220KV变电所电气部分及继电保护设计

220KV变电所电气部分及继电保护设计
220KV变电所电气部分及继电保护设计

毕业设计(论文)任务书

题目:220kV变电站电气部分及继电保护的设计

一、基本任务及要求:

1)依据原始资料设计220kV变电所的一次电气部分,包括主接线方案确定及电气设备的选型与校验;采用博超软件给出220kV变电所的一次接线图;

2)短路电流计算;采用博超软件给出短路电流计算书;

3)变电所及与之相连络部分接线继电保护的配置及整定;采用博超软件给出变电所及与之相连络部分接线继电保护的配置图;

4) 撰写设计报告

二、进度安排及完成时间:

1、 1月1日----1月8日下达任务书,查阅资料、撰写文献综述

2、 2月 27日---3月4日查阅资料、撰写文献综述和开题报告并交电子文档

3、 3月5日----3月20日毕业实习、撰写实习报告

4、 3月20日----5 月20日毕业设计

5、 5月 20日----5月30日撰写毕业设计论文

6、 5月31号——6月9号指导教师评阅、电子文档上传FTP

7、 6月10号——6月12 号毕业设计答辩(公开答辩、分组答辩)

目录

摘要.............................................................. I ABSTRACT ........................................................... I I 第1章绪论. (1)

1.1现代电网的主要特征 (1)

1.2现代电网运行状态 (2)

1.3现代电网发展趋势 (2)

第2章电气主接线的设计 (3)

2.1概述 (3)

2.2主接线设计原则 (3)

2.2.1主接线的设计依据 (3)

2.2.2主接线设计的基本要求 (3)

2.3基本接线设计 (4)

2.3.1 单母线接线 (4)

2.3.2 单母线分段接线 (4)

2.3.3 单母线分段带旁路母线的接线 (5)

2.3.4双母线接线 (5)

2.3.5 双母线分段接线 (5)

2.3.6 双母线带旁路母线的接线 (5)

2.4主接线选择 (6)

2.5主变压器的选择 (8)

2.5.1主变压器台数的选择 (8)

2.5.2主变压器容量的选择 (8)

2.5.3 主变压器型式的选择 (9)

2.5.4 主变压器的选择结果 (9)

第3章 220KV变电所电气部分短路计算 (11)

3.1短路电流的计算条件 (11)

3.2电路元件参数计算 (11)

3.310K V侧短路计算 (12)

3.4220K V侧短路计算 (16)

3.5110K V侧短路计算 (17)

3.6短路计算结果 (18)

第4章所用电气设备选择 (19)

4.1电气设备选择的一般要求 (19)

4.1.1 一般原则 (19)

4.2断路器的选择 (21)

4.2.1 变压器220kV侧断路器的选择 (22)

4.2.2 变压器110kV侧断路器的选择 (24)

4.2.3 变压器10kV限流电抗器、断路器的选择 (26)

4.3隔离开关的选择 (30)

4.3.1 变压器220kV侧隔离开关的选择 (30)

4.3.2 变压器110kV侧隔离开关的选择 (31)

4.3.3 变压器10kV侧隔离开关的选择 (33)

4.4电流互感器的选择 (34)

4.4.1电流互感器 (34)

4.4.2 220kV侧电流互感器的选择 (35)

4.4.3 110kV侧电流互感器的选择 (37)

4.4.4 10kV侧电流互感器的选择 (38)

4.5电压互感器的选择 (39)

4.5.1电压互感器的选择和配置应按下列条件: (39)

4.5.2 220kV侧母线电压互感器的选择 (40)

4.5.3 110kV侧母线电压互感器的选择 (40)

4.5.4 10kV母线设备电压互感器的选择 (41)

4.6母线的选择与校验 (41)

4.6.1 母线 (41)

4.6.2 220kV母线的选择与校验 (44)

4.6.3 110kV母线选择和校验 (45)

4.6.4 10kV母线选择和校验 (46)

4.7高压电器选择结果 (48)

第5章防雷接地设计 (49)

5.1防雷设计 (49)

5.1.1 防雷设计原则 (49)

5.1.2 避雷器的选择 (50)

5.1.3 220kV侧避雷器的选择和校验 (50)

5.1.4 110kV侧避雷器的选择和校验 (51)

5.1.5 10kV侧避雷器的选择和校验 (52)

5.1.6避雷针的配置 (53)

5.2接地设计 (54)

5.2.1接地设计原则 (54)

5.2.2 接地网型式选择及优劣分析 (55)

第6章电气总平面布置及配电装置的选择 (56)

6.1概述 (56)

6.1.1配电装置特点 (56)

6.1.2配电装置类型及应用 (56)

6.2配电装置的确定 (57)

6.3电气总平面布置 (59)

6.3.1 电气总平面布置的要求 (59)

6.3.2 电气总平面布置 (59)

第7章继电保护的配备 (61)

7.1继电保护的概述 (61)

7.1.1 继电保护的作用 (61)

7.1.2 继电保护装置满足的基本要求 (62)

7.2变电所继电保护原理 (63)

7.2.1 变压器保护原理 (63)

7.2.2 线路保护 (64)

7.3变电所继电保护 (64)

7.3.1 继电保护整定公式 (64)

7.3.2 变压器保护 (65)

结束语 (67)

参考文献 (68)

致谢............................................. 错误!未定义书签。附图:220kV电气主接线图

220kV变电站电气部分及继电保护的设计

摘要:变电所是电力系统中对电能的电压和电流进行交换、集中和分配的场所,它担负着电力系统受电,经过变压,然后配电的任务。显然,变电所是供电系统的枢纽,在供电系统中占有重要的地位。

此毕业设计的目的是让我巩固在大学里所学的只是,从而让我有一个系统的了解和掌握。首先对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。

关键字:变电站,电气主接线,电器设备

Design on electrical and relay protection of 220kV

substation

Abstract: A substation is a site in the electric system where electric voltage and current are commutated, centralized and distributed. It bears the task of reception, voltage transformation and distribution of electricity. Evidently, it is one of the hinges and plays an important part in the power supply system.

