Ad Hoc网络中一种基于模糊的自适应能量分配方案(IJISA-V10-N2-7)

Ad Hoc网络中一种基于模糊的自适应能量分配方案(IJISA-V10-N2-7)
Ad Hoc网络中一种基于模糊的自适应能量分配方案(IJISA-V10-N2-7)

I.J. Intelligent Systems and Applications, 2018, 2, 72-84

Published Online February 2018 in MECS (https://www.360docs.net/doc/2215281840.html,/)

DOI: 10.5815/ijisa.2018.02.07

A Fuzzy-based Adaptive Energy Efficient Load

Distribution Scheme in Ad-hoc Networks

Varun Kumar Sharma

Department of Computer Science and Engineering

Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, (INDIA)

E-mail: varunksharma.102119.cse@https://www.360docs.net/doc/2215281840.html,

Lal Pratap Verma and Mahesh Kumar

Department of Computer Science and Engineering

Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, (INDIA)

E-mail: {er.lpverma1986, mahesh.chahar} @ https://www.360docs.net/doc/2215281840.html,

Received: 19 April 2017; Accepted: 11 June 2017; Published: 08 February 2018

Abstract—The traditional energy aware routing policies are not capable enough to keep up with dynamic properties of mobile ad-hoc network (e.g., mobility, quick topology changes, link-layer contentions etc.) and do not offer adequate performance in high congested situations. In past decades, authors have expressed their concerns towards smart routing paradigms concerning lesser energy consumption. However, many of these proposals are not able to offer significant performance concerning the quality of service. Consequently, the pattern of interest shifts towards cross-layer energy optimization schemes. These proposals did use of lower layers’ special information and provide significant performance enhancements. Still, many of the issues are associated with these proposals. Moreover, many of the proposals consider idle and sleep power consumption which too causes a considerable amount of energy consumption. Nevertheless, these methods require complex synchronization and efficient coordination which is too inefficient for extremely variable networks (MANETs). To address these issues, we propose an effective fuzzy- based energy efficient load distribution scheme which takes care of energy consumption considering congestion as a parameter. In comparison with some of the existing energy aware routing strategies, proposed method offers substantial improvements in terms of total energy consumption, network lifetime, total number of dead nodes, and average throughput.

Index Terms—Ad-hoc Networks, Routing, Energy Efficiency, Energy Optimization, Fuzzy System, Congestion.

I.I NTRODUCTION

In recent years, growing demands of advanced user has led to the outburst in advancements of wireless communication technology. With the proliferation of advanced computing technologies such as smart phones, laptops, and tablets have led the requirements of a contemporary user to a significant level. However, innovative computing trend insists availability of ample amount of resources such as energy, memory, and processing power [1] [53] [56]. Consequently, these rapid advancements in wireless technology have led to the development of intense heterogeneous traffic (e.g., video, images, and audio). Mobile Ad-Hoc Networks (MANETs) relies on the standard of decentralized architecture and has no infrastructure support [2] [46] [60]. Additionally, mobility support makes MANETs highly functional in tactical and defense applications [3]. In MANETs, wireless nodes proceed both as an end node (source or destination) and router node which carries forward the data on the behalf of others [4] [60]. However, these wireless nodes operate over small, low powered battery devices. Moreover, maintaining network performance, with the heavy traffic in MANET is complicated because of these battery constrained devices. With the aim of keeping the performance of a network, routing is a key and a leading factor that should be taken care off for designing an energy-aware routing strategy [50]. Smart routing leads to better utilization of energy-rich nodes, improves the overall power consumption, and so does the performance concerning lifetime of a network [5-7] [14-20] [58] [59]. In recent years, there has been an extensive amount of work done regarding energy-aware routing for both static and dynamic MANETs. Moreover, their primary motivation is to keep running the network as long as it’s potential. It can be accomplished by efficient utilization of node’s available energy during forwarding and when they are inactive as well. Additionally, energy-aware routing is a vital design factor for such a power constraint networks (MANETs). Power failure of an individual node does have an adverse effect not only its performance but, significantly affects it’s forwarding capa bility on behalf of others, and so does the network’s lifetime [8] [51] [54] [55] [59]. The selected energy-aware route should be more stable concerning control flooding of broadcast packets and control MAC retransmissions which offer optimality regarding power

consumption [9-11]. However, the stability of a path (regarding energy utilization) should provide an adequate level of quality service to the users. Otherwise, degraded performance (concerning the quality of service) decreases the reliability of a network to a great extent. Hence, there must be an appropriate balance between energy consumption and superior quality of service [12]. Moreover, many of the emergencies based dynamic ad-hoc networks which are both energy and bandwidth constrained in nature require a significant amount of attentions for designing energy-aware forwarding strategy by considering both aspects as mentioned above [13]. Moreover, the idea of joint cooperative communication (CC) is significantly helpful in designing energy competent forwarding strategies in a wireless network, in which end node act as a collaborative node to other and share the resources efficiently. However, the previous studies in CC are based on uncomplicated three nodes scenarios (sender, intermediate, and receiver) together with the assumption of idle MAC, which effectively coordinates the resources among them. However, there is an absolute decline in benefits offered by CC because of conventional upper layer protocols designed for non-cooperative systems [28-30].

