, the basic theory of AT89C51, related to the design of circuit and the various chips. This paper emphatically introduces how

to utilize the single-chip microcomputer control D/A converter to produce

the signal of the hardware circuit and software programming.

About the design of waveform generator, not only in theory and practice can satisfy the requirement of experiment, and has a strong feasibility. The characteristics of the signal source is: small volume,

low cost, stable performance, easy to implement, the function is all ready.

Keywords at89s52 ; dac0832 ; lm324 ; digital tube display

目录

1 波形发生器设计任务、功能要求说明及总体方案介绍 (1)

1.1 波形发生器设计课题任务 (1)

1.2 波形发生器功能要求说明 (1)

1.3 波形发生器设计方案介绍及工作原理说明 (1)

2 波形发生器硬件电路的设计 (3)

2.1 各模块电路 (3)

2.2 DAC0832的引脚及功能 (4)

2.3 电路原理图、PCB图、元器件布局图 (5)

2.4 元器件清单 (5)

3 软件系统设计 (6)

3.1 波形发生器使用单片机情况 (6)

3.2 软件系统简要介绍 (6)

3.3 程序清单 (8)

4 系统仿真结果,误差分析及设计体会 (9)

4.1 仿真结果 (9)

4.2 误差分析 (10)

4.3 设计体会 (10)

结束语 (12)

致谢 (13)

参考文献 (14)

附录(1) (15)

附录(2) (16)

附录(3) (17)

附录(4) (18)

附录(5) (19)

1 波形发生器设计任务、功能要求说明及总体方案介绍

1.1 波形发生器设计课题任务

设计一个具有特定功能的波形发生器。该波形发生器上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。该波形发生器可以分别产生幅值0~5V、频率100Hz~100KHz范围内的三角波、锯齿波、方波、梯形波和正弦波。

1.2 波形发生器要求说明

波形发生器在系统上电或按键复位后自动显示提示符“P.”。定义了五个功能按键分别为K1、K2、K3、K4和K5控制系统。四个功能按键定义:

K1按键:

K2按键:

K3按键:

K4按键:

K5按键:

1.3 波形发生器设计方案介绍和工作原理说明

依据应用场合.需要实现的波形种类,波形发生器的具体指标要求会有所不同。依据不同的设计要求选取不同的设计方案。通常,波形发生器需要实现的波形有正弦波、方波、三角波和锯齿波。有些场合可能还需要任意波形的产生。各种波形共有的指标有:波形的频率、幅度要求,频率稳定度,准确度等。对于不同波形,具体的指标要求也会有所差异,例如,占空比是脉冲波形特有的指标。波形发生器的设计方案多种多样,大致可以分为三大类:纯硬件设计法、纯软件设计法和软硬件结合设计法。

1.3.1 方案介绍

软硬件结合法软硬件结合的波形发生器设计方法同时兼具软硬件设计的优势:既具有纯硬件设计的快速、高性能,同时又具有软件控制的灵活性、智能性。如以单片机和单片集成函数发生器为核心。辅以键盘控制、数码管显示等电路,设计出智能型波形发生器,采用软硬件结合的方法可以实现功能较全、性能更优的波形发生器,同时还可以扩展波形发生器的功能,比如通过软件编程控制实现

波形的存储、运算、打印等功能,采用USB 接口设计。使波形发生器具有远程通信功能等。目前,实验、科研和工业生产中使用的信号源大多采用此方法来实现。 方案结构框图如图1所示。 1.3.2 工作原理

波形的产生是通过AT89S51单片机执行某一波形发生程序,向D/A 转换器的输入端按一定的规律发生数据,从而在D/A 转换电路的输出端得到相应的电压波形。AT89S51单片机的最小系统有三种联接方式。一种是两级缓冲器型,即输入数据经过两级缓冲器型,即输入数据经过两级缓冲器后,送D/A 转换电路。第二种是单级缓冲器型,输入数据经输入寄存器直接送入DAC 寄存器,然后送D/A 转换电路。第三种是两个缓冲器直通,输入数据直接送D/A 转换电路进行转换。

图1 方案结构框图

AT89S52

电源电

下载电路按键电路D/A转换电路数码管显示电路

复位电路

运放电路

2 波形发生器硬件电路的设计

2.1 各模块电路

2.1.1 时钟电路

单片机的时钟信号通常用两种电路形式得到:内部振荡和外部振荡方式。

在引脚XTAL1和XTAL2外接晶体振荡器或陶瓷谐振荡器,构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自积振荡,并产生振荡时钟脉冲。晶振通常选用6MHZ、12MHZ、或24MHZ。

单片机的时序单位

振荡周期:晶振的振荡周期,又称时钟周期,为最小的时序单位。

状态周期:振荡频率经单片机内的二分频器分频后提供给片内CPU的时钟周期。因此一个状态周期包含2个振荡周期。

机器周期:1个机器周期由6个状态周期12个振荡周期组成,是计算机执行一种基本操作的时间单位。

指令周期:执行一条指令所需的时间。一个指令周期由1-4个机器周期组成,依据指令不同而不同.