The goal of the substation be designed to graduate design issues is aimed at consolidating the knowledge I have learned in university, let me have a more comprehensive and systematic master. First of all, analyze the original data and choose the main transformer, based on it, design the main wiring and short circuit calculation, at last choose equipment, then mine and the protection of earth and distribution device.

Key Word: substation, electric main wiring, electric equipment

湖南工程学院应用技术学院毕业设计(论文)

第1章绪论

现代工农业生产和人民生活的各个方面都广泛应用电能。发电厂把其他形式的能量转换成电能,电能经过变压器和不同电压的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他能量。这些生产、输送、分配和消费电能的各种的各种电气设备以及相应的专用通信、安全自动、继电保护、调度自动化等设施连接在一起而组成的整体,称为电力系统。电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压的输配电线路。

1.1 现代电网的主要特征

现代电网具有一个坚强的500KV及以上电压等级网络构成的主网架。由于发电机组的容量愈来愈大,传输距离愈来愈远,电力网覆盖的区域愈来愈光,输电的电压等级也愈来愈高。随着新技术,特别是空间技术的发展,超导和陶瓷材料的问世,交流输电距离已可增加到2500KM,超高压直流输电距离已可增加到6500KM。电压等级也已由500KV 向更高发展。

各电网之间也有较强的联系,而且这种联系愈来愈紧密。通过实践,人们认识到,从充分发挥现代大电网的优越性,充分合理利用资源,提高现代电网运行的经济性,实现事故状态下互相支援的要求看,强联系比弱联系有更大的优越性。为了克服强联系带来的事故状态下可能波及另一电网的弱点,目前世界上应用超高压直流输电网络将大电网之间背靠背地连接起来的做法,已经得到了迅速的发展。

电压等级简化和供电电压提高。为了便于设备生产、管理和提高电网运行的经济性,减少变压次数,各国正在进行电压等级的整顿、简化和统一。最近投产的岩滩水电厂就只有15.75、500KV两个电压等级。随着城市用电量的增长,城市中高层建筑的增多,负荷密度的增高,城市供电电压有10KV升高的趋势。

维确保现代电网的安全、稳定、优质、经济运行,提高供电可靠性,配置了一整套与一次系统相适应的安全稳定的控制系统,一电子计算机为核心的调度自动化监控系统,电力专用通信系统,气象、水文、雷电监测系统。这些系统是构成现代电网不可分割的重压组成部分。

1.2 现代电网运行状态

当电力系统中的各种发电、变电、输电、配电及用电设备之间的相互连接情况已经确定时,电力系统的运行状态是由一些运行变量的变化规律来描述的。这些运行变量包括有功功率、无功功率、频率、电压、电流、磁链、电动势及发电机转子间的相对位移角。电力系统的运行状态一般可分为稳态和暂态。实际上,由于电力系统存在各种随机扰动因素,绝对的稳态是不存在的,在电力系统运行的某一段时间内,如果运行蚕食只在某一恒定的平均值附近发生微小的变化我们就称这种状态为稳态。电力系统暂态一般是指从一种运行状态变到另一种运行状态的过渡过程。在暂态中,所有运行参数都发生变化,有些则发生剧烈变化。此外,运行参数发生震荡的运行状态,也是一种暂态。

1.3 现代电网发展趋势

随着电力工业建设规模的扩大,坑口火电厂或大型水电厂的建设,必然会打破历史形成的地方电力系统的疆域,逐渐练成大区域或跨区域的现代电网,也只有依靠现代电网才能把诸如水利、煤炭、石油、天然气、核能等一次能源转化为电能,并把它们有效地联系在一起,通过长距离输送,进行分配,互相支援,彼此配合,取得最大的经济效益。现代电网的另一个发展趋势是大机组不断增多。为降低火电厂的投资减少运行费用,提高经济效益,首先是增肌单机容量。一般而言,设备投资增长速度比设备容量慢,这是由于设备制造黑色和有色金属消耗量随单机容量增加而减少。现代电网的第三个发展趋势是自动化程度越来愈高。电网调度自动化系统是近30年发展起来的。这个刺痛的范围和功能还在不断发展。为了进一步提高现代电网的稳定性已经使用了低频减载、振荡切机、振荡解列、远方切机或切复符合、电器制动、气机气门快关系统稳定等装置。

根据设计要求的任务,在本次设计中主要通过变电站电气主接线、短路电流计算、设备选择与校验、主变保护和配电装置部分的设计,使我对三年来所学的知识更进一步的巩固和加强,并从中获得一些较为实际的工作经验。由于在设计中查阅了大量的相关资料,所以开始逐步掌握了查阅,运用资料的能力,又可以总结三年来所学的电力工业的部分相关知识,为我们日后的工作打下了坚实的基础。

湖南工程学院应用技术学院毕业设计(论文)

第2章电气主接线的设计

2.1 概述

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置、继电保护和控制方式的拟定有较大影响。因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。

2.2 主接线设计原则

2.2.1主接线的设计依据

电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330~500kV;地区重要变电所,电压为220~330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。

变电所根据5~10年电力系统发展规划进行设计。一般装设两台主变压器;当技术经济比较合理时,330~500kV枢纽变电所也可装设3~4台主变压器;终端或分支变压所如只有一个电源时,可只装设一台主变压器。

2.2.2主接线设计的基本要求

电气主接线设计的基本原则是以设计任务为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、实用、经济、美观的原则

2.3 基本接线设计

2.3.1 单母线接线

单母线接线供电电源在变电站是变电器或高压进线回路。母线既可保证电源并列工作,又能使任一条出线都可以从任一个电源获得电能。个出现回路输入功率不一定相等,应尽可能使负荷均衡地分配在各线上,以减少功率在母线上的传输。

单母线的优点:接线简单,操作方便、设备少、经济性好,并且母线便于向两端延伸,扩建方便。缺点:1)可靠性差。母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就成了全厂或全站长期停电。2)调度不方便,电源只能并列运行,不能分列运行,并且线路发生短路时,有较大的短路电流。

使用范围:一般只适用于一台发电机或一台主变器的一下三种情况:

1)6~10kV配电装置的出线回路数不超过5回;

2)35~63kV配电装置的出线回路数不超过3回;

