Space Velocities of L- and T-type Dwarfs

a r X i v :0706.0784v 1 [a s t r o -p h ] 6 J u n 2007

Space Velocities of L-and T-type Dwarfs

M.R.Zapatero Osorio,E.L.Mart′?n 1and V.J.S.B′e jar

Instituto de Astrof′?sica de Canarias,E-38205La Laguna,Tenerife,Spain

mosorio,ege,vbejar@iac.es

H.Bouy 2

University of California at Berkeley,Astronomy Dept.,601Campbell Hall,Berkeley CA 94720,USA

hbouy@https://www.360docs.net/doc/2c13413627.html,

R.Deshpande

University of Central Florida,Department of Physics,P.O.Box 162385,Orlando,FL 32816-2385,USA

rohit@https://www.360docs.net/doc/2c13413627.html,

and

R.J.Wainscoat

Institute for Astronomy,2680Woodlawn Drive,Honolulu,HI 96822,USA

rjw@https://www.360docs.net/doc/2c13413627.html,

ABSTRACT

We have obtained radial velocities of a sample of 18ultracool dwarfs with spectral types

in the interval M6.5–T8using high-resolution,near-infrared spectra obtained with NIRSPEC and the Keck II telescope.Among our targets there are two likely ?eld stars of type late M,one M6.5Pleiades brown dwarf,and ?fteen L and T likely brown dwarfs of the solar neighbor-hood with estimated masses in the range 30–75M Jup .Two dwarfs,vB 10(M8V)and Gl 570D (T7.5V/T8V),are known wide companions to low-mass stars.We have con?rmed that the radial velocity of Gl 570D is coincident with that of the K-type primary star Gl 570A,thus providing additional support for their true companionship.The presence of planetary-mass companions around 2MASS J05591914?1404488(T4.5V)has been analyzed using ?ve NIRSPEC radial ve-locity measurements obtained over a period of https://www.360docs.net/doc/2c13413627.html,ing our radial velocity data and the radial velocities of an additional set of eight L-type dwarfs compiled from the literature in com-bination with their proper motions and trigonometric parallaxes,we have computed UV W space motions for the complete expanded sample,which comprises a total of 21L and T dwarfs within 20pc of the Sun.This ultracool dwarf population shows UV W velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume.However,the mean Galactic (v tot =44.2km s ?1)and tangential (v t =36.5km s ?1)velocities of the L and T dwarfs appear to be smaller than those of G to M stars.A signi?cant fraction (~40%)of the L and T dwarfs lies near the Hyades moving group (0.4–2Gyr),which contrasts with the 10–12%found

for earlier-type stellar neighbors.Additionally,the distributions of all three UV W components (σUV W =30.2,16.5,15.8km s ?1)and the distributions of the total Galactic (σv tot =19.1km s ?1)and tangential (σv t =17.6km s ?1)velocities derived for the L and T dwarf sample are narrower than those measured for nearby G,K,and M-type stars,but similar to the dispersions obtained for F stars.This suggests that,in the solar neighborhood,the L-and T-type ultracool dwarfs in our sample (including brown dwarfs)is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5–4Gyr.

Subject headings:stars:low-mass,brown dwarfs —stars:kinematics —stars:late-type

1.

Introduction

L-and T-type dwarfs are very cool (T e?≤2200K),intrinsically faint objects of recent discovery

(e.g.,Nakajima et al.1995;Ruiz et al.1997;Delfosse et al.

1997;Mart′?n et al.1997;see review by Kirkpatrick

2005),which are frequently referred to as “ul-tracool”dwarfs.Over 500of these ultracool

objects have been identi?ed to date.Many of

them are found isolated in the solar neighbor-hood,i.e.,within 50pc of the Sun;only a few ap-pear as widely separated (a ≥10AU)companions

to stars (e.g.,Nakajima et al.1995;Rebolo et al.

1998;Burgasser et al.2000;Kirkpatrick et al.

2001;Liu et al.2002;Potter et al.20022002;

Metchev &Hillenbrand 2004)and as tight stellar

companions (Freed et al.2003).Yet their physi-cal and kinematic properties are not fully known.

According to theoretical evolutionary models

(e.g.,Burrows et al.1997;Chabrier &Bara?e

2000),the late L and T dwarfs of the solar neigh-borhood are brown dwarfs with likely substellar

masses in the range 0.03–0.075M ⊙.

The detailed studies of low-resolution spec-tra and color–magnitude diagrams of L and Tdwarfs (e.g.,Leggett et al.2002;Patten et al.2006;Kirkpatrick et al.1999;Mart′?n et al.1999;

Geballe et al.2002;Burgasser et al.2002)are be-ginning to shed light on the physical characteris-tics of these low-mass objects because an increas-ing number of trigonometric parallaxes (distances)

have been determined for ?eld ultracool dwarfs

(Dahn et al.2002;Tinney et al.2003;Vrba et al.

2004;Knapp et al.2004).Besides distance and

proper motion,the additional ingredient for a

complete kinematic study employing space ve-locity components is radial velocity.Reid et al.

(2002),Mohanty &Basri (2003)and Bailer-Jones (2004)have obtained the ?rst radial velocity mea-surements available for L-type dwarfs in the solar vicinity using high-resolution optical spectra.The

marked low luminosities of the T dwarfs prevent accurate velocity determination at visible wave-lengths.Therefore,interpretation of the kinematics of

the least massive (including the substellar)popu-lation of the solar vicinity is less developed than

in the case of stars.Various groups have inves-tigated the dynamics and age of the Galactic

disk by examining the observed and simulated

kinematics of nearby stars (e.g.,Nordstr¨o m et al.

2004,and references therein).It is found that

the space velocity dispersion of stars increases

with time to the αpower (t α)with α=0.33

(Binney et al.2000).Statistically,most solar-type to early M stars within 50pc of the Sun

show kinematic ages very similar to the age of our

solar system at about 5Gyr.A small fraction of

these stars turn out to be members of stellar mov-ing groups characterized by much younger ages

from a few hundred megayears to a few gigayears

(Zuckerman &Song 2004).However,the nearby,

coolest M dwarfs appear to behave di?erently.

As noted by Reid et al.(2002)and Dahn et al.

(2002),their kinematics suggest that the latest

M stars of the solar neighborhood are on average younger than earlier-type stars.Here,we report on radial velocity measure-ments of ultracool L and T dwarfs obtained from

near-infrared spectra (Section 2).Radial velocity

variability has been investigated for a few targets

in Section 3.These data have been combined with

trigonometric parallaxes and proper motions pub-lished in the literature to derive galactic velocities

in Section 4.Our ?nal remarks and conclusions

are given in Section 5.

2.The sample and observations

The sample of targets is listed in Table 1.

It comprises three late M-type dwarfs,one of

which(PPl1or Roque15)is a young,lithium-bearing brown dwarf of the Pleiades cluster (Stau?er et al.1998).The remaining targets are six L-and nine T-type?eld dwarfs re-cently discovered by the2MASS,SLOAN,and Denis surveys.The discovery papers are all indicated in Table1of Zapatero Osorio et al. (2006).The spectral types given in the second column of Table1are taken from the literature (Kirkpatrick et al.1997,1999,2000;Mart′?n et al. 1999;Geballe et al.2002;Burgasser et al.2006; Phan-Bao et al.2006).They were derived from optical and/or near-infrared low-resolution spec-tra and are in the interval M6.5–T8.There are objects that have been classi?ed di?erently by the various groups;we provide all classi?ca-tions in Table1,?rst that of Kirkpatrick et al. (1999)and Burgasser et al.(2006),second that of Geballe et al.(2002),and?nally,the clas-si?cation from Mart′?n et al.(1999).In terms of e?ective temperature,our sample spans the range2700–770K(Leggett et al.2000;Vrba et al. 2004).J0334?49and vB10can be stars in our sample while the remaining targets are very likely substellar.

We collected high-resolution near-infrared spec-tra of the18ultracool dwarfs using the Keck II telescope and the NIRSPEC instrument,a cross-dispersed,cryogenic echelle spectrometer employing a1024×1024ALADDIN InSb ar-ray detector.These observations were carried out on di?erent occasions from2000December through2006January and are part of our large program aimed at the study of radial velocity variability.The complete journal of the observa-tions is shown in Table1of Zapatero Osorio et al. (2006),since these data were previously used to determine the rotational velocities of the sam-ple,including the young,lithium-bearing?eld brown dwarf LP944?20.We note that the ra-dial velocity of LP944?20using NIRSPEC spec-tra is fully discussed in Mart′?n et al.(2006).In the echelle mode,we selected the NIRSPEC-3(J-band)?lter and an entrance slit width of 0.′′432(i.e.,3pixels along the dispersion di-rection of the detector),except for eight tar-gets(J2224?01,J1728+39,J1632+19,J1346?00, J1624+00,J1553+15,J1217?03,and GL570D) for which we used an entrance slit width of0.′′576. The length of both slits was12′′.All observa-tions were performed at an echelle angle of~63?. This instrumental setup provided a wavelength coverage from 1.148up to 1.346μm split into ten di?erent orders,a nominal dispersion rang-ing from0.164(blue wavelengths)to0.191?A/pix (red wavelengths),and a?nal resolution element of0.55–0.70?A at1.2485μm(roughly the central wavelength of the spectra),corresponding to a resolving power R~17800–22700.Individual ex-posure times were a function of the brightness of the targets,ranging from120to900s.

2.1.Data reduction

Raw data were reduced using the ECHELLE package within IRAF1.Spectra were collected at two or three di?erent positions along the entrance slit.Nodded images were subtracted to remove sky background and dark current.White-light spectra obtained with the same instrumental con-?guration and for each target were used for?at-?elding the data.All spectra were calibrated in wavelength using the internal arc lamp lines of Ar, Kr,and Xe,which were typically acquired after observing the targets.The vacuum wavelengths of the arc lines were identi?ed and we produced ?ts using a third-order Legendre polynomial along the dispersion axis and a second-order one per-pendicular to it.The mean rms of the?ts was 0.03?A,or0.7km s?1.In order to correct for at-mospheric telluric absorptions,near-infrared fea-tureless stars of spectral types A0–A2were ob-served several times and at di?erent air masses during the various observing runs.The hydrogen line at1.282μm,which is intrinsic to these hot stars,was removed from the spectra before using them for division into the corresponding science data.Finally,we multiplied the science spectra by the black-body spectrum for the temperature of9480K,which is suitable for A0V type(Allen 2000).

We have plotted in Figures1to3all of our spectra corresponding to the echelle orders cen-tered at1.230μm,the K i doublet(1.2485μm), and1.292μm.These are orders relatively free of strong telluric lines.E?ective temperature(i.e.,

spectral type)decreases from top to bottom.Note that all spectra have been shifted in velocity to vacuum wavelengths for easy comparison of the atomic and molecular features.The signal-to-noise ratio of the data varies for di?erent echelle orders and di?erent targets depending on their brightness.In general,the red orders show bet-ter signal-to-noise ratio than the blue orders,ex-cept for the reddest order centered at1.337μm in T dwarfs since these wavelengths are a?ected by strong methane and water vapor absorptions be-low1300K.