2.1.2 单片机的复位状态

当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。上电后,由于电容C1的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。

2.1.3 电源模块

电源电路主要是为系统提供电源,因为单片机AT89S52需要供电5V,而外围电路可以用5V电源。电路可以由电源变压器T、电桥U、电容C以及芯片7805组成。电源是由电源变压器T降压后送入电桥U整流再经C滤波,然后由CW7805稳定后提供给电路工作。由于我们需要在通过计算机下载程序,而USB输出电压也刚好是5V,所以为了方便采用USB供电。

2.1.4 数码管显示电路

数码显示电路主要作用是用来显示P.,通过单片机控制实现数码管码驱动,增加了硬件的复杂性。P2

8个数码管。P0口

驱动连接数码管的段码,即输出要显示的值。 2.1.5 按键电路

按键电路具体电路如图2.6所示。在本次设计中只用到五个按键,分别为K1 产生方波,K2 产生锯齿波,K3:产生三角波,K4:产生正弦波,K5:产生梯形波,系统复位后显示P. 。

2.2 DAC0832的引脚及功能

(1) DAC30832芯片:

DAC0832是8分辨率的D/A 转换集成芯片。与微处理器完全兼容。这个DA 芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。D/A 转换器由8位输入锁存器、8位DAC 寄存器、8位D/A 转换电路及转换控制电路构成。引脚图如图2所示。

图2 0832引脚图 (2) DAC0832的主要特性参数如下:

分辨率为8位; 电流稳定时间1us ;

可单缓冲、双缓冲或直接数字输入; 只需在满量程下调整其线性度; 单一电源供电(+5V ~+15V ); 低功耗,200mW 。 (3) DAC0832结构:

DAC 0832

12345678910

CS VC C ILE WR 2XFER DI4DI5DI6DI7Iou t2Iou t1

WR 1AGND

DI3DI2DI1DI0Vref Rfb DGND 11121314151617181920

D0~D7:8位数据输入线ILE:数据锁存允许控制信号输入线,高电平有效;

CS:片选信号输入线(选通数据锁存器),低电平有效;

WR1:数据锁存器写选通输入线,负脉冲(脉宽应大于500ns)有效。由ILE、CS、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1的负跳变时将输入数据锁存;

XFER:数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于500ns)有效;

WR2:DAC寄存器选通输入线,负脉冲(脉宽应大于500ns)有效。由WR1、XFER的逻辑组合产生LE2,当LE2为高电平时,DAC寄存器的输出随寄存器的输入而变化,LE2的负跳变时将数据锁存器的内容打入DAC寄存器并开始D/A转换。

IOUT1:电流输出端1,其值随DAC寄存器的内容线性变化;

IOUT2:电流输出端2,其值与IOUT1值之和为一常数;

Rfb:反馈信号输入线,改变Rfb端外接电阻值可调整转换满量程精度;

Vcc:电源输入端,Vcc的范围为+5V~+15V;

VREF:基准电压输入线,VREF的范围为-10V~+10V;

AGND:模拟信号地

DGND:数字信号地

(4) DAC0832的工作方式:

根据对DAC0832的数据锁存器和DAC寄存器的不同的控制方式,DAC0832有三种工作方式:直通方式、单缓冲方式和双缓冲方式。

2.3 电路原理图、PCB图、元器件布局图

2.3.1 电路原理图(附带CAD图)

见附录(1)

2.3.2 PCB图

见附录(2)

2.3.3 元器件布局图

见附录(3)

2.4 元器件清单

见附录(4)

3 软件系统的设计

3.1 波形发生器使用单片机资源的情况

AT89S52的片外资源:

P0、P1、P2:基本输入输出口;

XTAL1、XTAL2:晶振输入;

RET:复位电路、下载口电路接入;

AT89S52的片内资源:

3.2 软件系统简要介绍

系统软件由主程序和产生波形的子程序组成,软件设计主要是产生各种波形的子程序的编程,通过编程可得到各种波形。主流程图如图3所示。

图3 主流程图

3.2.1 各种波形的产生

键扫描程序流程图如图4所示。 (1)方波的产生

方波的实现只需开始的时候设置一个初值然后直接输出这个值就行了,输出一段时间后,然后再重新置一个数据,然后再输出这个数据一段时间,但是此时的时间一定要等于前面那段时间。 (2)锯齿波的产生

