立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)
立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)

空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。下面举例说明。

一、异面直线所成的角:

例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。E 、F 分别是

线段AB 、BC 上的点,且1EB FB ==。求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,

把1EC 与1FD 所成角看作向量EC u u u r u u u r

1与FD 的夹角,用向量法求

解。

思路二:平移线段C 1E 让C 1与D 1重合。转化为平面角,放到三角形中,用几何法求解。(图1)

解法一:以A 为原点,1AB AD AA u u u r u u u r u u u r 、、分别为x 轴、y 轴、z 轴的

正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是

11(1,3,2),(4,2,2)EC FD ==-u u u u r u u u u r

设EC 1与FD 1所成的角为β,则:

112222221121

cos 14132(4)22

EC FD EC FD β?===?++?-++u u u u r u u u u r u u u u r u u u u r ∴直线1EC 与1FD 所成的角的余弦值为

21

14

解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。 在Rt △BE 1F 中,

2222115126E F E F BF =

+=

+=

在Rt △D 1DE 1中,

11D E ====

在Rt △D 1DF

中,1FD =

===

在△E 1FD 1中,由余弦定理得:

222111111111cos 214

D E FD E F E D F D E FD +-∠==??

∴直线1EC 与1FD

所成的角的余弦值为

14

。 可见,“转化”是求异面直线所成角的关键。平移线段法,或化为向量的夹角。一般地,异面直线l 1、

l 2的夹角的余弦为:

cos AC BD AC BD

β?=?u u u r u u u r u u u r u u u r

。 二、直线和平面所成的角

斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面内的射影。因此求直线和平面所成的角,几何法一般先定斜足、再作垂线找射影、通过解直角三角形求解;向量法则利用斜线和射影的夹角或考虑法向量,设θ为直线l 与平面α所成的角,?为直线l 的方向向量v 与平面α的法向量n 之间的夹角,则有θπ

?-=

2

或θπ

?+=

2

(图2)

图2

特别地 0=?时,2πθ=

,α⊥l ;2

π

?=时,0=θ,α?l 或α//l 。

例2如图3,在直三棱柱ABC-A 1B 1C 1中,底面是等腰直角三角形,

ο90=∠ACB ,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在

θ

ωα

l

v

n

ω

θα

v

l

n

平面ABD 上的射影是ABD ?的重心G 。求A 1B 与平面ABD 所成角的大小。

解 以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,1CC 所在直线为z 轴,建立直角坐标系,

设a CB CA ==,则

)(0,0,a A ,)(0,,0a B ,)(2

,0,1a A ,)(1,0,0D ∴ )(1,2,

2a a E , )(31

,3,3a a G , )(3

2,6,6a a =,)(1,,0a -=, ∵ 点E 在平面ABD 上的射影是ABD ?的重心G , ∴ ⊥GE 平面ABD , ∴ 0=?BD GE ,解得 2=a 。

)(3

2,31,31=, )(2,2,21-=, ∵ ⊥平面ABD , ∴

GE 为平面ABD 的一个法向量。

由 3

2323

6

34

,cos 111=

?=>=

得 3

2arccos

,1>=

32

arccos 2-π,即 3

7arccos 。 评析 ① 因规定直线与平面所成角]2

0[π

∈θ,,两向量所成角]0[π∈α,,所以用此法向量求出的线面角应满足|2

|

α-π

=θ。②一般地,设n 是平面M 的法向量,AB 是平面M 的一条斜线,A 为斜足,则AB 与平面 M 所成的角为:

arccos arcsin 2AB n AB n AB n

AB n

π

??-=??u u u r r u u u r r

u u u r r u u u r r 。

三、二面角的求法:

1.几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图4(1)。

②利用三垂线定理及其逆定理,图4(2)最常用。 ③作棱的垂面,图4(3)。

图4

另外,特别注意观察图形本身是否已含有所求的平面角;

2.向量法:①从平面的法向量考虑,设 21,n n 分别为平面βα,的法向量,二面角β--αl 的大小为θ,向量 21,n n 的夹角为?,则有π=?+θ或 ?=θ(图5)