3)110~220kV配电装置的出线回路数不超过2回。

2.3.2 单母线分段接线

单母线用分段断路器进行分段,可以提高供电可靠性和灵活性;对重要用户可以从不同段引出两回馈线路,有两个电源供电;当一段母线发生故障,分段断路器自动将用户停电;两分段母线同时故障的几率很小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段,任一母线故障时,将造成两端母线同时停电,在判别故障后,拉开分段隔离开关,完成即可恢复供电。

这种接线广泛用于中、小容量发电厂和变电站6~10kV接线中。但是,由于这种接线对重要负荷必须采用两条出现供电,大大增加了出现数目,使整体母线系统可靠性受到限制,所以在重要负荷的出线回路较多、供电容量较大时,一般不予采用。

使用范围:

1)6~10kV配电装置出线回路数为6回及以上时;

2)35~63kV配电装置出线回路数为4~8回时;

3)110~220kV配电装置出线回路数为3~4回时。

湖南工程学院应用技术学院毕业设计(论文)

2.3.3 单母线分段带旁路母线的接线

单母线分段断路器有专用旁路断路器,母线接线极大地提高了可靠性,但是这增加了一台旁路断路器,大大增加了投资。

2.3.4双母线接线

母线接线有两种母线,并且可以互为备用。每个电源和出现回路,都装有一台短路器,有两组母线隔离开关,可分别于两组母线接线连接。两组母线之间的联络,通过母线联络断路器来实现。其优点:供电可靠、调度灵活、扩建方便等特点。缺点:1)增加一组母线和使每回路就需要增加一组母线隔离开关;2)当母线故障或检修时,隔离开关作为倒换操作电气,容易误操作。为了避免隔离开关误操作,需要在隔离开关和断路器之间装设连锁装置。

适用范围:1)6~10kV配电装置,当短路电流较大、出线需要带电抗器时;

2)35~63kV配电装置,当出线回路数超过8回时,或连接的电源较多、负荷较大时;

3)110~220kV配电装置出线回路数为5回及以上时,或当110~220kV配电装置,在系统中具重要地位,出线回路数在4回及以上时。

2.3.5 双母线分段接线

为了缩小母线故障的停电范围,可采用双母线分段接线,用分段断路器将工作母线分为两段,每段工作母线用各自的母线断路器与备用母线相连,电源和出线回路均匀地分布在两段工作母线上。双母线分段接线比双母线接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出现回路停电;随后,将故障段母线所连的电源回路和出线回路切换到备用母线上,即可恢复供电,这样,只是部分短时停电,而不必短期停电。

双母线分段接线被广泛用于发电厂的发电机电压配置中,同时在220~550kV大容量配置装置中,不仅采用双母线分段接线,也有采用双母线分四段接线的。

2.3.6 双母线带旁路母线的接线

双母线可以带旁路母线,用旁路断路器替代检修中的回路断路器工作,是该回路不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线

的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要的。

2.4 主接线选择

根据原始资料的分析现列出两种主接线方案。

方案一:220kV侧双母接线,110kV侧双母接线、10kV侧单母分段接线。

220kV出线数为4回,由于220kV配电装置在系统中居重要位置,所以选择回路线为4回。且具备供电可靠、调度灵活、扩建方便等特点。

110kV出线5回,110kV侧有两回出线供给远方大型冶炼厂,其容量为60000kVA,其他作为一些地区变电所进线,其最小负荷和最大负荷之比为0.6。根据条件选择双母接线方式。

10kV出线12回(其中备用2回),10kV侧总负荷为50000kVA,Ⅰ、Ⅱ类用户占70%,最大一回出线负荷为5000kVA,最大负荷与最小负荷之比为0.65。选择单母分段接线方式。

方案一主接线图如下:

图2-1 主接线方案一

方案二:220kV侧双母带旁路接线,110kV侧双母接线、10kV侧单母分段接线。

220kV出线4回(其中备用2回),而由于本回路为重要负荷停电对其影响很大,因而选用双母带旁路接线方式。双母线带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要

湖南工程学院应用技术学院毕业设计(论文)

的。

方案二主接线图如下:

图2-2 主接线方案二

现对两种方案比较如下:

表2-1 主接线方案比较表

通过对两种主接线可靠性,灵活性和经济性的综合考虑,辨证统一,现确定第二方

案为设计最终方案。

2.5 主变压器的选择

在发电厂和变电站中,用来向电力系统或用户输送功率的变压器,称为主变压器;用于两种电压等级之间交换功率的变压器,称为联络变压器;只供本所(厂)用的变压器,称为站(所)用变压器或自用变压器。本章是对变电站主变压器的选择。

2.5.1主变压器台数的选择

变电所主变压器台数设为一台时,其适用范围:1)供总计算负荷不大于1250kVA 的三级负荷变电所;2)变电所另有低压联络线或有其他备用电源,而总计算负荷不大于1250kVA 的含有部分一、二级负荷的变电所。

当变压器台数为两台时,其使用范围:1)供含有大量一、二级负荷的变电所;2)供总计算负荷大于1250kVA 的三级负荷变电所;3)季节性负荷变化比较大,从技术经济上考虑经济运行有利的三级负荷变电所。

而对于地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设3台主变压器的可能性。

2.5.2主变压器容量的选择

变压器台数为一台时,主变压器容量选择条件为

30S S T N ≥? (2-1)

式中,T N S ?—单台变压器容量,30S —变电所总的计算负荷。

变电所为2台主变压器时,根据变电所所带负荷的性质和电网结构来确定主变压器的容量。对于有重要负荷的变电所,应当考虑一台主变压器停运时,其余变压器容量在计其过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台变压器停运时,其余变压器容量应能保证全部负荷的70%~80%。故主变压器容量的选择条件为

{()II +I ??≥≈3030

7.0S S S S T N T N (2-2)

式中,()II +I 30S —变电所的一、二级负荷计算负荷。

湖南工程学院应用技术学院毕业设计(论文)

2.5.3 主变压器型式的选择

2.5.