锯齿波的实现过程是首先定义一个初值然后进行加法操作,加的步数的多少则根据要求的频率来进行。然后加到某个数之后就再重新设置为初值,再重复执行刚刚的操作,如此循环下去。 (3)三角波的产生

三角波的实现是设置一个初值,当加到某个值的时候,执行减一操作,减到初值时,再加一。 (4)正弦波的产生

正弦波的实现需要查表,每查一次表,输出一个数值,之后查下一个数值继续输出,当一个波形的256个数值全部输出之后,从头开始继续输出。 (5)梯形波的产生

梯形波的实现是设置一个初值,然后进行加一,当加到某个数时延时,之后减一,减到初值时在返回到之前的操作,继续加一、延时、减一。

图4 键扫描流程图

开始

初始化

读取波形开关

波形判别

调波形发生子程序

波形转换

否结束

3.3 程序清单见附录(5)

4 仿真结果、误差分析、设计体会

4.1 仿真结果

(1)上电以后数码管显示P.如图5所示。

图5 P.显示结果图(2)按一下按键K1,产生方波,如图6所示。

图6 方波仿真图(3)按一下K2键,产生锯齿波

图7 锯齿波仿真图

(4) 按一下K3键,产生三角波

图8 三角波仿真图

(4)按下K3键,产生正弦波

图9 正弦波仿真图

(5)按一下K5键,产生梯形波

图10 梯形波仿真图

4.2 误差分析

仿真结果显示。电压值为4.95v,没有达到5v,这是由于基准电压没有达到5v,影响了实验结果的准确性。

4.3 设计体会

对于单片机设计,其硬件电路是比较简单的,主要是解决程序设计的问题,而程序设计是一个很灵活的东西,它反映了你解决问题的逻辑思维和创新能力,它才是一个设计的灵魂所在。要设计一个成功的电路,必须要有耐心,要有坚持的毅力。在整个电路的设计过程中,花费时间最多的是各个单元电路的连接及电路的细节设计上,如在多种方案的选择中,我们仔细比较分析其原理以及可行的原因。

经过将近三周的单片机课程设计,终于完成了我的波形发生器的设计,基本达到设计要求,从心底里来说,还是很高兴的,毕竟这次设计把实物都做了出来。但高兴之余不得不深思呀!

在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多。对于单片机设计,其硬件电路是比较简单的,主要是解决程序设计的问题,而程序设计是一个很灵活的东西,它反映了你解决问题的逻辑思维和创新能力,它才是一个设计的灵魂所在。因此在整个设计过程中大部分时间是用在程序上面的。很多子程序是可以借鉴书本上的,但怎样衔接各个子程序才是关键的问题所在,这需要对单片机的结构很熟悉。因此可以说单片机的设计是软件和硬件的结合,二者是密不可分的。

要设计一个成功的电路,必须要有耐心,要有坚持的毅力。在整个电路的设计过程中,花费时间最多的是各个单元电路的连接及电路的细节设计上,如在多种方案的选择中,我们仔细比较分析其原理以及可行的原因。这就要求我们对硬件系统中各组件部分有充分透彻的理解和研究,并能对之灵活应用。完成这次设计后,我在书本理论知识的基础上又有了更深层次的理解。

同时在本次设计的过程中,我还学会了高效率的查阅资料、运用工具书、利用网络查找资料。我发现,在我们所使用的书籍上有一些知识在实际应用中其实并不是十分理想,各种参数都需要自己去调整。偶而还会遇到错误的资料现象,这就要求我们应更加注重实践环节。

最后还要在此感谢各位毕业设计的指导老师们和我的组员们,他们在整个过程中都给予了我充分的帮助与支持。

在我写本论文的过程中,老师和同学给我提供了许多资料,并对实践中出现的问题给予耐心的解答,完稿之后在百忙之中仔细阅读,给出修改意见。王老师爱岗敬业,治学严谨,思维严密,平易近人是我十分尊敬的老师,在此对表示感谢。在写本论文之中,许多同学积极给予我参考意见,帮助我修改其中的不足之处,在这里对他们表示衷心的感谢。

参考文献

[1] 李广第,朱月秀,冷祖祁.单片机基础[M].北京:北京航空航天大学出版社, 2007.6

LiGuang first, ZhuYueXiu, LengZuQi. Single chip microcomputer based [M]. Beijing: Beijing university of aeronautics &astronautics press, 2007.6

[2] 李全利,单片机原理及应用(C51编程)[M].北京:高等教育出版社,2012.12

LiQuanDi.Single chip microcomputer principle and application[M].