图5

②如果AB 、CD 分别是二面角l αβ--的两个面内与棱l 垂直的异面直线,则二面角的大小为

,AB CD ??u u u r u u u r

例3如图6,正三棱柱111C B A ABC -的底面边长为3,侧棱32

3

1=AA , D 是CB 延长线上一点,且BC BD =。

求二面角B AD B --1的大小。

解 取BC 的中点O ,连AO 。

由题意 平面⊥ABC 平面11B BCC ,BC AO ⊥,

α β

A

O

P A B O

P α

β 4(1) 4(2)

4(3)

ωθβ

l

α

n

n

C

B 1

B

O

A 1

C 1

z

A

y

∴⊥AO 平面11B BCC ,

以O 为原点,建立如图6所示空间直角坐标系, 图6 则 )(323,

0,0A ,)(0,0,23B ,)(0,0,29D ,)(0,323

,231

B , ∴ )(323,0,2

9-

=AD , )(0,323,31-=B , )(0,32

3

,01=BB , 由题意 ⊥1BB 平面ABD , ∴ )

(0,32

3

,01=BB

为平面ABD 的法向量。 设 平面D AB 1的法向量为 ),,(2z y x n =,则 ?????⊥⊥B n n 122, ∴ ?????=?=?0

0122B n n , ∴

??

???=-=-0

3233032329

y x z x ,即 ????

?

==

x

z y x 3323。 ∴ 不妨设 )23,1,23(2=n , 由 2

1232

3

32

3

|

|||,cos 212121=

?=

?>=

=

60。

评析 在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取)2

3,1,23(2---=n 时,会算得2

1,cos 21-

>=

60。因为二面角的大小有时为锐角、直角,有时也为钝角。所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”。 小结:1空间各种角的计算方法都是转化为平面角或两向量的夹角来计算的,对空间各种角概念必须深刻理解。平行和垂直可以看作是空间角的特殊情况。

.几何法在书写上体现:“作出来、证出来、指出来、算出来、答出来”五步。

向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化。主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算。

练习:1、如图,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中O x //BC ,O y //AB .E 为VC 中点,正正四棱锥底面边长为2a ,高为h 。

(Ⅰ)求;,cos >

(Ⅱ)记面BCV 为α,面DCV 为β,若∠BED 是 二面角α—VC —β的平面角,求∠BED .

解:(I )由题意知B (a ,a ,0),C (―a ,a ,0),D (―a ,―a ,0),E ),2

,2,2(h

a a -

由此得),2

,23,2(),2,2,23(h a a DE h a a BE =--

= ,4

2322)232()223(2

2h a h h a a a a DE BE +-=?+?-+?-=?∴

.102

1

)2()2()23(||||22222h a h a a DE BE +=+-+-

== 由向量的数量积公式有

.106102

12\1021423||||,cos 22222222

2h

a h a h a h a h a DE BE DE BE ++-=+?+++

-=?>=< (II )若∠BED 是二面角α—VC —β的平面角,则CV BE ⊥,即有CV BE ?=0. 又由C (-a ,a ,0),V (0,0,h ),有),,(h a a CV -=且),2

,2,23(h

a a BE --

= ,02

2232

22=++-=?∴h a a CV BE 即,2a h =这时有

.31

)

2(10)2(6106,cos 2

2222222-=++-=++->=

1

arccos )31arccos(,-=->==<∠∴πDE BE BED

2.如图,直三棱柱ABC —A 1B 1C 1中,

∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B

的两条对

A

A'

D

角线交点为D ,B 1C 1的中点为M 。求证:

(1)CD ⊥平面BDM ;

(2) 求面B 1BD 与面CBD 所成二面角的大小。

分析:要证CD ⊥平面BDM ,只需证明直线CD 与平面BDM 内的两条相交直线垂直即可;要求二面角,需找出二面角的平面角或转化为 两直线的夹角。考虑几何法或向量法求解。

解法一:(1)如图连结CA 1、 AC 1、CM ,则CA 1

11CB CA CBA ==∴?Q 为等腰三角形。又知D 为其底边的中点,∴CD ⊥A 1B 。 ∵A 1C 1=1,C 1B 1

∴A 1B 1

。又BB 1=1,∴A1B=2。∵1A CB ?为直角三角形,D 为A 1B 的中点,

∴111

1,.2

CD A B CD CC =

==

又11122DM AC DM C M ==

= ∴⊿?CDM ≌?CC 1M , 190,CDM CC M CD DM ∠=∠=?⊥即 ∵A 1B 、DM 为平面BDM 内的两条相交直线,∴CD ⊥平面BDM 。 (2)F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=

1

2

CD , ∴FG=

1

2

,FG ⊥BD , 由侧面矩形BB1A1A 的对角线的交点为D 知111

12

BD B D A B ===, ∴⊿BB 1D 是边长为1的正三角形。

于是111,B G BD B G B GF ⊥=

∴∠是所求二面角的平面角。又

2

222

1131.22B F B B BF ?=+=+= ??