2.2.Data analysis:radial velocities

We note that systematic errors or di?erent zero-point shifts may be present in the instrumental wavelength calibration of our data,which may a?ect the radial velocity measurements.Vari-ous authors(Tinney&Reid1998;Mart′?n1999; Mohanty&Basri2003;Basri&Reiners2006) have reported on the stable heliocentric velocity of the M8V dwarf vB10,?nding an average value of+35.0km s?1.From our two NIRSPEC spectra and using the centroids of the K i lines,we de-rived+35.0and+34.3km s?1with an estimated uncertainty of±1.5km s?1associated with each individual determination.These measurements are fully consistent with those in the literature. Furthermore,we have compared NIRSPEC spec-tra corresponding to echelle orders that contain a considerable number of telluric lines and that were observed during a night and on di?erent nights. We found that the telluric lines typically di?er by less than1km s?1in velocity.All this suggests that any systematic errors or di?erent zero-point shifts in our radial velocities are likely smaller than the measurement uncertainties,which are typically≥1km s?1.

We derived heliocentric radial velocities,v h,via a cross-correlation of the spectra of our tarets against spectra of dwarfs of similar types with known heliocentric velocity.The details of the procedure are fully described in the literature (e.g.,Marcy&Benitz1989).Summarizing,he-liocentric radial velocities were obtained from the Doppler shift of the peak of the cross-correlation function between the targets and the templates. To determine the center of the cross-correlation peak we typically?t it with a Gaussian function using the task FXCOR in IRAF.This provides ob-served velocities that are corrected for the Earth’s motions during the observations and converted into heliocentric velocities.Only orders for which we unambiguously identi?ed the peak of the cross-correlation function and obtained good Gaussian ?ts were employed(see Figure4for examples of cross-correlation functions and Gaussian?ts).We typically used between4and8echelle orders de-pending on the signal-to-noise ratio of the data. All results were then averaged to produce the?-nal v h measurements.Uncertainties are derived from the standard deviation of the mean.

We used the M8V-type dwarf vB10as the pri-mary reference/template object for several rea-sons:?rst,it is a slow rotator(Mohanty&Basri 2003),thus providing narrow cross-correlation peaks;second,its radial velocity is well deter-mined in the literature to be+35.0km s?1;and third,the signal-to-noise ratio of its NIRSPEC spectra is reasonably good(see Figures1to3), minimizing the data noise introduced in the cross-correlation method.This technique assumes that the target and template spectra are of similar type and di?er only in the rotation velocity.Neverthe-less,Bailer-Jones(2004)has recently shown that M-type templates can also yield accurate velocities for L dwarfs.In our sample,the energy distribu-tion of T dwarfs does di?er signi?cantly from M dwarfs,and we found that for the early T-type tar-gets the cross-correlation with vB10gives reason-able results if the resonance lines of K i are avoided and only molecular(particularly water vapor) lines are used in the cross-correlation.For the late-type objects,cooler templates are required.We employed J2224?01(L4.5V),J0559?14(T4.5V), and J1217?03(T7–8V)as secondary reference dwarfs to obtain the radial velocities of the L-and T-type objects in the sample.Rotation ve-locities of all targets are provided in column10of Table1(Zapatero Osorio et al.2006).The three secondary templates have moderate rotation in the interval v rot sin i=22–31km s?1.However,the de-rived error bars on radial velocity do not appear to be signi?cantly higher than using the slow rotator vB10,suggesting that,for the spectral resolution and signal-to-noise ratio of our data,radial veloc-ity accuracy shows little dependence on rotation velocity up to v rot sin i~30km s?1.

Columns5through8of Table1show our mea-sured v h for all objects observed on di?erent oc-

casions in this program.We also give the observ-ing dates in columns3(Universal Time)and4 (Modi?ed Julian Date).Whenever there is more than one observation available per object,the?rst spectrum also acts as a template spectrum to ob-tain radial velocities via the cross-correlation tech-nique,and the derived velocities are provided in column9of Table1.This minimizes the e?ects of using templates of di?erent spectral types and serves as a test of consistency.Furthermore,such a procedure will allow us to study binarity.Previ-ous radial velocities reported in the literature are listed in the eleventh column of the Table.We note that,with the exception of PPl1(see below), all of our measurements agree with the literature values to within1-σof the claimed uncertainty. 3.Binarity

Gl570D is a known wide companion(~1500AU) to the multiple system Gl570ABC(Burgasser et al. 2000).We have determined its heliocentric ve-locity to be+28.5±2.7km s?1,which is coinci-dent with the radial velocity of the K-type star Gl570A(v h=+27.0±0.3km s?1)as measured by Nidever et al.(2002).This suggests that Gl570D is not a short-period binary of mass ratio near 1.The secondary companion,Gl570BC,is a spectroscopic binary whose radial velocities span the range8.8–37.9km s?1(e.g.,Marcy&Benitz 1989).

Multiple NIRSPEC spectra obtained on di?er-ent occasions are available for?ve dwarfs in our sample.These are shown in Table2,where we also provide the time elapsed between the?rst and last observation and the mean heliocentric velocity per object with the associated average error bar.In-spection of all velocities listed in Table1reveals no obvious trace of moderate velocity perturbation in any of the dwarfs since all their measured v h agree within the uncertainties over the time span of the data.This indicates that the dwarfs of Table2are not very likely to be close equal-mass binaries.

To relate companion mass to the disper-sion of our radial velocities we use the mass function derived from the Keplerian equations (e.g.,Marcy&Benitz1989).The most con-straining case in our sample is the T4.5V dwarf J0559?14.For it we can study the presence of planetary-mass companions in short(a few days or~0.01AU)and intermediate(a few years or ~0.4AU)orbits.J0559?14radial velocity curve exhibits1-σstandard deviation of0.50km s?1. For a primary mass of about60M Jup,expected for mid-T?eld dwarfs with an age of~5Gyr (Chabrier&Bara?e2000),and at the3-σlevel, companions more massive than2M Jup(short peri-ods)and10M Jup(~1-yr period)can be excluded. Figure5summarizes these results graphically. The region of parameter space excluded for plan-ets around J0559?14is comparable to the region excluded around stars.However,because of the time coverage of our observations of J0559?14, we cannot reach?rm conclusions on the presence of companions with orbital periods between days and less than a year.Circular orbits have been adopted to compute these estimates.We consider these minimum mass estimates to represent ap-proximate guidelines in future corroborative spec-troscopic work.

Regarding J0036+18and J0539?00,the null detection of radial velocity variations over a few years suggests that no companions of~10M Jup or more can exist near them.Similarly,very close-in companions of a few Jupiter masses may be ruled out orbiting PPl1or J0334?49with a periodic-ity of a few days.However,we stress that two radial velocity data points constitute statistically too few observations to reach a?nal conclusion on the presence of Jovian planets around these objects.Further measurements are certainly re-quired to constrain?rmly the minimum mass of any possible companion.However,this exercise in-dicates that companions with masses in the plane-tary domain lie near the detectability limit in our data.

Interestingly,Mart′?n et al.(1998)measured the heliocentric velocity of the Pleiades brown dwarf PPl1at+15.4±1.6km s?1,which deviates from our measurement(see Table2)by more than4σ. Despite the fact that such a di?erence may sug-gest the presence of a second object(future ob-servations are pending to test this hypothesis), its total amount seems to be rather large for a planetary companion even though it might ac-count for the peak-to-peak amplitude of the pri-mary radial velocity curve.This may indicate that the companion has a broad orbit and a mass above the deuterium-burning mass limit,i.e.,≥13M Jup,thus,it belongs to the brown dwarf

regime.From the locus of PPl1in the K vs

(I?K)color-magnitude diagram of the Pleiades cluster,Pin?eld et al.(2003)concluded that this object is a probable binary with a mass ratio in the interval q=0.75–1.We note that our NIRSPEC heliocentric velocity of PPl1is fully consistent with the systemic velocity of the Pleiades mea-sured at+5.4±0.4km s?1(e.g.,Liu et al.1991; Kharchenko et al.2005),hence providing addi-tional evidence for its membership of this star clus-ter.

4.Galactic space motions and kinematics

Using our radial velocity measurements and

the proper motions and trigonometric paral-laxes provided in the literature by Dahn et al. (2002),Vrba et al.(2004),Knapp et al.(2004), and An et al.(2007)we have calculated the U,V, and W heliocentric velocity components in the di-rections of the Galactic center,Galactic rotation and north galactic pole,respectively,with the formulation developed by Johnson&Soderblom (1987).Note that the right-handed system is em-ployed and that we will not subtract the solar motion from our calculations.The uncertain-ties associated with each space-velocity compo-nent are obtained from the observational quanti-ties and their error bars after the prescriptions of Johnson&Soderblom(1987).Our derivations are shown in Table3.Unfortunately,two T dwarfs

in the sample lack distance and proper motion measurements,thus preventing us from deter-mining their Galactic velocities(these dwarfs are

not shown in Table3).No trigonometric paral-laxes are available for PPl1and the M9V dwarf

J0334?49;we have adopted the Pleiades distance

for the former object(An et al.2007)and the poorly constrained spectroscopic distance esti-mate of Phan-Bao et al.(2006)for the latter, which result in relatively large uncertainties as-sociated with the derived UV W velocities.

With the only exceptions of PPl1and J1728+39AB, the remaining objects in our sample with known trigonometric parallax lie within20pc of the Sun.

To carry out a reliable statistical study of the kinematics of the least massive population in the solar neighborhood,we have enlarged our sam-

ple of ultracool dwarfs with an additional set of eight L-type objects of known trigonometric dis-tance(d≤20pc),proper motion and radial ve-locity(Dahn et al.2002;Mohanty&Basri2003; Bailer-Jones2004;Vrba et al.2004).This ad-ditional set is shown in Table4,where we also provide our UV W computations obtained in the manner previously described.Hence,UV W space velocities are?nally available for a total of21L and T dwarfs located at less than~20pc from the Sun.

4.1.Star moving groups

For the following discussion,we will focus on the extended sample of L and T dwarfs.Their Galactic motions are depicted in the UV and V W planes in Fig.6.As can be seen from the top pan-els,the space velocities of most L and T dwarfs appear to be rather scattered in these diagrams, and no preferred region(or clustering)of high den-sity and small velocity dispersion is perceptible. Leggett(1992)summarized the criteria used for kinematically classifying old/young disk and halo stars as follows:objects with V

To further develop this idea,we have super-imposed in the bottom panels of Fig.6the lo-cation of known,nearby star moving groups (streams of stars with common motion through the Milky Way).The UV W velocities and their associated1-σvelocity dispersions used to depict the ellipsoids of the various moving groups shown in Fig.6are taken from the lit-erature(Eggen1992;Chen et al.1997;Dehnen 1998;Chereul et al.1999;Montes et al.2001; Zuckerman&Song2004;Famaey et al.2005; Zuckerman et al.2006).Ordered by increas-

ing age,theβPictoris(10–30Myr),AB Dor (~50Myr),Carina-near(~200Myr),Ursa Ma-joris(~300Myr),and Hyades(0.4–2Gyr)mov-ing groups have been selected for the proximity of all their northern and southern stellar mem-bers to the Sun(typically less than55pc).The open star cluster Hyades(~625Myr)lies within the Hyades moving group.Other young moving groups and star clusters of recent discovery are not included in Fig.6because they only contain southern stars,like Tucana/Horologium and the TW Hydrae association,or are located farther away,likeηCha and the Pleiades moving group (Zuckerman&Song2004).The Hyades moving group is the oldest dynamical stream considered in this work,with stellar ages(derived from A-F stars)spanning the interval400Myr to~2Gyr (Chereul et al.1999),but probably younger than the canonical age of the solar system.