Beijing:Higher education press,2012.12

[3] 陈忠平.基于proteus的AVR单片机C语言程序设计与仿真[M]. 北京: 电子

工业出版社

ChenZhongPing proteus. Based on the AVR microcontroller C language program design and simulation [M]. Beijing: publishing house of electronics industry

附录(1)

电路原理图

见后面打印页。

附录(2)PCB图

波形发生器实验

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:波形发生器实验 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

实验原理: 1. RC桥式正弦波振荡器(文氏电桥振荡器) 图5-12-1所示为RC桥式正弦波振荡器。其中,RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、Rp、二极管等元件构成负反馈和稳幅环节。调节电位器Rp,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。VD1、VD2 采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。Rs的接人是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 起振的幅值条件 其中,,ra为二极管正向导通电阻。 调整反馈电阻Rf(调Rp),使电路起振,且波形失真最小。如果不能起振,则说明负反馈太强,应适当加大Rf。如果波形失真严重,则应适当减小Rf。改变选频网络的参数C或R,即可调节振荡频率。

一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。 2.方波发生器 方波发生器是一种能够直接产生方波或矩形波的非正弦信号发生器。实验原理如图5-12-2所示。它是在滞回比较器的基础上,增加了一个RF、CF组成积分电路,把输出电压经RF。CF反馈到集成运放的反相输人端,运放的输出端引入限流电阻Rs和两个背靠背的稳压管用于双向限幅。 电路振荡频率为 其中 方波的输出幅值 3.三角波和方波发生器 如图5-12-3所示,电路由同相滞回比较器A1和反相积分器A2构成。比较器A1输出的方波经积分器A2积分可得到三角波Uo, Uo 经电阻R为比较器A1提供输入信号,形成正反馈,即构成三角波、方波发生器。图5-12-4所示为方波、三角波发生器输出波形图。由于采用运放组成的积分电路,因此可实现恒流充电,使三角波 线性大大改善。滞回比较器的國值电压,电路震荡频率 ,方波幅值,三角波幅值 调节Rp可以改变振荡频率,改变比值会可调节三角波的幅值。

两款函数任意波形发生器产品简介

是德科技 30 MHz 函数/任意波形发生器 33521A 单通道函数/任意波形发生器 33522A 双通道函数/任意波形发生器 技术资料 ?????????????????? ?????????????????? ???? (alias-protected) ?????? ??

33500 系列函数/任意波形发生器 实现更出色的精度和灵活性?わょ??????????????????わ???????????????????????????? Keysight 33500 ????/??????????????????????????????????????????????????⒔????? 10 ???????????????????????????????????? 主要特性 —30 MHz ??????? ??????????? —???? 40 ps???????? 0.04%???????????—250 MSa/s ???? 16 ??? ????????????????? —????????????????????????????????? —??? 33522A ?????勚??????ㄩ? —?㈨ 1 MSa ??▌╈????㈨ 16 MSa ▌╈???▌╈???? ???? —?? LXI C ??? —????????????? TFT ?????????????????????????? —??? BenchL ink Waveform Builder Pro ????????????信号保真度 ???????????????? ??????????????? ??????????????? ??????????????? ????? 33500 ????/??? ??????????????? ??????? 40 ps ?⒔??? ???/??????? 10 ???? ??????????? 16 ??? ???? 0.04% ???????? ▕ 250 MSa/s (16 ?) ??????? ????????????▌╈?? ????????????⒋??? ???????????????? ???????????? 灵活的信号生成 33521A ? 33522A ???????? ??????????????? ? (DTMF) ????? 33522A ??? ?????????????ㄩ?? ???????勚???????? ??????????????(? ???????) ??????⒋? ???????????????? ???????????⒋??? 逐点波形 33500??????????? ???????????? (alias- protected) ?????????? ?????????????? ???33521A ? 33522A ??? ? 30 MHz ???????⒋?? ??????????????? ??????????????? ???????????????? ??????????????? ???????????????? ????????? 用户界面 ????????????? TFT ? ???????????????? ???????????????? ?????? 33500 ?????? LXI C ??????? USB 2.0 ? 10/100 Base-T ???????????㎡? ???? PC ?????????? ???????????????? ?? GPIB ????????? 可选 33503A BenchLink Waveform Builder Pro 软件 Benchlink Waveform Builder Pro ? ??????????????? ??????????????? ??? Microsoft Windows ???? ???????????????? ???????????????? ??????????????? ???????????????? ?╖????????㎡???? ??????????????? ??????????????? BenchLink Waveform Builder Pro? ???????????????? ???????????????? ?????╱????????? ㎡??????????????? ??????????????? ??? 30 ??????????? https://www.360docs.net/doc/229886551.html,/? nd/33503