3.1 相数的选择

主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求以及运输条件等因素。特别是大型变压器,尤其需要考查其运输可能性,保证运输尺寸不超过隧洞、涵洞、桥洞的允许通过限额,运输重量不超过桥梁、车辆、船舶等运输工具的允许承载能力。

选择主变压器的相数,需要考虑如下原则:

(1)当不受运输条件限制时,在330kV及以下的发电厂和变电站,均应选用三相变压器。

(2)当发电厂与系统连接的电压为500kV时,已经技术经济比较后,确定选用三相变压器、两台50%容量三相变压器或单相变压器组。对于单机容量为300MW、并直接升到500kV的,宜选用三相变压器。

(3)对于500kV变电所,除需考虑运输条件外,尚应根据所供负荷和系统情况,分析一台(或一组)变压器故障或停电检修时对系统的影响。尤其在建所初期,若主变压器为一组时,当一台单相变压器故障,会使整组变压器退出,造成全网停电;如用总容量相同的多台三相变压器,则不会造成所停电。为此要经过经济论证,来确定选用单相变压器还是三相变压器。

2.5.

3.2 绕组数量和连接方式的选择

具有三种电压等级的变电所,如各侧的功率均达到主变压器额定容量的15%以上,或低压侧虽无负荷,但需要装设无功补偿设备时,主变压器一般选用三绕组变压器。

变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只要有丫和△,高、中、低三侧绕组如何结合要根据具体工作来确定。我国110kV及以上电压,变压器绕组多采用丫连接;10kV亦采用丫连接,其中性点多通过消弧线圈接地。10kV以下电压,变压器绕组多采用△连接。由于10kV采用丫连接方式,与220、110系统的线电压相位角为0,这样当变压变比为220/110/10kV,高、中压为自耦连接时,否则就不能与现有10kV系统并网。因而就出现所谓三个或两个绕组全星接线的变压器,全国投运这类变压器约40~50台。

2.5.4 主变压器的选择结果

根据原始资料,本所安装2台120MVA主变压器,查《电力工程电气设备手册:电气

一次部分》,选定变压器的容量为120MVA。

由于升压变压器有两个电压等级,所以这里选择三绕组变压器,查《大型变压器技术数据》选定主变型号为:SFPS7-12000/220。

主要技术参数如下:

额定容量:120000(kVA)

额定电压:高压—220±2×2.5% ;中压—121;低压—10.5(kV)

连接组标号:YN/yn0/d11

空载损耗:129(KW)

阻抗电压(%):高中:14.0;中低:7.0;高低:23.0

空载电流(%):0.7

所以一次性选择两台SFPS7-120000/220型变压器为主变。

湖南工程学院应用技术学院毕业设计(论文)

第3章220kV变电所电气部分短路计算

3.1短路电流的计算条件

短路电流实用计算中,采用以下假设条件和原则:

1)正常工作时,三相系统对称运行;

2)所有电源的电动势相位角相同;

3)系统中的同步和异步电机均为理想电机,不考虑电机的磁饱和、磁滞、涡流及导体肌肤效应等影响。转子结构完全对称。定子三相绕组空间位置相差120°电气角度;

4)电力系统中各元件的磁路不饱和,即带铁心的电气设备电抗值不随电流大小发生变化;

5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上,50%负荷接在系统侧;

6)同步电机都有自动调整励磁装置(包括强行励磁);

7)短路发生在短路电流为最大值的瞬间;

8)不考虑短路点的电弧阻抗和变压器的励磁电流;

9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计;

10)元件的计算参数均取其额定值,不考虑参数的误差和调整范围;

11)输出线路的电容略去不计;

12)用概率统计法制定短路电流运算曲线。

3.2 电路元件参数计算

系统阻抗:220kV侧电源近似为无穷大系统,归算至本所220kV母线侧阻抗为0.021(Sj=100MVA),110kV侧电源容量为800MVA,归算至本所110kV母线侧阻抗为0.12(Sj=100MVA)。变压器型号为SFPS7—120000/220。

SN=120MVA其中高中、高低、中低阻抗电压(%)分别为14,23,7.2。简化图如下图所示:

变电站继电保护培训

变电站、继电保护基础知识 培训资料 二零一二二月

第一章变电站基础知识 1. 电力系统概述: 1.1 电力系统定义: 电力系统是电能生产、变换、输送、分配、消费的各种设备按照一定的技术和经济要求有机组成的一个统一系统的总称。简言之,电力系统是由发电机、变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 1.2 电力系统的构成 动力系统是由锅炉(反应堆)、汽轮机(水轮机)、发电机等生产电能的设备,变压器、输电线路等变换、输送、分配电能的设备,电动机、电热电炉、家用电器、照明等各种消耗电能的设备以及测量、保护、控制乃至能量管理系统所组成的统一整体。 煤

1.3电力系统的电压等级 1.3.1 额定电压等级 我国国家标准规定的部分标准电压(额定电压)如下表: T +5% -5% 通常取线路始末电压的算术平均值作为用电设备以及电力网的额定电压。 由于用电设备的允许电压偏移为±5%,而延线路的电压降落一般为10%,这就要求线路始端电压为额定值的105%,以保证末端电压不低于95%。发电机往往接于线路始端,因此发电机的额定电压为线路的105%。通常,6.3KV 多用于50MW 及以下的发电机;10.5KV

用于25~100MW的发电机;13.8KV用于125MW的汽轮发电机和72.5MW 的水轮发电机;15.75KV用于200MW的汽轮发电机和225MW的水轮发电机;18KV用于300MW的汽轮发电机。 变压器的一次额定电压:升压变压器一般与发电机直接相连,故与发电机相同,见表中有“*”降压变压器相当于用电设备,故与线路相同。 变压器的二次额定电压:考虑到变压器内部的电压降落一般为5%,故比线路高5%~10%。只有漏抗很小的、二次测线路较短和电压特别高的变压器,采用5%。 习惯上把1KV以上的电气设备称为高压设备反之为低压设备。 1.3.2 电压等级的使用范围: 500、330、220KV多半用于大电力系统的主干线;110KV既用于中小电力系统的主干线,也用于大电力系统的二次网络;35、10KV既用于大城市或大工业企业内部网络,也广泛用于农村网络。大功率电动机用3、6、10KV,小功率电动机用220、380V;照明用220、380V。 1.4电力系统中性点的运行方式 1.4.1 中性点非直接接地系统 小电流接地系统,也称小接地短路电流系统。 供电可靠性高,但对绝缘水平要求高。电压等级较高的系统,绝缘费用在设备总价格中占相当大比重,故多用于60KV级以下的系统。