From the bottom UV-and W V-planes of Fig.6, it becomes apparent that only three dwarfs in our sample,namely J1624+00(T6V),J1217?03 (T7V),and J0205?11AB(L7V),all have space velocity components roughly consistent with the Hyades moving group and fall inside the1.5-σel-lipsoid.These are labeled in the bottom panels of Figure6.We note that J0205?11AB is an equal-mass binary separated by9.2AU(Koerner et al. 1999),and that the expected amplitude of the ra-dial velocity curve of each component is therefore less than3km s?1for masses below the substellar limit.This has very little impact on the derived UV W velocities of J0205?11AB.

Our results for J1624+00,J1217?03,and J0205?11AB are in agreement with the previ-ous work by Bannister&Jameson(2007).These authors also found that J0036+18(L3.5V/L4V) and J0825+21(L7.5V)show proper motion con-sistent with the Hyades moving group;our UV W measurements lie close to the2-σellipsoid. Bannister&Jameson(2007)also commented on the fact that all these?ve ultracool dwarfs sit on a very tight sequence in color-magnitude diagrams (suggesting they are coeval objects)consistent with evolutionary models of500Myr.Neverthe-less,recent works by Famaey et al.(2005)and De Simone et al.(2004)caution against assign-ing ages based solely on space motion and star moving group memberships.On the contrary, membership in open star clusters provides reliable age estimates.None of the L and T dwarfs in our

sample appears to be unambiguous members of

the Hyades star cluster.Recently,Bihain et al.

(2006)found that the velocity(or proper motion)

dispersion of Pleiades brown dwarfs(~120Myr)

is about a factor of four times higher than that

of solar-mass stars in the cluster.In our sam-

ple,only J1217?03has space velocities close to

the4-σellipsoid centered at U=?42,V=?19,

W=?1km s?1(velocity dispersion0.3km s?1,De Bruijne et al. 2001),which corresponds to the~625Myr-old

Hyades.

Further study of the bottom UV-and W V-

planes of Fig.6reveals that about40%of the L

and T dwarfs lie near the Hyades moving group ei-

ther within the2-σellipsoid or“touching”it(i.e.,

the error bars cross the2-σellipsoid).To analyze

the signi?cance of such an apparent concentration,

we have collected accurate radial velocities,Hip-

parcos distances and parallaxes of F-,G-,K-and

M-type stars within20pc of the Sun from the cat-

alog of Kharchenko(2004).A total of10F stars,

25solar-type stars,58K,and52early M(M0–M5)

stars were selected.Their Galactic UV W motions

were calculated as for our L–T sample contained

within the same spatial volume.The left panels of

Fig.7show the space velocities of these stars and

of our extended sample as a function of heliocen-

tric distance.

After inspection of the space velocity distribu-

tion of the G to early M stars in the UV-and

W V-planes,we found that only10–12%of the

stars(very similar statistics for all three stellar

spectral types)lie within or in the“surroundings”

of the Hyades moving group,which contrasts with

the higher value,40%,derived for the ultracool

dwarfs.Furthermore,under the assumption that

the L–T population follows a Poissonian distribu-

tion with the same object density than the G to

early-M stars,we have estimated the probability

of?nding eight out of21(~40%)ultracool dwarfs

close to the Hyades moving group to be lower than

1%,indicating that this concentration is signi?-

cant to a con?dence level of about99%.This sug-

gests that,on average,the L and T population

is kinematically younger than the majority of the

stars in the solar neighborhood.

4.2.Galactic kinematics and age of the ul-

tracool dwarfs

From the left panels of Fig.7it is evident that the UV W components of the L and T dwarfs over-lap the range of space velocities observed for the G, K,and early M stars,i.e.,they are neither larger nor dramatically smaller despite the reduced mass of the L-and T-type objects.We can discuss this further by producing the histograms shown in the middle panels of Fig.7,which depict the UV W distributions for the three populations(K-type stars,early M stars,and the L and T ul-tracool dwarfs).The cumulative distributions are displayed in the right-most panels of Fig.7.We can compare these distributions quantitatively us-ing the Kolmogorov–Smirnov test.Such compar-ison globally shows that there is a probability of more than15%that the ultracool dwarfs and the K and M0–M5stars are drawn from the same kine-matic population.While this holds for a compar-ison between the U and W velocity dispersions of the L–T dwarfs and the K–M stellar samples, the test suggests larger di?erences for the V dis-tributions(galactic rotation)of the K-type stars and the ultracool dwarfs;however,these di?er-ences are not statistically meaningful and we will not discuss them further.

In addition,the width of the histograms of Fig.7,represented by the parametersσU,σV,σW, is relevant for a complete kinematic analysis.It is well established that all three velocity disper-sions increase with age(Spitzer&Schwarzschild 1951;Mayor1974;Wielen1977).We have ob-tainedσU,σV,andσW for each stellar and sub-stellar populations(see Table5).The Galactic motion dispersions of the G-to M5-type stars are in full agreement with the values obtained for the thin disk of the Galaxy available in the litera-ture(e.g.,Hawley et al.1996;Bensby et al.2003), even though all these works include a larger num-ber of stars and volumes in their studies.All the L and T dwarfs in our sample have typical perpen-dicular distances to the Galactic plane in the in-terval±15pc.OurσU andσW derivations for the F-type stars also coincide with the literature;how-ever,the derivedσV value appears smaller than the20km s?1found for the thin disk A and F stars by Bensby et al.(2003).This could be explained as statistical noise due to the relative small num-ber(10)of F stars in our study.

We have found that the Galactic velocity distri-butions corresponding to the ultracool L–T dwarfs

are narrower(i.e.,lower dispersions in all three space velocities)than those of G to M5stars. However,our derivedσU,σV,andσW for the L–T dwarfs are remarkably similar to results obtained

for M-type emission-line stars(e.g.,Hawley et al. 1996)and very active M7-type stars(West et al. 2006),which are generally assigned ages of less

than~3Gyr(Reid et al.2002).We also note that

if the~40%of the L and T dwarfs lying within and

near the Hyades moving group in the UV W planes

is removed from the statistical analysis,the three parametersσU,σV,andσW will gently increase; nevertheless,they remain smaller than the Galac-

tic velocity dispersions observed for solar to early-

M stars.Interestingly,all threeσUV W of L and

T dwarfs resemble the velocity dispersions of F-

type stars(Table5),suggesting that the two pop-ulations(despite their very di?erent mass)share similar ages on average.

There are various empirical calibrations of the relationship between velocity dispersion,partic-ularlyσW,and age(Mayor1974;Haywood et al. 1997;e.g.,Nordstr¨o m et al.2004,and references therein) that we can use to estimate the mean age for our kinematic samples.According to theσ-age rela-

tions provided in Tables2(A and F stars)and3

(G-K-M stars)by Mayor(1974),the mean age of

the20-pc sample of F stars is about2Gyr,and

that of the G to early M stars is about5Gyr(i.e.,

the age of the Sun).Wielen(1977)published a mathematical relation between age and the dis-persion of the total Galactic velocity(see also Schmidt et al.(2007)).We have computed the mean Galactic velocity,,and its associ-

ated dispersion,σv

tot

,for all spectral types listed

in Table5.Galactic velocities comprise the three components of the space velocities and as such,

may summarize the statistical e?ects seen in each velocity component(unless they are canceled out).

The kinematical ages derived from Wielen(1977) equation are also provided in the Table.The

L–T population shows a kinematical age in the range0.5–2.3Gyr;it thus appears to be a factor

of two younger than the low-mass stars of the solar neighborhood.From the analysis of the tangen-

tial velocities of a sample of late M and L dwarfs, Dahn et al.(2002)and Schmidt et al.(2007)also concluded that these objects have a mean age of

2–4Gyr,consistent with our derivation.The fact that the late M-type stars of the solar vicinity appear to be younger,on average,than earlier-type stars was previously suggested in the liter-ature(Hawkins&Bessell1988;Kirkpatrick et al. 1994;Reid et al.1994,2002).Here,we extend this result to the coolest spectral types(L and T) including the brown dwarf population.

Finally,various groups have also pointed out that nearby,very low-mass stars tend to have smaller space motions compared to the earlier-type stars,although the di?erence is claimed to be of marginal signi?cance(Reid et al.2002; Dahn et al.2002).We provide in Table5the av-erage proper motion,<μ>,for the F,G,K, M0–M5,L and T dwarf populations with known trigonometric parallaxes considered in this work (1-σdispersions are given in brackets).Neverthe-less,the information on the mean distance and the mean proper motion is better encapsulated in the mean tangential velocity,,which we also provide in Table5.To complete the spec-tral sampling between the early M stars and the ultracool dwarfs of our study we have collected the UV W data of29M6–M9objects at less than 23pc of the Sun from Table5of Reid et al.(2002). These authors obtained accurate radial velocities for these objects and combined them with astro-metric proper motions and photometric parallaxes to compute Galactic velocities.We show in Ta-ble5our derivation ofσU,σV,σW,and the mean Galactic velocity,proper motion,and tangential velocity for the reduced sample of M6–M9objects extracted from Reid et al.(2002).

Figure8illustrates the dependence of,

and their associated dispersions(σv

tot ,σv

t

)

on spectral type(or mass).We note that the val-ues corresponding to the F-type stars have less statistical weight because they have been derived from a low number of objects.After comparison with the literature values,the Galactic velocity dispersionσv

tot

of F stars shown in Table5is likely to be increased by a few km s?1.The diagrams of Fig.8(which do not incorporate this correction) cover a wide range of masses,from~2M⊙(F-type stars)down to~50M Jup(or0.05M⊙,T-types). Note that we have split our full sample of ultra-cool dwarfs into the two L and T types.As seen in the right panels of Fig.8,K-type stars display the largest mean Galactic and tangential veloci-ties,while F stars and the ultracool dwarfs have smaller values.We note that the mean velocities of M6–M9stars are comparable to those of the ul-tracool L and T dwarfs,in perfect agreement with the results obtained for late-M and L-type objects by Schmidt et al.(2007).

Theσv

tot

-andσv

t

-spectral type relations shown in the right panels of Fig.8present similar struc-ture:an increasing trend from F to K stars to decrease at cooler types;the L and T population displays the smallest velocity dispersions.We as-cribe this behavior to the likely younger kinemat-ical ages of the ultracool and very low-mass ob-jects in the solar neighborhood.There is a hint in our data suggesting that T dwarfs are slightly younger than L dwarfs;further observations and larger samples are required to con?rm it.This re-sult may be a?ected by an observational bias in the way L and T dwarfs are discovered.Since brown dwarfs cool down and grow fainter with age,it is expected that magnitude-limited surveys would ?nd younger objects in general.However,accord-ing to state-of-the-art evolutionary model predic-tions on substellar temperatures and luminosities and the fact that our study is limited to a dis-tance of20–23pc,this bias is not largely contami-nating our sample of ultracool dwarfs.Any model explaining the population of the Galaxy should account for the relations shown in Fig.8quantita-tively,which may provide a constraint on the?eld mass function and the stellar/substellar formation rate.