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

FPGA波形发生器实验报告

实验报告册 课程名称:Verilog HDL数字系统设计 实验项目名称:频率可变的任意波形发生器学院:电子科学与技术 专业:微电子 班级:二班 报告人:黄日才 学号:2008160120 指导教师:刘春平老师 实验时间:2010.12.06 —2011.01.06 提交时间:2011.01.06

一、实验目的 利用DE2实验板和DVCC试验箱的DA转换器设计出可出任意波形且频率可调的信号发生器,也就是基于FPGA的用Verilog描述的直接数字频率合成器(DDS)。 二、设计方案及其原理说明: DDS是一种把数字信号通过数/模转换器转换成模拟信号的合成技术。它由相位累加器、相幅转换函数表、D/A转换器以及内部时序控制产生器等电路组成。 参考频率f_clk为整个合成器的工作频率,输入的频率字保存在频率寄存器中,经N位相位累加器,累加一次,相位步进增加,经过内部ROM波形表得到相应的幅度值,经过D/A转换和低通滤波器得到合成的波形。△P为频率字,即相位增量;参考频率为f_clk;相位累加器的长度为N位,输出频率f_out为: F_out——输出信号的频率;N————相位累加器的位数; △P———频率控制字(步长);F_clk——基准时钟频率。 1、系统总体设计方案框架图: 图1-1 系统总体设计方案

2、四种波形单周期的取样示意图: 3、本实验采用每个周期取样16次,以便产生的波形更加的平滑。函数查找表的设计:(十进制)

4、程序思路 1)分频器控制读取rom的步长,通过输入变量改变分频器计数器的计数总量,控制分频实验频率可调。 2)制作rom,通过一个函数实现,给函数输入一个地址,通过case语句输出一个值。 3)波形选择,同个if语句选择地址计数器输出的值,从而输出四种不同的波形 4)锁相环(附加),调用FPGA芯片集成的锁相环模块,让输出的相位更加的稳定。 5)调幅(附加),通过在rom的值除以不同的值来控制改变输出信号的幅度。 三、程序及具体方法注释 module dds_ver( clk_50MHz,fout,change,freq,key0 ); input clk_50MHz; //输入50MHz的全局时钟 input[1:0] change; //定义输入变量,用来切换输出波形,一共4个档位 input [2:0] freq; //定义输入变量,用来改变输出信号的频率,一共8个档位 output [7:0] fout; //输出8为rom的值,用来驱动DA转化芯片,输出波形 input key0; //定义输入变量,用来改变幅值计数器的值,从而改变幅值

使用任意波形发生器-Tektronix

使用任意波形发生器 创建无线信号 入门手册

使用任意波形发生器创建无线信号入门手册 2 https://www.360docs.net/doc/229886551.html,/signal_generators

使用任意波形发生器创建无线信号 入门手册 目 录 摘要??????????????????????????????????????????????4简介??????????????????????????????????????????????4无线应用与数字调制??????????????????????????????????????5-12无线发射面临的挑战?????????????????????????????????????5为什么要数字调制??????????????????????????????????????6什么是数字调制???????????????????????????????????????7数字调制应用????????????????????????????????????????12数字无线测试?????????????????????????????????????????12-19发射机-I-Q调制器测试???????????????????????????????????13 IF滤波器效率和损伤测试???????????????????????????????????14发射机-RF功率放大器线性度?????????????????????????????????15接收机-IF解调器测试????????????????????????????????????16接收机-RF功能测试????????????????????????????????????17接收机-平衡器特性评估???????????????????????????????????18接收机-干扰灵敏度?????????????????????????????????????18 RF频谱环境仿真???????????????????????????????????????19使用任意波形发生器(AWG)生成调制信号????????????????????????????19-25生成基带I-Q信号??????????????????????????????????????19 IF生成???????????????????????????????????????????20 RF生成???????????????????????????????????????????21编译复合信号????????????????????????????????????????23回绕式考虑?????????????????????????????????????????24展望??????????????????????????????????????????????26 https://www.360docs.net/doc/229886551.html,/signal_generators 3