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

220KV变电站变压器运行及其继电保护措施 艾岳武

220KV变电站变压器运行及其继电保护措施艾岳武 发表时间:2018-04-19T10:47:32.497Z 来源:《电力设备》2017年第33期作者:艾岳武 [导读] 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。 (国网吉林省电力有限公司辽源供电公司吉林辽源 136200) 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。目前,在我国电力系统中,220KV变电站是主要的组成部分,其运行效率对整个电网系统的安全和稳定有着直接的影响。但是220KV变电站变压器的运行存在一定的问题,不能满足人们的生活需求。对此,本文针对220KV变电站变压器的运行故障进行分析,同时提出相应的继电保护措施。 关键词:220KV变电站;变压器运行;继电保护 电网是维系国家在经济领域中一切活动的核心环节,也是改善人民的物质生活条件,为社会带来经济上快速革新的最有力工具。而变压器作为电力系统中非常重要的一部分,其能否安全运行直接影响着电网是否能高效、安全的运行。变压器若是发生故障,给电力系统带来的损害将是相当严重的。所以对变电站变压器采取保护措施尤为重要。首先变电站是国家的财产,是一个国家服务行业的代表性机构,主要担负的社会功能就是供电。对于变电站的保护,不仅要求供电技术能力上的精确,也要求在每一个细节处做到最好。外部环境对变电站的影响也是极其重要的,空气湿度和气候干燥直接影响输出源。所以也要对其基本保护措施加以重视。我们不仅要做好变压器的管理维护工作,保证其安全高效的运行,同时也要做好对其运行状况的记录工作,及时发现问题,并妥善解决,消除潜在隐患,保障电力系统的正常运转。继电保护装置就是为了及时发现故障并进行切除而装设的一种对变压器和变电站甚至整个电力系统的保护装置。本文针对 220 k V 变电站变压器的运行和继电保护措施的相关问题作进一步的探讨分析。 1、变电站概况 变电站是改变电压的场所。为了将发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,该升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,又可称为变电所、配电室等。变电站就是中转站,它支配着一个国家所有电力的分配情况。而电力又是驱动现代性国家、城市转型和发展的主要源动力之一,第二产业和第三产业都需要电力作支撑,对电力的制造和输出,是衡量一个国家发展程度的重点考核标准,变电站同时也是体现国家经济结构的标志之一。对电力的需求虽然不再以变电站作为核心,各种发电的方式随着相关科技成果的普及使用也越来越为更多的人所接受和熟知,但作为国家经济驱动的源头,变电站依然在电力供应方面占有举足轻重的地位,国家支柱产业的领头集团无一不与电网有着千丝万缕的联系和深入的合作,同时,其可被看作是经济发展与产业结构优化的缩影。 2、变压器运行继电存在的问题 变压器是变电站的主要设备,可分为升压变压器和降压变压器。主要通过电磁场对电压进行主体调节,按分接头切换方式,对输电线路中的负荷进行控制调节。在这个过程中,变压器可能出现变电问题,导致变电后电压不稳、电压未达到固定值等问题,对输电造成阻碍。 2.1变压器运行电压异常 变电器在进行运转的过程中受很多因素影响,例如气体、温度、水分等。这些在很大程度上对我国变电站变压器的输电进行阻断,导致输电电压出现异常。其气体状况可能导致信号存在跳跃现象,导致变压器油箱发生内部故障,整体油面出现异常;当变压器负荷或者外部出现短路现象时,很容易引起变压器温度升高,导致变压器油面降低,出现电压不稳状况。除此之外,变压器还容易出现负荷过重导致的电压问题。由于变压器的负荷过重,通过电荷量过大,导致整体内部信号、磁场出现问题,很容易使变压器对内部电压的调节出现混乱,导致电压不稳,导致变压器对电力系统造成的损失。 2.2变压器继电干扰异常 目前我国使用的 220k V 变电站变压器中,保护继电装置受到电磁干扰的主要因素有:电网出现短路故障;客观干扰,例如人为因素或自然因素等;变压器的内部结构出现问题导致故障发生;工作人员没有妥善施工处理,在施工时接触到外壳设备,导致内部设备或其它设备出现放点干扰。当变电站变压器受到电磁干扰时,整个输电线路都会受到干扰甚至出现阻断的现象。电磁干扰源通过各种渠道和受到干扰的回路、设备相连接,形成的闭合的回路,这样会超负荷的增加变压器的输电电压,使变压器发生严重故障。变压器的辐射干扰来源主要分为高压开关场的干扰和移动设备幅射干扰两个方面,而在 220k V 变电站变压器中,都是采取直接在开关场中安装继电保护设备以及自动控制设备的方法,如此一来,造成电磁干扰的主要原因就来自于高压开关场。 3、220k V变电站变压器继电保护措施 3.1运行保护 在对变压器采取运行保护知识,大多是借助于继电保护装置,综合应用继电保护手段,以促使 220k V 变电站的变压器能够得以正常运行。如在某一 220k V 变电站当中其变压器运行保护完全按照继电保护运行原则,先对装置性能进行检查,以保障其能够切实具备相应的防护性能,对继电保护装置行为予以规范化处理,确定有关安全行为的主要方式;之后确定继电保护的装置运行范围,促成一体化操作的达成,确定继电保护装置能够达到较好的工作效率;最终就针对继电保护装置加强维护工作,以确保其能够给予变压器的正常运行提供以良好的基础保障,避免变压器发生短路等有关故障问题。 3.2状态保护 为了消除 220k V 变电站变压器状态异常带来的不良影响,相关工作人员应该针对常见的风险因素,采取相应的机电保护措施,强化继电保护装置过流继电保护、气体保护、差动保护等性能。针对跳闸引起的故障,应该深入研究故障产生的原因,并改善 220k V 变电站变压器运行条件,使 220k V 变电站变压器免受跳闸故障的影响。此外,油箱也是变压器运行当中容易出现问题的部分,相关工作人员应该制定相应的预防措施,并根据日常的检查情况,对潜在的风险因素加以排除,保证 220k V变电站变压器具有良好的运行状态。 3.3抗干扰措施 为了确保 220KV 以上变电站继电保护和自动装置的正常运行,应该保证二次电子设备本身具有基本的抗电磁干扰能力,在设计和建设变电站的过程中采取措旅,确保传送到二次设备上的电磁干扰低于这些设备的承受水平。第一,在干扰源处降低干扰。降低设备的接地