5.Conclusions

Radial velocities have been obtained for a sam-ple of18M6.5–T8dwarfs using high-resolution (R=17800–22700),near-infrared(1.148–1.346μm) spectra collected with the NIRSPEC instrument on the Keck II telescope.The sample com-prises one M6.5Pleiades brown dwarf,two late-M?eld dwarfs,and15L and T likely brown dwarfs of the solar neighborhood with masses in the range30–75M Jup.Our radial veloc-ity measurements further con?rm the member-ship of PPl1in the Pleiades cluster,and the true physical companionship of the T7.5V/T8V Gl570D dwarf in the Gl570multiple system. From?ve velocity measurements obtained for 2MASS J05591914?1404488(T4.5V)over4.37yr

and the observed velocity dispersion of0.5km s?1, we discard the possible presence of massive jovian planets near this brown dwarf with orbits of a few days or around a year.

All the L and T dwarfs in our sample lie≤24pc from the Sun,and trigonometric parallaxes and proper motions are available for nearly all of them from Dahn et al.(2002),Vrba et al.(2004),and Knapp et al.(2004).We have used our radial ve-locity determinations and astrometric data from the literature to derive Galactic UV W velocities. The total number of ultracool dwarfs within20pc of the Sun is augmented up to21with the addition of eight L dwarfs of known trigonometric distance, proper motion and radial velocity available in the literature.We have compared the Galactic and tangential velocities of the ultracool dwarf popu-lation to those of F,G,K,and M stars contained in the same volumen.The UV W distributions of the complete expanded L and T sample show a smaller dispersion than the G to M stars and a comparable dispersion to the F-type stars.Similar behavior is observed for the total Galactic veloc-ity and tangential velocity dispersions,suggesting that the least massive population,which includes brown dwarfs,is kinematically younger.Further-more,we?nd that a signi?cant fraction(~40%)of the L and T dwarfs in our sample lies near the lo-cation of the Hyades moving group in the UV and V W planes in contrast to the low rate(10–12%) observed for stars.This,in addition to the lower dispersions observed in all space velocities,sug-gests that our sample of L and T dwarfs(many are brown dwarfs)is kinematically young with likely ages below5Gyr.

We thank the referee for useful comments.The data were obtained at the W.M.Keck Observa-tory,which is operated as a scienti?c partnership between the California Institute of Technology,the University of California,and NASA.The Observa-tory was made possible by the generous?nancial support of the W.M.Keck Foundation.The au-thors extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are priv-ileged to be guests.We thank the Keck observ-ing assistants and the sta?in Waimea for their kind support.This research has made use of the SIMBAD database,operated at CDS,Strasbourg, France,and has been supported by a Keck PI Data Analysis grant awarded to E.L.M.by Michel-son Science Center,and by the Spanish projects AYA2003-05355and AYA2006-12612.We thank Terry Mahoney for his careful reading of the En-glish language.We also thank I.Ribas for early discussions on this topic.

REFERENCES

Allen,W.B.2000,Allen’s Astrophysical Quanti-ties.Fourth edition,ed.Arthur N.Cox,New York:Springer Verlag,p.151

An,D.,Terndrup,D.M.,Pinsonneault,M.H., Paulson,D.B.,Hanson,R.B.,&Stau?er,J.

R.2007,ApJ,655,233

Bailer-Jones,C.A.L.2004,A&A,419,703 Bannister,N.P.,&Jameson,R.F.2007,MNRAS, tmp,L44

Basri,G.,&Reiners,A.2006,AJ,132,663 Bensby,T.,Feltzing,S.,&Lundstr¨o m,I.2003, A&A,410,527

Bihain,G.,Rebolo,R.,B′e jar,V.J.S.,Ca-ballero,J.A.,Bailer-Jones,C.A.L.,Mundt, R.,Acosta-Pulido,J.A.,&Manchado Torres,

A.2006,A&A,458,805

Binney,J.,Dehnen,W.,&Bertelli,G.2000,MN-RAS,318,658

Burgasser,A.J.,Kirkpatrick,J.D.,Cutri,R.M., et al.2000,ApJ,531,L57

Burgasser,A.J.,Adam,J.,Kirkpatrick,J.D.,et al.2002,ApJ,564,421

Burgasser,A.J.,Geballe,T.R.,Leggett,S.K., Kirkpatrick,J.D.,&Golimowski,D.A.ApJ, 637,1067

Burrows,A.,Marley,M.,Hubbard,W.B.,et al.

1997,ApJ,491,856

Chabrier,G.,&Bara?e,I.2000,ARA&A,38,337 Chen,B.,Asiain,R.,Figueras,F.,&Torra,J.

1997,A&A,318,29

Chereul, E.,Cr′e z′e,M.,&Bienaym′e,O.1999, A&ASS,135,5

Dahn,C.C.,et al.2002,AJ,124,1170

Dehnen,W.1998,AJ,115,2384

Delfosse,X.,Tinney,C.G.,Forveille,T.,et al.

1997,A&A,327,L25

De Bruijne,J.H.J.,Hoogerwerf,R.,&De Zeeuw, P.T.2001,A&A,367,111

De Simone,R.,Wu,X.,&Tremaine,S.2004,MN-RAS,350,627

Eggen,O.J.1992,AJ,104,1482

Famaey,B.,Jorisse,A.,Luri,X.,Mayor,M.,Udry, S.,Dejonghe,H.,Turon,C.2001,A&A,430, 165

Freed,M.,Close,L.M.,&Siegler,N.2003,ApJ, 584,453

Geballe,T.R.,Knapp,G.R.,Leggett,S.K.,et al.2002,ApJ,564,466

Hawkins,M.R.S.,&Bessell,M.S.1988,MNRAS, 234,177

Hawley,S.L.,Gizis,J.E.,&Reid,I.N.1996,AJ, 112,2799

Haywood,M.,Robin,A.C.,Creze,M.1997,A&A, 320,428;320,440

Johnson,D.R.H.,&Soderblom,D.R.1987,AJ, 93,864

Kharchenko,N.V.2004,KFNT,20,366

Kharchenko,N.V.,Piskunov,A.E.,R¨o ser,S., Schilbach,E.,&Scholz,R.-D.2005,A&A,438, 1163

Kirkpatrick,J.D.,McGraw,J.T.,Hess,T.R., Liebert,J.,&McCarthy,D.W.1994,ApJS, 94,749

Kirkpatrick,J.D.,Henry,T.J.,&Irwin,M.J.

1997,AJ,113,1421

Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,et al.

1999,ApJ,519,802

Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,et al.

2000,AJ,120,447Kirkpatrick,J.D.,Dahn,C.C.,Monet,D.G., Reid,I.N.,Gizis,J.E.,Liebert,J.,&Bur-gasser,A.J.2001,AJ,121,3235

Kirkpatrick,J.D.2005,ARA&A,43,195

Knapp,G.,et al.2004,AJ,127,3553

Koerner,D.W.,Kirkpatrick,J.D.,McElwain,M.

W.,&Bonaventura,N.R.1999,ApJ,526,L25

Leggett,S.K.,Allard,F.,Dahn,C.,Hauschildt, P.H.,Kerr,T.H.,&Rayner,J.2000,ApJ,535, 965

Leggett,S.K.,Golimowski,D.A.,Fan,X.,et al.

2002,ApJ,564,452

Leggett,S.K.1992,ApJS,82,351

Liu,T.,Janes,K.A.,&Bania,T.M.1991,ApJ, 377,141

Liu,M.C.,Fischer,D.A.,Graham,J.R.,Lloyd, J.P.,Marcy,G.W.,&Butler,R.P.2002,ApJ, 571,519

Marcy,G.W.,&Benitz,K.J.1989,ApJ,344,441

Mart′?n,E.L.1999,MNRAS,302,59

Mart′?n,E.L.,Basri,G.,Delfosse,X.,&Forveille, T.1997,A&A,327,L29

Mart′?n,E.L.,Basri,G.,Gallegos,J.E.,Rebolo, R.,Zapatero Osorio,M.R.,&B′e jar,V.J.S.

1998,ApJ,499,L61

Mart′?n,E.L.,Delfosse,X.,Basri,G.,Goldman,

B.,Forveille,T.,&Zapatero Osorio,M.R.

1999,AJ,118,2466

Mart′?n,E.L.,G¨u nther,E.,Zapatero Osorio,M.

R.,Bouy,H.,&Wainscoat,R.2006,ApJ,644, L75

Mayor,M.1974,A&A,32,321

Metchev,S.A.,&Hillenbrand,L.A.2004,ApJ, 617,1330

Mohanty,S.,&Basri,G.2003,ApJ,583,451

Montes, D.,L′o pez-Santiago,J.,Fern′a ndez-Figueroa,M.J.,&G′a lvez,M.C.2001,A&A, 379,976

Nakajima,T.,Oppenheimer,B.R.,Kulkarni,S.

R.,Golimowski,D.A.,Metthews,K.,&Dur-rance,S.T.1995,Nature,378,463

Nidever,D.K.,Marcy,G.W.,Butler,R.P.,Fis-cher,D.A.,&Vogt,S.S.2002,ApJS,141,503

Nordstr¨o m,B.,Mayor,M.,Andersen,J.,et al.

2004,A&A,418,989

Patten,B.M.,Stau?er,J.R.,Burrows,A.,et al.

2006,ApJ,651,502

Perryman,M.A.C.,Lindegren,L.,Kovalevsky, J.et al.1997,A&A,323,L49

Phan-Bao,N.,Bessell,M.S.,Mart′?n,E.L.,et al.

2006,MNRAS,366,L40

Pin?eld,D.J.,Dobbie,P.D.,Jameson,R.F., Steele,I.A.,Jones,H.R.A.,&Katsiyannis,

A.C.2003,MNRAS,342,1241

Potter,D.,Mart′?n,E.L.,Cushing,M.C.,Baudoz, P.,Brandner,W.,Guyon,O.,Neuh¨a user,R.

2002,ApJ,567,L133

Rebolo,R.,Zapatero Osorio,M.R.,Madruga,S., B′e jar,V.J.S.,Arribas,S.,Licandro,J.1998, Science,282,1309

Reid,I.N.,Tinney,C.G.,&Mould,J.1994,AJ, 108,1456

Reid,I.N.,Kirkpatrick,J.D.,Liebert,J.,Gizis, J.E.,Dahn,C.C.,&Monet,D.G.2002,AJ, 124,519

Ruiz,M.T.,Leggett,S.K.,&Allard,F.1997, ApJ,491,L107

Schmidt,S.J.,Cruz,J.L.,Bongiorno, B.J., Liebert,J.,&Reid,I.N.2007,AJ,133,2258 Spitzer,L.Jr,&Schwarzschild,M.1951,ApJ, 114,385

Stau?er,J.R.,Schultz,G.,&Kirkpatrick,J.D.

1998,ApJ,499,L199

Tinney,C.G.,&Reid,I.N.1998,MNRAS,301, 1031

Tinney,C.G.,Burgasser,A.J.,Kirkpatrick,J.D.

2003,AJ,126,975Vrba,F.J.,Henden,A.A.,Luginbuhl,C.B.,et al.2004,AJ,127,2948

West,A.A.,Bochanski,J.J.,Hawley,S.L.,Cruz, K.L.,Covey,K.R.,Silvestri,N.M.,Reid,I.

N.,&Liebert,J.2006,AJ,132,2507 Wielen,R.1977,A&A,60,263

Zapatero Osorio,M.R.,Mart′?n,E.L.,Bouy,H., Tata,R.,Deshpande,R.,&Wainscoat,R.J.

2006,ApJ,647,1405

Zuckerman,B.,&Song,I.2004,ARA&A,42,685 Zuckerman,B.,Bessell,M.S.,Song,I.,&Kim,S.