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼 典型的DDS原理框图如图所示。 其实质是数模转换,仍然要遵循奈奎斯特采样定理。即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。相对于直接模拟频率合成,锁相频率合成,其优点如下: ·频率分辨率高。若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。 ·工作频带较宽。根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。 ·超高速频率转换时间。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。 ·相位变化连续。改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。 ·具有任意输出波形的能力。只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。例如三角波、锯齿波和矩形波。 ·具有调制能力。由于DDS是相位控制系统,这样也就有利于各种调制功能。 同时DDS合成技术也有一些固有的缺点,如下: ·杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。另外,一个幅值在理论上只能用一个无限长的二进制代码才能精确表示,由于ROM的存储能力,只采用了有限比特代码来表示这一幅值,这必然会引起幅度量化误差。另外,DAC的有限分辨率以及非线性也会引起误差。所以对杂散的分析和抑制,一直是国内外研究的特点,因为它从很大程度上决定了DDS的性能。 ·频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL等工艺制作的DDS芯片工作频率一般在几十MHz至几百MHz左右。但随着高速GaAs器件的出现,频带限制已明显改善,芯片工作频率可达到2GHz范围左右。 以上摘自:《现代DDS的研究进展与概述》一文,https://www.360docs.net/doc/229886551.html,/event/emag/20080226.htm。 将DDS应用于波形发生器,能非常方便的产生任意波形。一般除了具备常规函数发生器所具备的正弦波、方波、锯齿波、脉冲、噪声外,还有指数上升、指数下降、Sinc波、心电图波、直流,以及地震波等任意波形。能采用直接在仪器上手动编辑或windows 下软件编辑的方式产生任意波形,用于模拟电路或应用环境中可能发生的情况,此外还具备非常丰富的调制功能,甚至有些调制功能是以往只能在高端信号源上才能看到的。 下面找出主要以国产厂商为主的函数/任意波形发生器做一个对比,以此来了解国内DDS的应用水平,并给出一个大概的选购指南,以便您在需要的时候能够快捷的找到合手的信号源。Agilent在很早之前就推出了33200系列

函数波形信号发生器

函数波形发生器设计 摘要 函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 经过仿真得出了方波、三角波、正弦波、方波——三角波转换及三角波——正弦波转换的波形图。 关键字:函数信号发生器、集成运算放大器、晶体管差分放 设计目的、意义 1 设计目的 (1)掌握方波—三角波——正弦波函数发生器的原理及设计方法。 (2)掌握迟滞型比较器的特性参数的计算。 (3)了解单片集成函数发生器8038的工作原理及应用。 (4)能够使用电路仿真软件进行电路调试。 2 设计意义 函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。 在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、导航、宇航等领域。 设计内容 1 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等): 1.1课程设计的内容 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; (4)对单片集成函数发生器8038应用接线进行设计。 1.2课程设计的要求 (1)提出具体方案 (2)给出所设计电路的原理图。 (3)进行电路仿真,PCB设计。 2 函数波形发生器原理 2.1函数波形发生器原理框图 图2.1 函数发生器组成框图

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

数字波形发生器毕业设计

数字波形发生器的设计 摘要波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本函数发生器采用89C52单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(LM324)、按键和液晶显示电路等。电路采用89C52单片机与一片DAC0832数模转换器组成低频信号发生器。通过按键控制可分别控制选择输出的幅值和频率,同时用1602显示器显示幅值和频率.本系统设计简单、性能优良,具有一定的实用性。 关键词AT89C52 DACO832 波形发生器 1 序言 波形发生器是一种常用的信号源,广泛的应用于电子电路、自动控制系统和教学实验等领域,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要有信号源。由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察。测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最为广泛的一类电子仪器。它可以产生多种波形信号,如锯齿波、三角波、梯形波等,因而广泛应用于通信、雷达、导航、宇航等领域[3]。 自单片机广泛应用以来,各种器件日益智能化,而智能的实现需要各种信号。可以预见,波形发生器已成为重要的产品,发展前景十分看好。市场上精度高的波形发生器十分昂贵,结构复杂,如何降低成本普及产品是目前波形发生器的重要课题。 2. 系统总体设计思路概述 数字波形发生器的方案论证 总体方案设计 方案一:利用D/A转换器输出的模拟量与输入数字量成正比关系这一特点,将D/A转换器作为微机输出接口,CPU通过程序向D/A转换器输出随时间呈现不同变化规律的数字量,则D/A转换器就可输出各种各样的模拟量,如方波、三角波、锯齿波、正弦波等。 此方案可满足题目的要求,产生波形程序控制,并通过按键选择幅值电压和频率,并在LCD1602液晶屏中显示相应幅值电压和选择的频率,按键选择频率、幅值、波形。优点是结构简单,满足此

函数波形发生器.docx

1 2 3 4 5 6 7 8 vcc vcc 11 U1A LM324D 02 R12 50% 3 矩形波 C7 10uF 4~l 50%^! ■^iRH 10k ;, Rw6 D1 Dz1 0 2DZ4.QT Dz2… □Z4.7 iS 乙 0324D R1 卉扳忒 U3C 750 U Key=A 1N414^ D2 禺 4N4仏 C6 卄 IOOI R15 17 1ML Dz3 2^02DZ4- 13 4D1 2 ID 9 Rwl 50% T 啥 4 1nF Rw2 50% 100kj 50% Key?A R2 K'kL 23 锯齿 1 S 22 C2 Z100 R14 1k|. w3 24 _L >R3—T — : iokh 10: C3 ±22°F OOnF Rw8 100kL Key=A 21 巫弦波 三角波 .17V