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

《220kV变电站电气部分初步设计》开题报告

电气与信息学院 毕业设计(论文)开题报告

《220kV变电站电气部分初步设计》开题报告 一、课题的目的和意义 随着国民经济的迅速发展,电力工业的腾飞,人们对能源利用的认识越来越重视。现在根据电力系统的发展规划,拟在某地区新建一座220KV的变电站。 本次设计是在掌握变电站生产过程的基础上完成的。通过它我不仅复习巩固了专业课程的有关内容,而且拓宽了知识面,增强了工程观念,培养了变电站设计的能力。同时对能源、发电、变电和输电的电气部分有个详细的概念,能熟练的运用有些知识,如短路计算的基本理论和方法、主接线的设计、导体电气设备的选择以及变压器的运行等。 二、文献综述 1 变电站的概述 随着经济的发展,工业水平的进步,人们生活水平不断的提高,电力系统在整个行业中所占比例逐渐趋大。现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。电力系统是国民经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同类型,不同性质负荷的变电站设计时所侧重的方面是不一样的。设计过程中要针对变电站的规模和形式,具体问题具体分析。 变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。[1] 结合我国电力现状,为国民经济各部门和人民生活供给充足、可靠、优质、廉价的电能,优化发展变电站,规划以220KV、110KV、10KV电压等级设计变电站。从我国目前部分地区用电发展趋势来看,新建变电站应充分体现出安全性、可靠

变电所继电保护

目录工程概况1 第一章35KV变电所继电保护2 1.1继电保护的重要性2 1.2继电保护的基本原理2 1.3继电保护装置的任务2 1.4对继电保护的基本要求3 第二章35KV变电所继电保护设计3 2.1三段式电流保护原理3 2.2线路的保护整定计算4 第三章继电保护装置的选择7 3.1电流互感器的确定7 3.2电压互感器的选定7 3.3中间继电器8 3.4电流继电器8 3.5时间继电器8 3.6信号继电器9 3.7熔断器9 参考文献10 致谢词11

工程概况 目前国家正致力于打造强力的电网建设力度,以实现资源优化配置,使全国的电力供应得到更好的发展。我国是产电地区主要是在西部,而西部并不发达,所以要把电力送到东部地区,使全国经济能更好的发展。为了保证电力的输送更加的可靠,就要求一次系统的坚强、科学与合理,此外对一次系统的操控需要二次系统提出了更高的要求,这就促使了二次系统的技术发展与进步。 变电所二次系统主要是由继电保护和微机监控(远动技术)所形成,发电厂与变电所自动化技术获得了显著的发展与进步。变电所综合自动化技术将继电保护、测量系统、控制系统、调节系统、信号系统和远动系统等多个独立的功能系统配成的综合系统。对于本设计中,主要是针对35KV变电所继电保护的结构、运行的设计。 主变压器型号的选定为HKSSPZ-25000-35/10,额定电流为0.412/38.49KA,所用变压器额定电压为35/0.23KV(50-100KVA)。 本设计采用两台35KV的变压器并联供电方式,总共引出线两组线进入变电室内。通过电流、电压互感器再次取电源给其相应的电气元件回路。 继电保护的基本要求是可靠性、选择性、快速性、灵敏性,即通常所说的“四性”这些要求之间,有的相辅相成、有的相互制约,需要对不同的使用条件分别进行协调。 第一章35KV变电所继电保护 继电器是一种反应与传递信息的自动电气元件,是电力系统保护与生产自动化的自动、远动、遥控测和遥讯等自动装置的重要组成部分。 变电所继电保护能够在变电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯保护、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。 1.1 继电保护的重要性 电力规程规定:任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。所有运行设备都必须有两套交、直流输入和输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能有另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这两套继电保护装置和断路器所取的直流电源都有不同的熔断器供电。可见,虽然继电保护不是电力系统的一次设备,但在保证一次设备安全运行方面担负着不可或缺的重要角色。 1.2 继电保护的基本原理 电力系统发生故障时,会引起电流的增加和电压的降低,以及电流、电压间相位角的变化。因此,利用故障时参数与正常运行时的差别,就可以构成各种不同原理和类型的继电保护。 变电所继电保护是根据变配电站运行过程中发生故障时,在整定时间内,有选择的发出跳闸命令或报警信号。 可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,

220KV变电站继电保护设计

本/专科毕业设计(论文) 题目:220KV变电站继电保护设计 专业:电气工程及其自动化 年级: 学生姓名: 学号: 指导教师: 2012年9月

220KV变电站继电保护设计 摘要:电力系统由发电厂、变电所、输电线路和用户组成。变电所是联系发电厂和用户的中间环节,起着转换和分配电能的作用。变电所根据它在电力系统中的地位,变电所分为枢纽变电所、中间变电所、地区变电所、终端变电所。本设计主要对变电站的继电保护进行分析设计,通过合理的继电保护装置来了提高供电的安全可靠性。本变电站的电压等级为220kV,站内安装两台240MVA变压器,其中220kV线路为两进两出;110kV线路为8条出线;10kV线路为10条出线。 关键字:220kV 变电站继电保护

目录 引言 (4) 1 设计说明书 (5) 2 主变压器保护设计 (5) 2.1主变压器保护设计分析 (6) 2.2变压器容量选择 (7) 2.3变压器主保护 (7) 2.4压器后备保护 (10) 2.5变压器其他保护 (15) 3 母线保护 (16) 3.1母线保护设计分析 (16) 3.2 220kV母线保护 (16) 3.3 110kV母线保护 (16) 4 线路保护 (16) 4.1线路保护设计分析 (16) 4.2 220kV线路保护 (16) 4.3 110kV线路保护 (16) 4.4 10kV线路保护 (16) 结语 (16) 致谢 (17) 参考文献 (17)