2006,ApJ,649,L115

Fig. 1.—NIRSPEC spectra of our sample cen-tered at1.23μm.All spectra are normalized to unity,o?set by1on the vertical axis,and shifted in velocity to vacuum

wavelengths.Fig. 2.—NIRSPEC spectra of our sample cen-tered at1.25μm.The most prominent features of the M and L dwarfs are due to K i absorption, which vanishes at late T types.All spectra are o?-set by1on the vertical axis,and shifted in velocity to vacuum wavelengths.Data are normalized to unity in the intervals1.2465–1.2475μm(M6.5–T4.5)and1.2468–1.2472μm(T5–T8).

Fig. 3.—NIRSPEC spectra of our sample cen-tered at1.292μm.All spectra are normalized to unity and shifted in velocity to vacuum wave-lengths.The spectra of the left panel are o?set by1on the vertical axis.Data in the right panel are o?set by1(T2V–T6V dwarfs,top four spec-tra)and by1.5(T6.5V–T8V dwarfs,bottom?ve

spectra).

Fig. 4.—Cross-correlation functions of Gl570D

against J0559?14(left panel,spectra centered

at1.292μm),and J0036+18against vB10(right

panel,spectra centered at1.230μm).The bottom

panels show an enlargement around the maximum

peak of the cross-correlation functions(thin line)

and the best Gaussian?ts to the core of the peak

(thick dotted

line).

Fig. 5.—Detectability of substellar companions

around the T4.5V dwarf J0559?14using our NIR-

SPEC https://www.360docs.net/doc/2c13413627.html,panions with masses above the

curves can be excluded with a con?dence of1-σ

(solid line)and3-σ(dashed line).As indicated

in the text,the time coverage of our data allows

us to study orbits with periods of a few days and

a few years;orbits in between are not well sam-

pled.To compute the detectability curves we have

adopted circular orbits parallel to the line of sight,

a mass of0.06M⊙and a radial velocity amplitude

of0.5km s?1for the primary component.Known

radial velocity planets around stars are plotted as

open circles.

Fig. 6.—Space motions of our sample of ultra-cool dwarfs(?lled circles)and the L dwarfs from the literature(open squares)with d≤20pc.The young Pleiades brown dwarf PPl1is indicated in the top panels.An enlargement is shown in the bottom panels along with the position of various nearby star moving groups(ellipses,C-N stands for Carina-near).Solid line ellipses stand for the 1-σlocation of the moving groups,and the dot-ted ellipse represents the2-σwidth of the Hyades moving group.The Pleiad PPl1is not included in the bottom

panels.Fig.7.—(Left panels).Space velocities of our sample of ultracool dwarfs(?lled symbols),the ex-tended sample(open squares),and the G,K,and M0–M5stars(tiny circles).Only the error bars of the ultracool dwarfs are depicted for the clarity of the?gure.(Middle panels).UV W distributions for the various populations(K stars—dotted his-togram;early-M stars—dashed histogram;L and T dwarfs—solid histogram).(Right panels).Cu-mulative distributions of space velocities.

()and tangential velocity ()as a function of spectral type.(Right panels)Disper-sion of Galactic (σv tot )and tangential (σv t )veloc-ities as a function of spectral type.The diagrams cover the mass interval 2–0.05M ⊙.Vertical uncer-tainties correspond to the error of the mean,while the horizontal error bars account for the spectral range covered by individual measurements.All data are volume-limited to ~20pc.Note that we have split our sample of ultracool dwarfs into the L and T classi?cations (?lled symbols).The open circle corresponds to the combined L and T data.The values of F-type stars may need some correc-tion (see text).

Table2

Mean heliocentric radial velocities.

Object SpT?tN

(km s?1)

a The associated velocity uncertainty corresponds to

the error of the mean.

Table3

Galactic velocities of our sample.

Object SpT d aμαcosδaμδa U V W

(pc)(mas yr?1)(mas yr?1)(km s?1)(km s?1)(km s?1)

a From Perryman et al.(1997);Dahn et al.(2002);Vrba et al.(2004);Knapp et al.(2004);An et al.(2007).

b Distance and proper motion of the Pleiades cluster.

c Distance an

d proper motion of th

e primary stars(Perryman et al.1997).

d Spectroscopic parallax from Phan-Bao et al.(2006).

Table4

Galactic velocities of an additional set of L-type dwarfs.

Object SpT dμαcosδμδv h U V W Ref

(pc)(mas yr?1)(mas yr?1)(km s?1)(km s?1)(km s?1)(km s?1) References.—Radial velocities from:(1)Bailer-Jones(2004);(2)Mohanty&Basri(2003).Distances and proper motions from:(3)Dahn et al. (2002);(4)Vrba et al.(2004).

Table5

UV W,total Galactic and tangential velocity distributions of stars and brown dwarfs

with d≤20pc.

SpT Na<μ>aσUσVσWaa Age Ref.

(pc)(′′yr?1)(km s?1)(km s?1)(km s?1)(km s?1)(km s?1)(Gyr)

a Values in brackets correspond to the width of the distributions(orσ).

c Includes the29objects extracte

d from Reid et al.(2002)and th

e two?eld M dwarfs in our sample.

c Sample shown in Table3.

d Extended sample.

References.—Radial velocities from(1)Kharchenko(2004);(2)this paper;(3)Mohanty&Basri(2003);(4)Bailer-Jones(2004). Distances and proper motions from(5)Perryman et al.(1997);(6)Dahn et al.(2002);(7)Vrba et al.(2004);(8)Reid et al.(2002).

立体图形直观图的画法

平面图形直观图的画法 先观察下面的图形,总结投影变化规律。 投影规律: 1.平行性不变;但形状、长度、夹 角会改变; 2.平行直线段或同一直线上的两条 线段的比不变 3.在太阳光下,平行于地面 的直线在地面上的投影长不变 表示空间图形的平面图形,叫做 空间图形的直观图 画空间图形的直观图,一般都要 遵守统一的规则, 1.斜二测画法 我们常用斜二测画法画空间图形及水平放置的平面多边形的直 观图.斜二测画法是一种特殊的平行投影画法. 2.平面图形直观图的画法 斜二测画法的步骤: (1)在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O .画直观 图时,把它们画成对应的x ′轴和y ′轴,两轴交于点O ′,且使 ∠x ′O ′y ′=_45°(或135°)_,它们确定的平面表示_水平面. (2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成_ 平行

于x′轴或y′轴的线段. (3)已知图形中平行于x轴的线段,在直观图中保持原长度不变_,_垂直于x轴的线段,长度为原来的_一半_. 注意点: 1.斜二测画法中的“斜”和“二测”分别指什么? 提示:“斜”是指在已知图形的xOy平面内垂直于x轴的线段,在直观图中均与x′轴成45°或135°;“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变;平行于y′轴的线段长度变为原来的一半。 2.圆的斜二测画法,其图形还是圆吗? 提示:不是圆,是一个压扁了的“圆”,即椭圆。 3.立体图形直观图的画法 由于立体图形与平面图形相比多了一个z轴,因此,用斜二测画法画立体图形的直观图时,图形中平行于x轴、y轴或z轴的线段在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.平行于x轴和z轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半. 例1.用斜二测画法画水平放置的六边形的直观图 解:

受限空间考试题库100道(含答案)010

1、3级作业环境,作业过程中必须进行全程机械通风。 正确答案:错误 2、有限空间管理单位应如实向作业单位提供有限空间类型、内部设施、外部环境等基本信息。 正确答案:正确 3、安全防护设备设施应定期检查和维护,检查发现安全防护设备设施损坏,应按公司年度计划安排进行更换。 正确答案:错误 4、应建立安全防护设备设施台账,建立登记、清查、使用、保管等管理制度,由作业人员负责其维护、保养、计量、检定、维修、更换等工作。 正确答案:错误 5、在潮湿场所或技术构架上操作时,必须选用Ⅱ类或由安全隔离变压器供电的Ⅲ类手持式电动工具。严禁使用Ⅰ类手持式电动工具。 正确答案:正确 6、上下传递工具时,工具使用安全绳索拴紧系下,不得抛扔工具。 正确答案:正确 7、作业前进行气体检测时,每种气体在每个检测点上应连续读取3次,以检测数据的最高值为依据。 正确答案:正确 8、作业负责人应对作业环境进行危险辨识及风险评估,并根据作业风险和作业内容提出具体针对性的作业实施方案。 正确答案:正确 9、橡胶绝缘手套要选择较暗的阴凉场所进行保管。 正确答案:正确 10、氧气检测应设定缺氧报警和富氧报警两级检测报警值,缺氧报警值应设定为18%,富氧报警值应设定为22%。 正确答案:错误 11、地下有限空间内存在积水、污物的,应采取措施,待气体充分释放后再进行检测。 正确答案:正确 12、使用三脚架时,发现限位链妨碍作业时,应及时拆除。 正确答案:错误 13、进入热力管网作业,应先采取降温措施,再进入有限空间内作业。

正确答案:正确 14、进入燃气井、小室、管线作业,如果没有检测到可燃气,可以不使用防爆设备和工具,作业者不穿着防静电服装。 正确答案:错误 15、打开燃气井盖前应检测可燃气体浓度,存在可燃性气体时,应采取相应的防爆措施。 正确答案:正确 16、热力小室内作业,作业者可能会因环境高温高湿造成体力不支。 正确答案:正确 17、发生事故后应立即拨打119和120,以尽快得到消防队员和急救专业人员的救助。 正确答案:正确 18、绷带“8”字包扎适用于手、肩、肘、膝关节及踝关节的包扎。 正确答案:正确 19、伤病员如有外伤骨折等,救援人员应简单地进行伤口包扎和骨折固定,怀疑脊柱骨折时要正确地固定、搬运,以免加重损伤。 正确答案:正确 20、对伤病员实施侧卧位时,救护员位于伤病员一侧,将靠近自身的伤病员的手臂肘关节屈曲成90°,置于头部侧方;另一手肘部弯曲置于胸前。 正确答案:正确 21、现场止血方法常用的有三种,包括指压止血法、加压包扎止血法和止血带止血法。 正确答案:错误 22、有限空间作业项目的生产经营或管理单位在发包有限空间作业时,不用查验施工或承包单位相关的安全生产条件,只要与施工或承包单位签订专门的安全生产管理协议,或者在承包合同中约定各自的安全生产管理职责即可。 正确答案:错误 23、对于承发包有限空间作业项目,发包单位应对其承担管理单位的全部安全职责,履行安全监督义务。承包单位应承担作业单位的全部安全职责,履行安全作业的义务。 正确答案:正确 24、监护者应该确认作业者及气体检测人员的职业安全培训及上岗资格。 正确答案:正确 25、生产经营单位应当定期演练生产安全事故应急救援预案,每年不得少于两次。 正确答案:错误

matlab 三维图形绘制实例

三维图形 一. 三维曲线 plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。当x,y ,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y ,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。 Example1.绘制三维曲线。 程序如下: clf, t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); %向量的乘除幂运算前面要加点 plot3(x,y,z); title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); grid on; 所的图形如下: -1 1 X Line in 3-D Space Y Z 二. 三维曲面 1. 产生三维数据 在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。

语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。 2. 绘制三维曲面的函数 surf 函数和mesh 函数 example2. 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: clf, [x,y]=meshgrid(0:0.25:4*pi); %产生平面坐标区域内的网格坐标矩阵 z=sin(x+sin(y))-x./10; surf(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); title('surf 函数所产生的曲面'); figure; mesh(x,y ,z); axis([0 4*pi 0 4*pi -2.5 1]); title('mesh 函数所产生的曲面'); -2.5 -2-1.5-1-0.500.51surf 函数所产生的曲面