* W 卄*4巴犁曲<5 冋"Y 0叢%T r

函数波形发生器的设计 一、验目的 1、学习函数波形发牛器的设实计方法; 2、了解单片函数发生器ICL8038的工作原理及应用; 3、掌握函数波形发生器电路的调试及主要指标的测试方法; 4、研究函数波形发牛器的设计方案。 二、实验原理 在无线电通信,测量,口动化控制等技术领域广泛地应用着各种类型的信号发牛器,常用的波形是止弦波,矩形波(方波)和锯齿拨。 随着集成电路技术的发展,己有能力同时产生同频的方波,三角波和正弦波的专用集成电路, 称为函数波形发生器,如ICL8038o 1.函数波形发生器 专用集成电路ICL8038就是一个函数波形发生器,其引出脚的排列及性能见附录一。典型应用电路如图5-2-1所示。 图5-2-1 161^038典熨应川电路

多种波形发生器

多种波形发生器 波形发生器被广泛用于各大院校的教学和科研场所的研究。 我们通过对实验的认识和对资料的查询,选择利用脉冲数字电路原理设计了多种波形发生器,该发生器通过555数字芯片构成多级振荡器,组成RC积分电路来 分别实现方波、三角波和正弦波的输出。它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。 一、总体方案的选择 对于设计我们的思路是应用555定时器,组成RC振荡电路,从而使直流信号变成所需要的振荡信号,从而实现多种波形的转化和输出。 1.拟定系统方案框图 (1)方案一: 实验原理: 用555定时器组成振荡器形成方波信号,以方波作为输入信号进入积分电路产生并输出三角波,然后,将三角波作为一个输入信号,进入另外一个积分电路,产生并输出一个正弦波。 原理框架图: 方波输出三角波输出正弦波输出

设计指标: 正弦波输出振荡频率为500HZ,三角波方波输出频率为500HZ—1000HZ,三角波幅值范围2V—2V。 (2)方案二: 实验原理: 用555定时器组成振荡器形成方波信号,以此方波信号作为积分电路的输入信号,通过积分电路输出三角波信号;而另一条路径的方波信号作为滤波电路的输入信号,通过输入滤波电路产生并输出正弦波。 原理框架图: 方波信号三角波信号正弦波信号 设计指标: 正弦波输出振荡频率为500HZ,三角波方波输出频率为500HZ—1000HZ,三角波幅值范围2V—2V。

2.方案的分析和比较 (1)方案一: 方案一所涉及的电路主要是集中于555定时器所发出的方波信号,555定时器是一种多用途的数字-模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了应用。因此该方案比较稳定,同时,该电路的设计思路使输出的波形比较稳定,同时,便于安装和检查。虽然多了一个积分电路,但使其性能和稳定性增加。同时,通过方案一的电路可以很方便的输出三个波形的电路,实用效率高,同时,整体性和集成性强。经济性更好。 (2)方案二: 与方案一很相似,但其使用的是滤波电路来实现方波转化成正弦波。比较后这种电路比较经济实用,但由于滤波电路的使用取决于很多外部条件,同时,滤波电路的使用是整套方案不易于构成整体,相对方案一其稳定性和整体性集成性较低。 通过比较,我选择方案一。 二、单元电路的设计 1.方波发生电路 (1)核心元件的选择 555定时器: 由于使用了比较常见,但我们还没有接触到的555定时器,特做以说明 555定时器是一种多用途的数字-模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制等许多领域中都得到了应用。

函数波形发生器 程序及程序流程图、系统原理图

ASSUME CS: CODE CODE PUBLIC ORG 100H START: MOV DX,40H ;8255 A口地址IN AL,DX ;8255初始化TEST AL,01H JZ FF1 TEST AL,02H JZ FF2 TEST AL,04H JZ FF3 JMP START ;读频率选择状态L: TEST AL,10H JZ FB TEST AL,20H JZ JCB TEST AL,40H JZ SJB JMP START ;读波形选择状态FF1:MOV SI,09H JMP L FF2:MOV SI,03H JMP L FF3:MOV SI,02H JMP L ;频率调节 FB: MOV DX 48H ;0832 端口地址F: MOV BX 0FFH F0: MOV CX,SI MOV AL,00H F1: OUT DX,AL LOOP F1 DEC BX JNZ F0 MOV BX,0FFH F2: MOV CX,SI F3: OUT DX,AL LOOP F3 DEC BX JNZ F2 JMP F ;方波发生子程序 JCB:MOV DX,48H ;0832 端口地址MOV AL,0FFH J: INC AL MOV BX,0FFH J1: MOV CX,SI J2: OUT DX,AL LOOP J2 DEC BX JNZ J1 JMP J ;锯齿波发生子程序 SJB: MOV DX,48H ;0832 端口地址S: MOV AL,00H MOV BX,80H S0: MOV CX,SI S1: OUT DX,AL INC AL LOOP S1 DEC BX JNZ S0 MOV BX 80H S2: MOV CX,SI S3: DEC AL OUT DX,AL LOOP S3 DEC BX JNZ S2 JMP S ;三角波发生子程序JMP START ENDS CODE