2221111cos 23B G FG B F B GF B G FG +-∴∠==-?,即所求二面角

的大小为π-。 解法二:以C 为原点建立坐标系。

(1

))

(

)1

111,,0,1,1,,,2222B

B A D M ????

? ? ? ?

????

)

1

1111

,,1,1,0,,,

22222

CD A B DM

????

==--=-

? ?

???

??

u u u r u u u r u u u u r

11

0,0,,

CD A B CD DM CD A B CD DM

?=?=∴⊥⊥

u u u r u u u r u u u r u u u u r

∵A1B、DM为平面BDM内两条相交直线,∴CD⊥平面BDM。

(2)设BD的中点为G,连结B1G,则

1

111131

,,,,,,

444222442

G BD B G

??????

=-=--

? ? ?

? ? ?

??????

u u u r u u u u r

11

0,.

BD BG BD BG CD BD

∴?=∴⊥⊥

u u u r u u u u r

又,∴

1

CD B G

u u u r u u u u r

与的夹角θ等于所求二面角的平面角。

1

1

cos arccos

33

CD B G

CD B G

θπ

?

==-∴-

u u u r u u u u r

u u u r u u u u r所求二面角的大小为。

线面角的求法总结

线面角的求法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι

其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1 C 1 D 1 H 4 C 1 2 3 B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角, B α O A C 图3

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

线线角,线面角,二面角的一些题目

B 1 D 1 A D C 1 B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο 和45ο,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).6 2 (D).63 3.平面α与直线a 所成的角为3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并 要 有严格的推理论证过程,还要有合理的步骤. A C B D B P C D A C B F E

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题 一、异面直线所成的角 1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。 2.角的取值范围:090θ<≤?; 垂直时,异面直线当b a ,900=θ。 例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点异面直线1AC 与1B C 所成角的余弦值 二、直线与平面所成的角 1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角 2.角的取值范围:? ? ≤≤900θ。 _1 _A

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中 点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角的正切值。 一、 二面角: 1. 从一条直线出发的两个半平面所组成的图形叫做二 面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 2. 二面角的取值范围:? ? ≤≤1800θ 两个平面垂直:直二面角。 B M H S C A

3.作二面角的平面角的常用方法有六种: 1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。 2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。 3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。 例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. A 1 D 1 B 1 C 1 E D B C A

线面所成角的求法

★线面所成角的求法:[。勺 1?作图一一证明一一计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点 作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有 关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的 边长相等,则AB i 与侧面ACC i A i 所成角的正弦值等于 A 亞 B 血 C 边 A. 4 B. 4 C. 2 4.如图,在长方体 ABCD — A i B i C i D i 中,AB = BC = 2, 7 僅― A a 问题。 A i D

n 与BC i所成的角为2,则BC i与平面BB I D I D所成角的正弦值为()代£B? C.^5 D¥ 5..正四棱锥S-ABCD中,0为顶点在底面上的射影,P为侧棱SD的中点,且SO =0D,则直线BC与平面PAC所成的角是 _____________ . 6. 如图,已知点P在正万体ABC B A B‘ C D的对角线BD上,/ PDA F60° . (1)求DP与CC所成角的大小; ⑵求DP与平面AA D D所成角的大小. 1 7. 已知三棱锥P-ABC中,PA丄平面ABC, AB丄AC,PA= AC= qAB, N为 AB上一点,AB = 4AN,M,S分别为PB、BC的中点. “ (1)证明:CM丄SN; ⑵求SN与平面CMN所成角的大小. ' ; 8 如图,在五棱锥P-ABCDE中,PA丄平面ABCDE,AB - // CD, AC// ED,AE // BC,/ ABC = 45°, AB = 2迈,BC = 2AE = 4,三角形FAB 是等腰三角形. (1)求证:平面PCD丄平面PAC; ⑵求直线PB与平面PCD所成角的大小; (3)求四棱锥P-ACDE的体积.