引言 随着电力系统和自动化技术的不断发展,继电保护技术也在不断的发展.几十年来,目前,我国的电力系统正在不断向高电压、大机组、现代化大电网的发展方向前进,与之相伴的继电保护技术及其保护装置的应用水平也在大幅提升。继电保护的发展按时间经历了三个时代, 20世纪50年代及以前,继电保护装置大多以电磁型的机械元件、整流型元件和半导体元件构成; 70年代以后出现了集成电路构成的继电保护装置并在电力系统中得到广泛的运用;80年代,微机保护逐渐应用,继电保护逐渐走向了数字化与智能化,保护的可靠性也在不断提高。 在电力系统实际运行中,由于雷击、设备制造上的缺陷、设计和安装的错误、运行维护不当等不可抗拒因素,往往会导致各种故障的发生。而性能完善的继电保护装置合理的应用就可大大提高电力系统安全运行的可靠性,减少因停电造成的损失。继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量进行数值整定,当突变量达到一定值时,自动启动控制环节,发出相应的动作信号。 无论什么继电保护装置,一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。继电保护装置的基本要求体现在选择性、速动性、灵敏性、可靠性四个方面。 随着技术与工艺的不断进步与更新换代,继电保护装置的可靠性、运行维护方便性等性能也将不断提升,进而促进电力系统的安全可靠性到达一个更高的水平。

110kv变电站继电保护课程设计

110kv变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速 地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0 摘 要 .................................................................... 第一章电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作 用 .................................................. 2 1.2 电网继电保护

的配置和原理 ............................................ 2 1.3 35kV线 路保护配置原则 ................................................ 3 第二章3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 . (3) 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章线路保护整定计 算 ................................................. 5 3.1设计的原始材 料分析 ................................................... 5 3.2 参数计 算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总结 .. (9) 1 第一章电网继电保护的配置 1.1 电网继电保护的作用 电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可 能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障 一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并 保证最大限度地迅速恢复无故障部分的正常运行。 2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能 力,发出警报信号、减负荷或延时跳闸。

220kV变电站电气一次部分设计

毕业设计(论文)任务书

220kV变电站设计 摘要 本设计书主要介绍了220kV区域变电所电气一次部分的设计内容和设计方法。设计的内容有220kV区域变电所的电气主接线的选择,主变压器、所用变压器的选择,母线、断路器和隔离刀闸的选择,互感器的配置,220kV、110kV、35kV线路的选择和短路电流的计算。设计中还对主要高压电器设备进行了选择与计算,如断路器、隔离开关、电压互感器、电流互感器等。此外还进行了防雷保护的设计和计算,提高了整个变电所的安全性。 关键词:变电站;主接线;变压器

220kV substation design ABSTRACT The design of the book introduces the regional 220kV electrical substation design a part of the content and design. The design of the contents of the electrical substation 220kV main regional cable choice, the main transformer, the transformer used in the choice of bus, circuit breakers and isolation switch option, the configuration of transformer, 220kV, 110kV, 35kV line choice and short-circuit current calculations. The design of the main high pressure also had a choice of electrical equipment and computing, such as circuit breakers, isolating switches, voltage transformers, current transformers and so on. In addition, a lightning protection design and computing, increased the safety of the entire substation. Keywords: substation; main connection; transformer

变电站继电保护

景新公司变电站继电保护知识手册 编写人:唐俊 编写日期:2009年2月5号

目录 1.主变差动保护-----------------------------------(4) 2.主变气体保护-----------------------------------(5) 3.主变过流保护-----------------------------------(6) 4.中性点间隙接地保护------------------------------(6) 5.零序保护--------------------------------------(7) 6.母线差动保护-----------------------------------(9) 7.距离保护-------------------------------------(10) 8.备用电源自投----------------------------------(11) 9.重合闸---------------------------------------(13) 10.母线充电保护-------------------------------(15) 11.故障录波----------------------------------(15) 12.电流闭锁失压保护---------------------------(17) 13.低周减载----------------------------------(17) 14.过电流保护---------------------------------(17) 15.阶段式过电流保护---------------------------(18) 16.复合电压闭锁过电流保护----------------------(18) 17.过电压保护---------------------------------(19) 18.速断过流保护-------------------------------(19) 19.过负荷保护--------------------------------(19) 20.速断保护----------------------------------(19) 21.电流速断保护-------------------------------(20)

220KV电网继电保护设计毕业设计说明书

毕业设计(论文)220KV电网继电保护设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

引言 本文研究的是关于220KV电网继电保护。通过本次设计掌握和巩固电力系统继电保护的相关专业理论知识,熟悉电力系统继电保护的设计步骤和设计技能,根据技术规范,选择和论证继电保护的配置选型的正确性并培养自己在实践工程中的应用能力、创新能力和独立工作能力。 本次设计是根据内蒙古工业大学电力学院本科生毕业要求而进行的毕业设计。此次设计的主要内容是220KV电网继电保护的配置和整定,设计内容包括:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算:主保护采用两套独立的、厂家不同的、能保护线路全长的保护装置(第一套CSC-103B光纤纵差保护;第二套PSL-603(G)分相电流差动保护),后备保护采用相间距离保护和接地零序电流保护;输电线路的自动重合闸采用单相自动重合闸方式。 由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

220kV变电所变压器差动保护设计

课程设计(论文) 一、设计题目:220kV变电所变压器差动保护设计 二、原始资料 某降压变压器采用差动保护,系统等值网络图如图所示。 图1 网络结构示意图 三、设计内容: 1. 对变压器T1进行继电保护配置; 2. 结合变压器差动保护装置选型,对其工作原理进行分析; 3.对差动保护进行整定计算; 4.线路保护均采用微机保护装置。 I

220KV变电所变压器差动保护设计 四、设计成品要求: 1、保护装置配置说明 2、所配保护基本原理说明 3、保护整定计算详细计算说明 4、按要求绘制的有关图纸 五、编写设计说明书 1.格式 1)参考教材(前言、目录、正文、结论、参考文献等) 2)格式规范(参看毕业设计(论文)撰写规范》) 2.内容:设计内容全面,说明部分条理清晰,计算过程详略得当。 1)原始资料分析 2)保护配置方案 3)保护原理说明 4)保护整定计算方案 5)整定计算过程 6)画出保护的原理图、交流展开图、直流展开图。 3.课程设计说明书装订顺序为:封面、任务书、成绩评审意见表、前言、目录、正文、结论、参考文献、附录。 六、时间进度安排