示意图画法

怎样画示意图题 一、显示空间关系 1.火车长100m ,车头距离桥头200m ,桥长200m ,火车从静止开始以a =1m/s 2的加速度运动,求火车过桥经历的时间。 2.长5.0m 的铁链悬于O 点,O 点下方距离铁链下方15m 处有一个(偏离O 点正下方少许)钉子。求铁链无初速释放后经过钉子的时间是多长?(g 取10m/s ) 3.1999年高考题 在光滑水平面上有一质量m =1.0×10-3 Kg 、电量q =1.0×10-10 C 的带正电小球,静止在O 点。以O 点为原点,在该水平面内建立直角坐标系Oxy 。现突然加一沿x 轴正方向、场强大小E =2.0×106V/m 的匀强电场,使小球开始运动。经过1.0s ,所加电场突然变为沿y 轴正方向,场强大小仍为E =2.0×106 V/s 匀强电场。再经过1.0s ,所加电场又突然变为另一个匀强电场,使小球在此电场作用下经1.0s 速度变为零。求此电场的方向及速度变为零时小球的位置。 4.2006年理综Ⅰ卷第23题 天空有近似等高的浓云层。为了测量云层的高度,在水平地面上与观测者的距离为d =3.0km 处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt =6.0s 。试估算云层下表面的高度。已知空气中的声速v =1 3 km/s 。 5.2007年理综Ⅰ卷第23题 甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m /s 的速度跑完全程:乙从起跑后到接棒前的运动是匀加速的。为了确定乙起跑的时机,需在接力区前适当的位置设置标记。在某次练习中,甲在接力区前013.5m s =处作了标记,并以9m /s v =的速度跑到此标记时向乙发出起跑口令。乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒,已知接力区的长度为L =20m. 求:(1)此次练习中乙在接棒前的加速度a 。 (2)在完成交接棒时乙离接力区末端的距离. 二、把立体关系转化为平面关系: 6.如图所示,abcd 是一竖直的矩形导线框,线框面积为S ,放在磁感应强度为B 的均匀水平磁场中.ab 边在水平面内且与磁场方向成60?角.则通过导线框的磁通量等于 ( ) (A)BS (B) 12BS (C) 2 2BS (D) 32 BS

受限空间作业考试题及答案5

一、判断题 1.有限空间作业属高风险作业,其存在的风险具有隐蔽性、突发性和复杂性,完全不可控。( ) 2.当空气中甲烷达25%~30%(体积分数)时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速等;若不及时脱离接触,可致窒息死亡。( ) 3.硫化氢是一种无色、较空气重的、具有燃爆性的有毒气体。低浓度时人体能感受到浓烈的臭鸡蛋气味,随着浓度的升高,感觉臭味减弱。( ) 4.封闭式的污水处理池属于有限空间,开放式的污水处理池则不属于有限空间。( ) 5.作业审批对作业安全不会产生影响,是否实施可自行决定。( ) 6.长管呼吸器属于隔绝式呼吸器的一种,一般分为自吸式长管呼吸器、连续送风式长管呼吸器和高压送风式长管呼吸器。( ) 7.作业前,作业人员必须对有限空间内气体环境进行充分检测,确认气体检测结果符合作业安全要求方可作业。同时,如果评估作业过程中气体环境不会发生太大变化,作业期间可不再进行实时监测。( ) 8.除中毒、缺氧窒息和燃爆外,有限空间内还可能存在淹溺、高处坠落、触电、物体打击、机械伤害、灼烫、坍塌、掩埋、高温高湿等安全风险。( ) 9.如果本单位有限空间作业频次低,属于偶发作业,可不纳入企业安全管理体系进行统一管理。( ) 10.不具备有限空间作业安全生产条件的单位,不应实施有限空间作业。发包单位应将有限空间作业发包给具备安全生产条件的承包单位实施作业。( ) 11.甲苯和二甲苯通常作为油漆、黏结剂的稀释剂,在有限空间内进行涂装作业时,可能存在因吸入高浓度甲苯、二甲苯蒸气导致人员中毒的风险。( ) 12.气体检测报警仪的传感器应每年至少检定或校准1次,量值准确方可使用;日常使用时应确保零值准确。( ) 13.安全帽应在产品声明的有效期内使用,受到较大冲击后,只要帽壳没有明显的断裂纹或变形就可以继续使用。( ) 14.存在有限空间作业的单位应根据有限空间的定义,辨识本单位存在的有限空间及其安全风险,确定有限空间数量、位置、名称、主要危险有害因素、可能导致的事故及后果、防护要求、作业主体等情况,建立有限空间管理台账并及时更新。( ) 15.发包单位对作业安全承担主体责任,承包单位对其承包的有限空间作业安全承担直接责任。( ) 16.作业前应对作业环境进行安全风险辨识,分析存在的危险有害因素,提出消除、控制危害的措施,编制详细的作业方案。( ) 17.未经审批,企业不得擅自开展有限空间作业。( ) 18.有限空间作业应设置监护人员,在有限空间外全过程持续监护,不得擅离职守。( )

matlab作图

MATLAB受到了广大理工科学生和学者青睐,除了Matlab强大的矩阵计算功能和功能齐全的toolbox以外,一个重要原因是因为它提供了方便的绘图功能。下面我们将详细介绍2维图形对象的生成函数及图形控制函数的使用方法以及一些图形的修饰与标注函数及操作和控制MATLAB各种图形对象的方法. 一、图形窗口与坐标系; A.图形窗口 1.MATLAB在图形窗口中绘制或输出图形,因此图形窗口就像一张绘图纸. 2.在MATLAB下,每一个图形窗口有唯一的一个序号h,称为该图形窗口的句 柄.MATLAB通过管理图形窗口的句柄来管理图形窗口; 3.当前窗口句柄可以由MATLAB函数gcf获得; 4.在任何时刻,只有唯一的一个窗口是当前的图形窗口(活跃窗口); figure(h)----将句柄为h的窗口设置为当前窗口; 5.打开图形窗口的方法有三种: 1)调用绘图函数时自动打开; 2)用File---New---Figure新建; 3)figure命令打开,close命令关闭. 在运行绘图程序前若已打开图形窗口,则绘图函数不再打开,而直接利用已打开的图形窗口;若运行程序前已存在多个图形窗口,并且没有指定哪个窗口为当前窗口时,则以最后使用过的窗口为当前窗口输出图形. 6.窗口中的图形打印:用图形窗口的File菜单中的Print项. 7.可以在图形窗口中设置图形对象的参数.具体方法是在图形窗口的Edit菜单中选择Properties项,打开图形对象的参数设置窗口,可以设置对象的属性. B.坐标系; 1.一个图形必须有其定位系统,即坐标系; 2.在一个图形窗口中可以有多个坐标系,但只有一个当前的坐标系; 3.每个坐标系都有唯一的标识符,即句柄值; 4.当前坐标系句柄可以由MATLAB函数gca获得; 5.使某个句柄标识的坐标系成为当前坐标系,可用如下函数:axes(h) h为指定坐标系句柄值.

浅谈城市快速路总体设计的要点

浅谈城市快速路总体设计的要点 摘要:随着经济的快速发展,各个城市逐渐地加快自身城市建设的脚步,积极 完善相关的基础设施,在一定程度上提高了人民的生活质量。城市快速路的建设 是城市进一步发展的内在需求,因此,相关人员要加强对城市快速路的建设,解 决城市交通拥堵的现象,促进城市进行科学的发展,进而提高人民的生活水平。 关键词:城市;快速路;设计 引言 城市快速路建设是城市发展趋势之一,因此,相关人员应加强对快速路的建设,进而减少城市中的交通问题。相关人员应明确快速路设计工作在快速路建设 中的重要性,正确的认识到快速路总设计中存在的问题,并采取针对性的措施解 决相关问题,提高城市快速路的建设水平,以此加快城市的发展速度。 一、快速路的功能和作用 (一)快速路的建设对城市内部的作用 近年来,国民经济的快速提高导致我国人民所拥有的私家车的数量不断地增加,交通堵塞问题日益严重,由此可见,快速路建设是城市发展的趋势。设计人 员应明确快速路建设中应减少红路灯的建设,以增加立交桥的方式确保车辆的正 常行驶。城市道路的建设可以有效的提高城市经济的发展速度,并对城市土地规 划与城市建设具有重要的影响,因此,设计人员应保证相关设计的科学性。城市 快速的建设可以有效的解决城市车辆拥堵现象,逐渐地促进城市交通道路体系的 成熟,快速路不仅可以有效的连接城市与城市之间的交通,也可以在城市的内部 起到一定的作用,降低城市交通的压力,并可以在一定程度上带动城市房地产行 业的发展,以此提高城市发展的速度,推进城市经济增长[1]。 (二)快速路的建设对城市之间的作用 快速路在城市之间具有重要的作用,会在一定程度上降低城市之间往来的阻碍,并且可以促进旅游行业的发展,以此带动城市经济发展。快速路在建设中可 以促进城市之间工业化交流,确保城市间的工业化工厂可以进行频繁的经验交流,促进城市工业化发展互相进步。快速路的建设可以有效的加快城市之间人员流动 的速度,会使相关人员在流动中将部分较好的项目带入经济落后的城市中,以此 减少城市与城市之间的发展差距,进而降低我国的贫富差距,促进我国的平衡发展。建立快速路在发展过程中可以在一定程度上改变城市的发展环境,帮助城市 在发展中加强对外界的交流,学习其他城市的发展经验,以此提高城市的发展速 度[2]。 二、快速路设计过程中所遇到的问题 (一)快速路与辅路的衔接不当 虽然快速路在城市的内部发展及改善外部生存环境中具有重要的作用,但是 在快速路总设计工作中还存在着一定的问题,限制着快速路在城市发展中发挥其 重要的作用。快速路与辅路衔接不当,会导致快速路设计不合理,降低城市的规 划合理性。尤其在旧城区中施工存在着一定的难度,不科学的设计不仅会导致城 区的整体结构遭到破坏,也会导致原有的交通道路与快速路无法连接,阻碍城市 居民使用快速路。并且在快速路地基施工过程中可以能会对旧城区的地下管道及 地下线路造成破坏,这种情况增加了快速路与辅连接的难度,导致城市快速路的 建设速度降低[3]。另外,部分老旧城区的道路建设不完善,道路中存在着一定损坏,使得辅路无法与快速路完美的连接,对城市快速路建设总设计工作中造成一

有限空间作业考试试题带答案

XXXXXXXXXXXXX公司 XXXX厂有限空间作业知识考试试卷 姓名:年月日阅卷人: 单位:工种:得分: 一、填空题(每题5分,共40分) 1、有限空间分为三类,分别为密闭设备、地下有限空间和()。 2、凡要进入有限空间危险作业场所作业,必须按照()的原则。 3、有限空间气体监测应采用()进行检测。 4、有限空间内氧的浓度应保持在()。 5、在有限空间作业时应在有限空间外设置(),有限空间出入口应保持畅通。 6、作业中断超过()应重新进行监测分析,对人员重新进行清点,情况异常时应立即停止作业,车里、清点作业人员,经对现场处理并取样分析合格后方可恢复作业。 7、在有限空间作业前,监护人员应对作业人员和作业工具进行()。 8、建立、健全有限空间作业安全生产责任制,明确有限空间作业负责人、()、监护者职责。 二、选择题(可多选,每题4分,共20分) 1、有限空间是(),进出口较为狭窄有限、未被设计为固定工作场所,自然通风不良,易造成有毒有害、易燃易爆物质积聚或抚养不足的空间。 A、封闭或半封闭 B、完全封闭 C、部分封闭 D、密闭 2、下列不属于有限空间的是()。 A、管道 B、垃圾站 C、粮筒仓 D、生活房间 3、进入有限空间作业必须采取通风措施,下列说法错误的是() A、打开人孔、手孔、料孔、风门、烟门等于大气相通的设施进行自然通风 B、必要时可采取强制通风。