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

线线角,线面角,二面角的几何法

新高考一轮复习之立体几何线线角、线面角、面面角的几何解法 一、异面直线所成角 解题口诀:一平二构三边四余弦 一平:异面直线通过平行线平移至相交 二构:构造三角形 三边:计算三角形的三边长(注意是否为特殊三角形) 四余弦:利用余弦定理求角(注意异面直线的夹角范围为00(0,90],所以余弦值应该为正的) 练习题: 1、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( ) A B C D 2、在正方体1111ABCD A B C D -中,O 为AC 的中点,则异面直线1AD 与1OC 所成角的余弦值为( ) A 、12 B C D 3、在四面体ABCD 中,若2AB CD ==,,,E F G 分别是,,BC BD AC 中点,若 FF =AB CD 与所成角为( ) A 、030 B 、045 C 、060 D 、0120 4、在长方体1111ABCD A B C D -中,12AB BC AA ==,则异面直线1A B 与1B C 所成的角的余弦值为( ) A B 、15 C D

5、已知直三棱柱111ABC A B C -中,0120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) A 、3 B 、15 C 、10 D 、3 6、如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M N 、分别为,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 答案:78 二、线面角(线面角的难点在于找出垂线以及计算边长) 题型一:能证明出垂线的 解题步骤: ①先找斜足 ②过斜线上一点作平面的垂线,交点为垂足(线面垂直,需要证明) ③连接斜足和垂足,称为斜线的射影,射影和斜线所成的角即为线面角 基础例题: 1、正方体中,(1)求1BD 和底面ABCD 所成的角 (2)求1BD 和面11AA D D 所成的角 A B C D 1A 1B 1C 1D

空间中线线角,线面角,面面角成法原理和求法思路

D B A C α 空间中的夹角 福建屏南一中 李家有 QQ52331550 空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 1、异面直线所成的角 (1)异面直线所成的角的范围是2 , 0(π 。求两条异面直线所成的角的大小一般方法是通过平行移动 直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用解三角形来求角。简称为“作,证,求” 2、线面夹角 直线与平面所成的角的范围是]2 , 0[π 。求直线和平面所成的角用的是射影转化法。 具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道) ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 也是简称为“作,证,求” 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角, 则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。在右图的解释为 BAD CAD ∠>∠) ) 2.1确定点的射影位置有以下几种方法: ①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 已知:如图,BAC ∠在一个平面α内, ,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角 两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影) 求证:OAN OAM ∠∠= (OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上) 证明:PA =PA ,PN =PM , 90PNA PMA ∠∠?== PNA PMA ∴???(斜边直角边定理) AN AM ∴= ① (PO NO MO PN PM α⊥? ?=?? 斜线长相等推射影长相等) =

线面角的求法总结

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ ,则sin θ =h /AB=4/5

线线角和线面角

线线角和线面角 [重点]:确定点、斜线在平面内的射影。 [知识要点]: 一、线线角 1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角. 2、范围:(0,] 3. 向量知识: 对异面直线AB和CD (1); (2) 向量和的夹角<,>(或者说其补角)等于异面直线AB 和CD的夹角; (3) 二、线面角 1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,). 2、直线在平面内或直线与平面平行,它们所成角是零角; 直线垂直平面它们所成角为, 3、范围: [0,]。 4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1)射影相等的两条斜线段相等,射影较长的斜线段也较长; (2)相等的斜线段的射影相等,较长的斜线段的射影也较长; (3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。 6、向量知识 (法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角. [例题分析与解答] 例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角. 分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角. 解:∵,, ∴ ∵AB⊥BC,BB1⊥AB,BB1⊥BC, ∴ ∴ 又 ∴ ∴ 所以异面直线BA1与AC所成的角为60°. 点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示. 例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.