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

函数波形发生器

函数波形发生器 一、题目分析 题目要求:利用D/A芯片产生峰峰值为5V的锯齿波和三角波。 控制功能:使用2个拨动开关(K1、K2)进行功能切换。当K1接高电平时,输出波形的频率为1Hz,否则为0.5Hz。当K2接高电平时,输出为三角波,否则输出为锯齿波。 使用的主要元器件:8031、6MHz的晶振、74LS373、74LS138、2764、DAC0832、LM324、拨动开关K1、K2等。 输出波形的验证方法:使用示波器测量输出波形。 函数发生器采用AT89c52 单片机作为控制核心,外围采用模拟/数字转换电路(DAC0832)、运放电路(LM324)、按键等。电路采用AT89C52单片机和一片DAC0832数模转换器组成数字式低频信号发生器。 通过开关控制可产生锯齿波、三角波,同时用开关控制频率切换的波形。所产生的波形V P-P范围为5 V,频率范围为1HZ与0.5HZ,波形准确并且平滑。本系统设计简单、性能优良,具有一定的实用性。 本设计主要应用AT89c52作为控制核心。硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点。 二、方案论证 硬件方案选择 方案一:AT89c52单片机是一种高性能8位单片微型计算机。它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机。AT89c52芯片中每一路模拟输出与DAC0832芯片相连,构成多个DAC0832同步输出电路,输出波形稳定,精度高,但是第二级DAC0832输出,发生错误并且电路连接复杂。 方案二:AT89c52芯片中只有一路模拟输出或几路模拟信号非同步输出,这种情况下CPU对DAC0832 执行一次写操作,则把一个数据直接写入DAC

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

波形发生器实验报告-陈雷、范广腾、范晓雷

波形发生器(A题) 设计报告 学员:范广腾200604013009 陈雷200604013012 范晓雷200604014027

摘要 本系统主要以单片机为控制核心,由FPGA模块、键盘输入模块、LED显示模块、DA转换输出、巴特沃斯有源低通滤波器等部件组成。采用DDFS技术,该系统具有较宽频率带、步进值小和频率精度高等特点。 1. 设计任务 设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。 2. 设计要求及完成情况汇总 2.1.基本要求

3. 方案设计和论证 3.1. 波形发生器 方案1 :采用传统的直接颇率合成DS 技术。这种方法能实现快速频率变换.具有低相位嗓声以及所有方法中最高的工作濒率。但由于采用大量的倍频,分频、混颇和滤波环节。导致直接频率合成器的结构复杂、体积庞大,成本高、而且容易产生过多的杂散分量。难以达到较高的频谱纯度;更重要的是;这种方法只能实现正弦波,或者进而由积分、微分等方法实现方彼、三角波等标准波形、但却无法实现题目所要求的任意波形。 方案2;采用锁相环式频率合成器。利用锁相环,将压控振荡器VCO 的输出频率锁定在所需频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需频率信号,抑制杂散分量,并且省去了大量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,镇定时间较长,故领率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率和相位都很难控制:除此之外,同方案1类似,此方案也无法实现任意波形的输出。 方案3;采用直接数字式频率合成器(Direct Digital Frr-quency Synthesis,简称DDB 或DDB).用随机读写存储器RAM 存储所需波形的盆化数据. 按照不同频率要求以频率控制字k 为步进对相位增量进行票加,以票加相位值作为地址码读取存放在存储器内的波形数据.经D/A 转换和幅度控制,再滤波即可得所需波形(如图1)。由于DDS 具有相对带宽很宽、颇率转换时间极短(可小于20ns)、频率分辨率可以做得很高(典型值为0.001Hz)等优点。另外,全数字化结构便于集成.抽出相位连 续.频率、相位和幅度均可 实现程控,而且理论上能够 实现任意波形,可以完全满 足本题目的要求。于是我们 采用了此种方案。 图 1 系统流程 3.2. 幅度控制 方案1:采用双数模转换技术,由单片机控制对DAC0800置数.改变其输出电流,经电流/电压转换后通过电阻以电流源的形式作为高速乘法型D/A 转换器DAC0800的基准电流,由此即可控单片机控制输出波形的福度。但此种方法不能准确实现步进0. I V 的要求,且当

相关文档
最新文档