C、氧含量不足时,可以向有限空间充纯氧或富氧空气 D、在条件允许的情况下,尽可能采取正想通风即送风方向可使作业人员有限接触新鲜空气。 4、有毒有害气体主要有() A、硫化氢 B、一氧化碳 C、氧气 D、二氧化碳 5、实施检测时,检测人员应处于(),检测时要做好检测记录,包括监测时间、地点、气体种类和检测浓度等。 A、现场位置 B、安全环境 C、指定位置 D、有限空间内 三、判断题。(正确的打“√”,错误的打“×”,每题4分,共20分) 1、在人(手)孔工作时,如感觉头晕呼吸困难,必须离开人孔,采取通风措施。() 2、强制通风可将新鲜空气导入到有限空间,增加氧气浓度,降低有毒气体浓度,。() 3、作业者工作面发生变化时但在同一联通区域内,可以参照前一区域测试结果进行作业。() 4、在危险环境以外进行检测,可通过采样泵和导气管将危险气体样品引到检测仪器。() 5、当初次进入危险环境进行检测时可直接进行检测。() 四、问答题。(每题10分,共20分) 1、有限空间作业的人员的职责是什么? 2、有限空间一旦发生事故,救援的程序是什么?

MATLAB中bode图绘制技巧(精)

Matlab中Bode图的绘制技巧学术收藏2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。我们可以用下面的语句:num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions 我们可以看到以下

内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off' XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]} YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'} OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear'MagVisible: 'on' MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off' PhaseMatching: 'off'PhaseMatchingFreq: 0 PhaseMatchingValue: 0我们可以通过修改上面的每一 项修改伯德图的风格,比如我们使用下面的语句画我 们的伯德图:P=bodeoptions;P.Grid='on'; P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ'; num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den; bode(H,P 这时,我们将会看到以下的伯德图: 上面这张图相对就比较好了,它的横坐标单位 是HZ,范围是[10 40K]HZ,而且打开了网格,便于我 们观察-3DB处的频率值。当然,你也可以改变bodeoptions中的其它参数,做出符合你的风格的伯

小学数学空间与图形复习资料

小学数学空间与图形复习资料(二) A、图形的认识 (一)线与角 一、线 1、直线:直线没有端点;长度无限,无法比较长短;过一点可以画无数条直线,过两点只能画一条直线。 2、射线:射线只有一个端点;长度无限,无法比较长短。 3、线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中线段最短。 4、平行线:在同一平面内,不相交的两条直线叫做平行线。两条平行线间的垂线段长度都相等。 5、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 点到直线的距离:从直线外一点到这条直线所画的垂线段的长度叫做这点到直线的距离。 二、角 1、角的定义:从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。 2、角的特点:角的大小与角两边的长短无关,与角两边叉开的大小有关。 3、角的分类: 锐角:小于900的角叫做锐角;直角:等于900的角叫做直角;钝角:大于900而小于1800的角叫做钝角。平角:角的两边成一条直线,这时所组成的角叫做平角,平角1800。周角:角的一边旋转一周,与另一边重合,周角是3600。注意:平角不能理解为一条直线,周角不能理解为一条射线。 4、角的度量:量角器中心点与顶点重合,角的一边与量角器的零刻度线重合。即点与点重合,边与边重合的量角方法。看量角器的度数,就需要看刻度线在哪边了。 (二)平面图形 一、长方形特征:对边相等,4个角都是直角的四边形;有2条对称轴。 二、正方形特征:4条边都相等,4个角都是直角的四边形;有4条对称轴。 三、三角形 1、特征:由三条线段围成的图形;三角形两边之和大于第三条边;三角形内角和是180度;三角形具有稳定性;三角形有三条高。 2、分类: (1)按角分锐角三角形:三个角都是锐角。直角三角形:有一个角是直角;等腰直角三角形的两个锐角都为45度,它有1条对称轴。钝角三角形:有一个角是钝角。(2)按边分任意三角形:三条边长度不相等。等腰三角形:有两条边长度相等;两个底角相等;有1条对称轴。等边三角形:三条边长度都相等;三个内角都是60度;有3条对称轴。 四、平行四边形特征:两组对边分别平行,相对的边平行且相等; 五、梯形特征:只有一组对边平行的四边形;等腰梯形有1条对称轴。

有限空间考试题

有限空间作业考试题 姓名:车间:分数: 一、填空题(每空2分,共计30分) 1、有限空间作业现场应确定作业、和作业人员,不得在没有监护人员的情况下作业。 2、在有限空间作业时应在有限空间外设置醒目的,有限空间出入口应保持畅通。 3、进入有限空间的作业人员对违意指挥,强令冒险作业,安全措施未落实等情况下,有权提出。 4、作业中断超过应重新监测分析,对人员进行重新清点,情况异常时应立即停止工作,清点作业人员,经对现场处理并取样分析合格后方可恢复作业。 5、有限空间作业前,作业单位现场负责人应对有限空间作业人员进行。 6、消除有限空间的危险:蒸汽吹扫、水冲洗、、空气通风、隔离有限空间等等,确定有限空间的条件合适与进入。 7、进入有限空间作业结束后,、应清理作业现场。 8、有限空间作业应当严格遵守“、、”的原则。检测指标包括氧浓度、易燃易爆物质(可燃性气体、爆炸性粉尘)浓度、有毒有害气体浓度。 9、工贸企业应当根据本企业有限空间作业的特点,制定,并配备相关 的、、通讯设备、安全绳索等应急装备和器材。有限空间作业的现场负责人、监护人员、作业人员和应急救援人员应当掌握相关应急预案内容,定期进行演练,提高应急处置能力。 二、选择题(每题2分,共30分) 1、下列属于有毒有害气体主要有() A、硫化氢 B、甲烷 C、氧气 D、二氧化碳 2、生产部门应在有限空间进入点附近设置项目的警示标志标识,并告知作业者(),防止未经许可人员进入工作现场。 A、存在不安全因素 B、存在的危险有害因素和防控措施 C、防控措施 D、检查空间内有害气体及易燃物质 3、目前采用有害气体测试仪对人(手)孔进行测试,可探测以下有几种气体情况() A、一氧化碳、硫化氢缺氧 B、硫化氢、缺氧

MATLAB画图入门篇--各种基本图形绘制的函数与实例

MATLAB画图入门篇--各种基本图形绘制的函数与实例【来自网络】 一.二维图形(Two dimensional plotting) 1.基本绘图函数(Basic plotting function):Plot,semilogx,semilogy,loglog,polar,plotyy (1).单矢量绘图(single vector plotting):plot(y),矢量y的元素与y元素下标之间在线性坐标下的关系曲线。 例1:单矢量绘图 y=[00.62.358.311.71517.719.420];plot(y) 可以在图形中加标注和网格, 例2:给例1的图形加网格和标注。 y=[00.62.358.311.71517.719.420];plot(y) title('简单绘图举例');xlabel('单元下标');ylabel('给定的矢量');grid (2).双矢量绘图(Double vector plotting):如x和y是同样长度的矢量,plot(x,y)命令将绘制y元素对应于x元素的xy曲线图。 例:双矢量绘图。 x=0:0.05:4*pi;y=sin(x);plot(x,y) (3).对数坐标绘图(ploting in logarithm coordinate):x轴对数semilogx,y轴对数semilogy,双对数loglog, 例:绘制数组y的线性坐标图和三种对数坐标图。 y=[00.62.358.311.71517.719.420]; subplot(2,2,1);plot(y);subplot(2,2,2);semilogx(y) subplot(2,2,3);semilogy(y);subplot(2,2,4);loglog(y) (4)极坐标绘图(Plotting in polar coordinate): polar(theta,rho)theta—角度,rho—半径 例:建立简单的极坐标图形。 t=0:.01:2*pi;polar(t,sin(2*t).*cos(2*t)) 2.多重曲线绘图(Multiple curve plotting) (1)一组变量绘图(A group variable plotting) plot(x,y) (a)x为矢量,y为矩阵时plot(x,y)用不同的颜色绘制y矩阵中各行或列对应于x的曲线。 例1: x=0:pi/50:2*pi;y(1,:)=sin(x);y(2,:)=0.6*sin(x);y(3,:)=0.3*sin(x);plot(x,y) (b)x为矩阵,y为矢量时绘图规则与(a)的类似,只是将x中的每一行或列对应于y进行绘图。。 例2: x(1,:)=0:pi/50:2*pi;x(2,:)=pi/4:pi/50:2*pi+pi/4;x(3,:)=pi/2:pi/50:2*pi+pi/2; y=sin(x(1,:));plot(x,y) (c)x和y是同样大小的矩阵时,plot(x,y)绘制y矩阵中各列对应于x各列的图形。 例3: x(:,1)=[0:pi/50:2*pi]';x(:,2)=[pi/4:pi/50:2*pi+pi/4]';x(:,3)=[pi/2:pi/50:2*pi+pi/2]'; y(:,1)=sin(x(:,1));y(:,2)=0.6*sin(x(:,1));y(:,3)=0.3*sin(x(:,1)); plot(x,y) 这里x和y的尺寸都是101×3,所以画出每条都是101点组成的三条曲线。如行列转置后就会画出101条曲线,每条线