求线面角的三种常见思路方法

求线面角的三种常见思路方法 舒云水 本文以 2009年湖南卷理 18 题为例,介绍求线面角的三种常见思路方法,并对这三种方法作比较分析﹒ 如图 1,在正三棱柱ABC A1B1C1中,AB 2AA1,点 D是A1B1的中点,点 E 在A1C1上,且DE⊥ AE. (I)证明:平面ADE 平面ACC1A1 ; ( II )求直线 AD和平面ABC1所成角的正弦值. (Ⅰ)证明略.下面主要谈(Ⅱ)小题的解法﹒思路 1:直接作出线面角求解﹒ 分析:因为本题几何图形是特殊的几何体——正三棱柱,点 D 在特殊位置上——线段A1B1的中点,所以本题比较容易作出线面角﹒如图 2,取AB的中点F ,连结DF ,DC1 , C1F ,则面DFC1 面ABC1,过D作DH C1F于H ,则DH 面ABC1 ,连结AH,则HAD是AD和平面ABC1 所成的角﹒

解法 1 如图 2,设 F 是 AB 的中点,连结 DF , DC 1 , C 1F .由正 三棱柱 ABC A 1B 1C 1的性质及 D 是A 1B 1的中点知, A 1B 1 ⊥ C 1D ,A 1B 1⊥ DF . 又C 1D DF D ,所以 A 1B 1 ⊥平面C 1DF . 而 AB ∥ A 1B 1, 所以 AB⊥平面C 1DF .又 AB 平面ABC 1 ,故 平面 ABC 1 ⊥平面C 1DF . 过点 D 作DH 垂直C 1F 于点 H , 则 DH ⊥ 平面 ABC 1 . 连结 AH ,则 HAD 是直线 AD 和平面 ABC 1 所成的角. 由已知 AB 2AA 1,不妨设 AA 1 2,则 AB 2,DF 2, DC 1 3, 所以 sin HAD D A H D 15 思路 2:用等体积法求出点 D 到面 ABC 1的距离h ,A h D 为所求线 面 C 1F 5, AD AA 12 A 1D 2 3, DF ·DC 1 2 3 30 DH C 1F 55 即直线 AD 和平面 ABC 1所成角的正弦值为 10 .

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明: AC ⊥平面BCDE ; (Ⅱ)求直线AE 与平面ABC 所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°,G 为线段PC 上的点. (1)证明:BD ⊥平面APC ; ( 43 3 ) (2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PG GC 的值.(3/2) 直线与直线垂直 直线与平面垂直 平面与平面垂直

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

线面角的三种求法

线面角的三种求法 河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂

线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1C 1D 1 H 4 C B 12 3B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cosθ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的 一条直线,其中θ为OA 与OC 所成的角, B αO A C 图3 θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理) 例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

立体几何线面角专题

立体几何线面角专题(五十八) 1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱B 1C 1,C 1D 1 的中点.试求: (1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值; (3)二面角C 1-DB -B 1的正切值. 答案 (1)60° (2)223 (3)22 思路 解析 建立如图所示的空间直角坐标系,则B 1(0,0,0),A(1,0, 1),B(0,0,1),D 1(1,1,0),E(0,12,0),F(12 ,1,0),D(1,1,1). (1)因为AD 1→=(0,1,-1),EF →=(12,12,0), 所以cos AD 1→,EF →=(0,1,-1)·(12,12,0)2×22=12, 即AD 1与EF 所成的角为60°. (2)FA →=(12,-1,1),由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ, 则sin θ=|cos BA →,FA →|=|(1,0,0)·(12,-1,1)1×(12)2+(-1)2+12|=13,所以cos θ=223. (3)设平面DBB 1的法向量为n 1=(x ,y ,z),

DB →=(-1,-1,0),B 1B →=(0,0,1), 由?????n 1⊥DB →,n 1⊥B 1B →,得?????n 1·DB →=-x -y =0, n 1·B 1B →=z =0, 令y =1,则n 1=(-1,1,0). 同理,可得平面C 1DB 的一个法向量为n 2=(-1,1,1). 则cos n 1,n 2=(-1,1,0)·(-1,1,1)2×3=63. 所以tan n 1,n 2=22. 2.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC. (1)求证:BC ⊥平面PAC ; (2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的余弦值; (3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 答案 (1)略 (2)144 (3)存在点E 解析 方法一:(1)∵PA ⊥底面ABC , ∴PA ⊥BC.又∠BCA =90°, ∴AC ⊥BC ,∴BC ⊥平面PAC. (2)∵D 为PB 的中点,DE ∥BC , ∴DE =12 BC. 又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E. ∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB. 又PA =AB ,∴△ABP 为等腰直角三角形. ∴AD =12 AB. 在Rt △ABC 中,∠ABC =60°.∴BC =12 AB.

相关文档
最新文档