课程设计(论文) 七、参考书目录 1.《电力系统继电保护》谷水清中国电力出版社2.电网继电保护装置运行整定规程 3.《电力工程设计手册(一)》中国电力出版社 4.《电力工程设计手册(二)》中国电力出版社 5.继电保护和安全自动装置技术规程 GB/T 14285—2006 III

220KV变电所变压器差动保护设计 前言 继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。 在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。 继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。 继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。继电保护技术将达到更高的水平。

10kV变电所继电保护设计和分析报告

继电保护毕业设计 课题:110kV变电所继电保护设计及分析导师: 姓名: 班级: 日期:2011年3月10日

前言 电力生产过程有别于其他工业生产过程的一个重要特点,就是它的生产、输送、变换、分配、消费的几个环节是在同一个时间内同步瞬间完成。电力生产过程要求供需严格动态平衡,一旦失去平衡生产过程就要受到破坏,甚至造成系统瓦解,无法维持正常生产。随着经济的快速发展,负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂,加强电力资源的优化配置,最大限度满足电力需求,保证电网的安全稳定成为人们探讨的问题之一。虽然系统中有可能遭受短路电流破坏的一次设备都进行了短路动、热稳定度的校验,但这只能保证它们在短时间内能承受住短路电流的破坏。时间一长,就会无一例外地遭受破坏。而在供电系统中,要想完全杜绝电路事故是不可能的。继电保护是一种电力系统的反事故自动装置,它能在系统发生故障或不正常运行时,迅速,准确地切除故障元件或发出信号以便及时处理。可见继电保护是任何电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。因此设置一定数量的保护装置是完全必要的,以便在短路事故发生后一次设备尚未破坏的数秒内,切除短路电流,使故障点脱离电源,从而保护短路回路内的一次设备,同时迅速恢复系统其他正常部分的工作。随着变电站继

电保护技术进一步优化,大大提高了整个电网运行的安全性和稳定性,大大降低运行检修人员的劳动强度,继电保护技术将引起电力行业有关部门的重视,成为变电站设计核心技术之一。

220KV变电站电气设计说明书

220KV变电站电气设计说 明书 第1章引言 1.1 国外现状和发展趋势 (1) 数字化变电站技术发展现状和趋势 以往制约数字化变电站发展的主要是IEC61850的应用不成熟,智能化一次设备技术不成熟,网络安全性存在一定隐患。但2005年国网通信中心组织的IEC61850互操作试验极大推动了IEC61850在数字化变电站中的研究与应用。目前IEC61850技术在变电站层和间隔层的技术已经成熟,间隔层与过程层通信的技术在大量运行站积累的基础上正逐渐成熟。 (2) 当前的变电站自动化技术 20世纪末到21世纪初,由于半导体芯片技术、通信技术以及计算机技术飞速发展,变电站自动化技术也已从早期、中期发展到当前的变电站自动化技术阶段。其重要特点是:以分层分布结构取代了传统的集中式;把变电站分为两个层次,即变电站层和间隔层,在设计理念上不是以整个变电站作为所要面对的目标,而是以间隔和元件作为设计依据,在中低压系统采用物理结构和电器特性完全独立,功能上既考虑测控又涉及继电保护这样的测控保护综合单元对应一次系统中的间隔出线,在高压超高压系统,则以独立的测控单元对应高压或超高压系统中的间隔设备;变电站层主单元的硬件以高档32位工业级模件作为核心,配大容量存、闪存以及电子固态盘和嵌入式软件系统;现场总线以及光纤通信的应用为功能上的分布和地理上的分散提供了技术基础;网络尤其是基于TCP/IP的以太网在变电站自动化系统中得到应用;智能电子设备(IED)的大量应用,诸如继电保护装置、自动装置、电源、五防、电子电度表等可视为IED而纳入一个统一的变电站自动化系统中;与继电保护、各种IED、远方调度中心交换数据所使用的规约逐渐与国际接轨。这个时期国代表产品有CSC系列、NSC系列及BSJ系列。 (3) 国外变电站自动化技术 国外变电站自动化技术是从20世纪80年代开始的,以西门子公司为例,该公司第一套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威正式投入运行,至1993年初,已有300多套系统在德国和欧洲的各种电压等级的变电站运行。在中国,1995年亦投运了该公司的LSA678变电站自动化系统。LSA678的系统结构有两类,一类是全分散式,另一类是集中和分散相结合,两类系统均由6MB测控系统、7S/7U保护系统、8TK开关闭锁系统三部分构成。 (4) 原始变电站自动化系统存在的问题 资料分目前国际上关于变电站自动化系统和通讯网络的国际标准还没有正式公布,国也没有相应的技术标准出台。标准和规的出台远落后于技术的发展,导致变电站自动化系

220kv电网继电保护设计

220kv电网继电保护设计

目录 一、题目 (1) 二、系统中各元件的主要参数 (2) 三、正序、负序、零序等值阻抗图 (4) 四、继电保护方式的选择与整定计算 (6) (A)单电源辐射线路(AB)的整定计算 (6) (B)双回线路BC和环网线路主保护的整定计算 11 (C)双回线路CE、ED、CD主保护的整定计算(选做)12 (D)双回线路和环网线路后备保护的整定计算(选做) 14 五、220kV电网中输电线路继电保护配置图 (22)

一、题目 选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。各发电机、变压器容量和连接方式已在图1中示出。 表1 系统各电源的开机情况

图1 220kV系统接线图 二、系统中各元件的主要参数 计算系统各元件的参数标么值时,取基准功率S b=60MVA,基准电压U b=220kV,基准电流I b=3 b b S U=0.157kA,基准电抗x b = 806.67。 (一)发电机及等值系统的参数 用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。 表2 发电机及等值系统的参数 发电机或系统发电机及系统的总 容量MVA 每台机额定 功率MVA 每台机额 定电压 额定功 率因数 正序电抗负序电抗

cos 注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。 (二) 变压器的参数 变压器的参数如表3所列。 表3 变压器参数

相关文档
最新文档