浅析城市快速路景观设计

浅析城市快速路景观设计 发表时间:2018-06-14T15:43:09.210Z 来源:《建筑学研究前沿》2018年第1期作者:聂丽娜 [导读] 城市快速路是一种具有中央隔离带、多车道、控制进出口、全立体式交叉的道路。 深圳市市政设计研究院有限公司广东深圳 518000 摘要:城市快速路是二十世纪城市化运动发展时提出的一种新型城市道路,是现代大城市中重要的交通设施。城市快速路景观应与城市的区域开发战略决策相呼应。城市快速路的建设使其周边土地使用性质发生变化,城市景观也随之改变,城市重心向着快速路服务范围所覆盖的区域扩展,形成了快速路沿线特有的城市景观。 关键词:城市快速路;景观设计;动态理念; 城市快速路是一种具有中央隔离带、多车道、控制进出口、全立体式交叉的道路。城市快速路的产生给传统城市道路景观设计观念带来了冲击和影响,同时也产生了一种新的、大尺度的城市道路景观设计需求。城市快速路景观给人的是一种动态的地域景观感受,是一种连续的印象流,人们不能驻足仔细欣赏细部,只能注意色彩、体型和天际线等大尺度感受。随着城市居民素质的提高,对城市快速路景观的艺术、生态、功能性提出了更高的要求,如何将不断扩展的道路交通与周边环境合理地融为一体,构筑快速路景观设计特色,成为城市景观营造的一个重要课题。本文以深圳市南坪三期快速路景观设计为例,探讨城市快速路景观设计理念,旨在为现代城市快速路景观设计发展提供有益的参考借鉴。 1项目概况 深圳南坪三期横跨龙岗区、坪山新区,西起水官高速横坪立交,东至聚龙路(规划外环高速公路田头互通立交),道路全长约22.88公里,是城市快速路。景观绿地构成包括中央隔离带、主辅分隔带(局部)、边侧绿带、立交节点等,景观面积约为91万平方米。 南坪三期快速路周边用地现主要为轻型工业用地、居住生活用地、农林渔畜牧产业用地、自然林地、水库。远期道路周边用地规划将以一类工业用地、二类居住用地、农业保护用地、公共绿地为主(见图1)。 图1 南坪三期总平面图 2设计原则 2.1以人为本,绿色导向:绿化景观设计通过园林植物的配置,保障道路交通安全、正确导向,有效减弱汽车眩光,降低司机的驾驶疲劳度等,创建舒适宜人的快速路交通环境,体现人文关怀。 2.2生态多样,满足绿量:构建多样性的植物群落,丰富生物栖息地,改善局部环境和气候。通过园林绿化乔木大体量运用,形成高架快速路的绿色屏障,减少对周边自然环境的影响。 2.3因地制宜,体现特色:选用适宜道路条件、与周边环境相协调、生长健壮、绿化效果稳定的园林植物,同时配合各段环境特色和设计主题进行绿化布置。 2.4方便管理,易于维护:绿化方式应有利于节水节能,方便人工修剪。并建立模块化景观系统方便以后的跟踪评估。 3总体构思 3.1对本项目理解:南坪三期快速路作为“深圳市高快速路网”的一部分,应与全市快速路整治方案统一协调,以提升整体城市形象。南坪一期周边的环境动感自然,其园林设计将看作穿行于城市郊野山林的一条“绿色丝带”。南坪二期的设计结合它的环境及其本身桥梁设计为主的特点,提出“创建穿插于城郊与城区之间的空中绿色走廊”。南坪三期在区位上和一、二期形成海、城、山空间的连贯。南坪三期周边用地性质多样,交通方式丰富,景观资源优势明显,水体山体自然景观富有张力,因此在绿化景观塑造上应发挥地域优势,重点展现人和车的景观参与,原生态的乡野气息以及景观空间的节奏和韵律感,使得整体绿化景观充满活力而变化丰富,成为城市区域之间极具生命力的脉络联系。 3.2南坪三期景观总体设计理念——打造“山、水、路”有机交汇,形成风景优美、安全愉悦的城市快速路景观。园林设计结合周边变化的环境,首先以安全导向、隔离屏障为支撑条件,再结合隧道口、匝道绿地等合理布置景观节点。同时尊重且合理利用环境现状,并满足土地利用规划对景观绿化的需求。然后深入对景观生态的思考,如物种生长栖息环境,地质、水文、气候条件,道路污染等方面。以及利用人车和景观的的动态视距关系,把控好空间尺度,让行进中的人们感受到节奏和韵律的跳动,使整个行进过程充满期待和愉悦。 4具体设计 快速路行驶下的汽车只有穿行于大尺度的景观空间,司乘人员才能产生融入自然的感觉而不是被排斥感,所以,动态中人的景观尺度感常是宜车的大尺度。车速增加,标段长度必须相应增加以保证视觉图案的完整性。车速在80km/h,标段长度适用800-1000m,通过时间36-45s。 4.1景观分段 景观分段有两个因素,一是南坪三期大环境使然,环境差异形成一定的景观区别;二是项目道路全长22.88公里,从景观上来分析,需要一个变化统一的的景观形式。因此景观大致分为龙岗景观段、坪山景观段,只是每一景观段有各自特点又相互联系。每一段有各自特点由不同环境决定,多表现在植物配置形式上;相互联系是指每一段在植物选择或配置上有相通之处。 龙岗景观段:水官高速横坪立交到碧岭隧道之间,路段长6.1Km,6座立交,1处隧道。设计突出“生态龙岗迎宾廊”为主题。通过开花或色叶植物为主的配置营造热情迎宾的气氛,植物主色调以红色开花乔木组团与黄色开花乔木组团,进行组团式跳跃种植。主要选择为木

小学数学总复习空间与图形试题

小学数学总复习空间与 图形试题 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

空间与图形试题精选 一、填空题。 1. 从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。 2. 下图中,∠1=()度,∠2=()度。 1 30 2 3. 一个三角形中,最小的角是46°,按角分类,这个三角形是()三角 形。 4. 右图是三个半径相等的圆组成的图形,它有()条对称轴。 5. 用百分数表示以下阴影部分是整个图形面积的百分之几。 6. 把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少()平方分米。 7. “”和“”的周长之比是(),面积之比是()。 8. 右图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是 ()平方厘米。至少还需要()块这样的小正方体才能搭成一个 大正方体。 9. 画一个周长厘米的圆,圆规两脚间的距离是()厘米,画成的圆的面 积是()。 10. 下面的小方格边长为1厘米,估一估图①中“福娃”的面积,算一算图②中阴影部分的面积。

11. 一个梯形,上底长a 厘米,下底长b 厘米,高h 厘米。它的面积是( )平方厘米。如果a=b ,那么这个图形就是一个( )形。 12. 在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是( )平方厘米,剩下的边料是( )平方厘米。 13. 将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是( )平方厘米。 14. 5个棱长为30厘米的正方体木箱堆放在墙角(如右图),露在外面的表面积是( )平方厘米。 15. 如下左图,已知大正方形的边长是a 厘米,小正方形的边长是b 厘米。用字母表示阴影部分的面积是( )平方厘米。 二、选择题。 1. 小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当表示为( )。 A. (1,3) B. (3,1) C. (1,1) D. (3,3) 2. 在同一平面内,画已知直线的垂线,可以画( )。 A. 1条 B. 4条 C. 2条 D. 无数条 3. 用100倍的放大镜看40°的角,这个角的度数是( )度。 A. 4 B. 40 C. 400 D. 4000 4. 下面图形是用木条钉成的支架,最不容易变形的是( )。 D C B A 5. 下列图形中,对称轴条数最多的是( )。

有限空间作业考试试题

有限空间作业考试试题姓名: 一、填空题(每题2分) 1、有限空间分为三类,分别为密闭设备、地下有限空间和(地上有限空间) 2、凡要进入有限空间危险作业场所作业,必须按照(“先检测,后作业”)的原则。 3、有限空间气体监测应采用(气体检测仪)进行检测。 4、有限空间内氧的浓度应保持在( 19.5%- 23.5%)。 5、在有限空间作业时应在有限空间外设置(醒目的安全警示标志.),有限空间出入口应保持畅通。 6、作业中断超过( 30分钟)应重新进行监测分析,对人员重新进行清点,情况异常时应立即停止作业,车里、清点作业人员,经对现场处理并取样分析合格后方可恢复作业。 7、在有限空间作业前,监护人员应对作业人员和作业工具进行(安全检查)。 8、建立、健全有限空间作业安全生产责任制,明确有限空间作业负责人、(作业者)、监护者职责。 9、进入有限空间的作业人员对违章指挥,强令冒险作业,安全措施未落实等情况下,(有权提出拒绝作业)。 10、有限空间作业前,作业单位现场负责人应对有限空间作业人员进行安全教育和(培训)。 二、选择题(可多选,每题2分) 1、有限空间是( A ),进出口较为狭窄有限、未被设计为固定工作场所,自然通风不良,易造成有毒有害、易燃易爆物质积聚或抚养不足的空间。 A、封闭或半封闭 B、完全封闭 C、部分封闭 D、密闭 2、下列不属于有限空间的是( D )。 A、管道 B、垃圾站 C、粮筒仓 D、生活房间 3、进入有限空间作业必须采取通风措施,下列说法错误的是( C ) A、打开人孔、手孔、料孔、风门、烟门等于大气相通的设施进行自然通风 B、必要时可采取强制通风。 C、氧含量不足时,可以向有限空间充纯氧或富氧空气 D、在条件允许的情况下,尽可能采取正想通风即送风方向可使作业人员有限接触新鲜空气。 4、有毒有害气体主要有( A、B ) A、硫化氢 B、一氧化碳 C、氧气 D、二氧化碳 5、实施检测时,检测人员应处于( B ),检测时要做好检测记录,包括监测时间、地点、气体种类和检测浓度等。

matlab空间曲面绘图

空间曲面绘图 (1) 直接绘图-ezmesh 和ezsurf ezmesh 绘制三维网格图,ezsurf 绘制三维表面图。 例1 绘制抛物柱面2x 2z ?=的图形。 指令:ezmesh('2-x^2',[-1,1,-1,1]) 图7.43 指令:ezsurf('2-x^2',[-1,1,-1,1]) 图7.44 例2 绘制)xy sin(z =的图形。 指令:ezmesh('sin(x*y)',[0,4,0,4])

图7.45 例3 绘制马鞍面2y 2x z 2 2?=的图形。 指令:ezmesh('x^2/2-y^2/2') 图7.46 例4 绘制椭圆抛物面22x y 2z +=和抛物柱面2x 2z ?=所围的图形。 ezmesh('2-x^2',[-1,1,-1,1] hold on % 在同一图形窗口中继续绘图 ezmesh('2*y^2+x^2',[-1,1,-1,1]) axis([-1,1,-1,1,0,4])

图7.47 (2) 自定义网格绘图-meshgrid 和mesh/surf 例5 绘制23y x z ?=的图形。 [x,y]=meshgrid(-2:0.2:2,-3:0.1:3) % 自定义网格数据 z=x.^3-y.^2 mesh(x,y,z) 图7.48 surf(x,y,z) 图7.49 contour3(x,y,z,50) %绘制50条三维等高线

图7.50 Contour(x,y,z,40) %绘制40条二维等高线 图7.51 例6 在同一坐标系中绘制23y x z ?=和0z =的图形。 [x,y]=meshgrid(-2:0.2:2,-3:0.1:3) z=x.^3-y.^2 mesh(x,y,z) zz=zeros(size(z)) hold on mesh(x,y,zz)

matlab中绘制多个图形

绘图功能是Matlab的一个强大的功能。 subplot是MATLAB中常用的的函数。在绘图过程中经常要在一个页面中绘制几张图 它的使用格式:subplot(m,n,p)或者subplot(m n p)。 函数subplot是将多个图画到一个平面上的工具。括号中的m表示是图排成m行,n 表示图排成n列,也就是整个figure中有n个图是排成一列的,一共m行,如果m=3就是表示3行图。p表示图所在的位置,p=3表示从左到右从上到下的第3个位置。 以下是对它的一些应用,还用到了其它的一些函数 程序的代码如下 x=0:0.01:10; y1=sin(x); subplot(3,3,1); plot(x,y1); xlabel('x'); ylabel('y1'); title('y1=sin(x)');axis([0 pi*2 -1 1]); y2=cos(x+2); subplot(3,3,2); plot(x,y2); xlabel('x'); ylabel('y2');title('y2=cos(x+2)');axis([0 pi*2 -1 1]); y3=sin(x)+y2;subplot(3,3,3); plot(x,y3); xlabel('x'); ylabel('y3');title('y3=sin(x)+y2'); y4=sin(x).^3+cos(x);subplot(3,3,4);axis([0 pi*2 -1 2]); plot(x,y4); xlabel('x'); ylabel('y4');title('y4=sin(x).^3+cos(x)');axis([0 pi*2 -1 2]); y5=9*x.^5+3*x.^4+x.^3+2*x.^2;

相关文档
最新文档