A. Motivation

Contention based and contention free protocol schemes are two basic strategies that come under cooperative MAC. The contention based protocol (IEEE 802.11 distributed coordination function (DCF) [31]), extensively used in ad-hoc networks because of its less sophisticated features (as it does not need complex synchronization and coordination, which does in a contention free protocols). However, in [33], the authors observed that idle state of a node is equally treated (concerning power consumption) likewise as in the on state because IEEE 802.11 MAC has enormous and identical power consumption in both mentioned states. Moreover, many of the proposals [20] [21] [23] [24] [26] [52] consider a significant amount of energy wastage during idle and sleep state, and proposed diverse strategies to cope up with the higher energy wastage effectively. However, some of the proposals [15-18] based on the energy-aware routing schemes, in which intense transmissions forwarded through high powered battery devices. Moreover, the strategies proposed in [23] [24] purely designed for wireless sensor networks (WSN), generally sensor nodes are idle and sleep for a longer period and awakened (either periodically or for transmitting a small packet) only for the shorter duration of time. Hence, achieving maximum possible utilization of a channel is merely not important in WSNs, which results in an inferior quality of services. However, ensuring maximum channel usage together with minimum power consumption is the challenging issue in wireless mobile ad-hoc networks (MANETs). Additionally, the proposed energy-aware strategies [15-17] do not offer well-balanced energy level in the system because of their abrupt forwarding scheme. In our previous work [46], we have given an efficient traffic rate regulation policy by appropriately classifying diverse reasons for packet losses. Specifically, we have made major congestion contributors to adjust their transmission policy. We have used adaptive MAC retransmission strategy for local level traffic rate adaptation. In addition, we have controlled congestion globally, by sending congestion notifications in an efficient manner. Subsequently, in this paper, we have studied the effects of adaptive MAC retransmission strategy on energy consumptions of a wireless node. Moreover, we have also effectively utilizes the current energy level for suitably classifying the current status of a node (concerning energy level) by using fuzzy inference system and distribute the load on energy rich nodes efficiently.

The remaining paper is organized as follows: Section II presents the literature study of energy aware routing schemes. Section III presents the problem definition. Section IV presents the design and implementation of the proposed method. Section V shows the simulation setup and parameters. Section VI presents the experimental results and Section VII concludes this work.

II.R ELATED W ORK

Singh and Raghavendra [21] proposed an energy efficient protocol called Power Aware Multi-Access Protocol with Signaling (PAMAS) based on Multiple Access with Collision Avoidance (MACA) [22]. The PAMAS has incorporated a new signaling mechanism over MACA. The idea is to turn nodes into the sleep state when they are not transferred or relaying packets. Howe ver, the authors in [21] do not consider the node’s idle state listening which too consuming the significant amount of power. Ye et al. [23] [24], proposed sensor MAC (S-MAC) protocol, in [23], an efficient mechanism were suggested to reduce the overhead of idle listening by using periodic awake and sleeping mechanism. In [24], the authors further improved their proposed approach by effectively coordinating the sleeping schedules with synchronized neighbors to reduce the control overhead and latency. In [23], the period of sleep is fixed which leads to high latency in system, hence, in [24], authors proposed an adaptive listening mechanism to overcome the problem of high latency in the network. Dam and Langendoen [45], extends S-MAC, and recommended timeout MAC (T-MAC), the authors’ primary motivation is to reduce the idle listening efficiently. Moreover, their idea is compelling under variable load conditions. There is another approach called Piconet [25] based on the periodic sleeping mechanism likewise in S-MAC. In IEEE 802.11 DCF, the power saver mode is originally designed for the 1-hop network. Simple and less sophisticated synchronization system is the primary objective behind the design of the single hop network [24]. However, Tseng et al. [26], observed the problems of aforementioned saver mode concerning neighbor discovery, and clock synchronization. In [8], a thorough survey has been accomplished regarding energy conscious routing strategies in MANET. They classify different energy aware routing strategies by load

distribution, transmission control, and sleep power down approaches. The particular idea of load distribution approach concerns with a well-balanced utilization of energy-rich nodes in the network. It should not be the case of overutilization of some specific nodes in the network and causes route disconnections. However, the aforementioned energy-aware routing strategy leads to longer routes and causes higher average end-to-end delay. Woo et al. [27], proposed LEAR protocol based on localized information. The nodes in LEAR decide whether to take part in the route discovery process or not. The decision depends on the localized residual energy threshold, and it transfers the load over high powered battery devices. Ye et al. [32] proposed an adaptive sleeping based protocol called probing environment and adaptive sleeping (PEAS); they dynamically classify the set of working and non-working sensor nodes. The approach increases the lifetime of a network by turn off the radio state for non-working sensor nodes. Zhao et al.

[34], proposed cross-layer based adaptive MAC level retransmission scheme [35] to improve the performance of DSR network routing protocol over wireless mesh networks. The multiple metric such as node’s traffic load, the frame transmission efficiency, offered bandwidth are acting as a basis for obtaining an ideal path for transferring data. The proposal adopts its MAC retransmission scheme, according to the reward that is dynamically calculated corresponding to a route. Miller and Vaidya [44] proposed two radio channel based rate estimation MAC with the purpose of efficiently scheduling the wake-up state for the neighbors. However, the method entirely relies on the use of second radio which unnecessarily increases the hardware cost. Moreover, the idea of explicitly waking up the neighbors offers more complexity to the network. Meng et al. [47] have proposed a multi-agent based discovery system to come across comprehensive microgrid information. Their given discovery system offers usefulness concerning efficient broadcasting state policy. This policy subsequently helps in minimizing the overall exchange of data. Yang et al. [48] have given an optimal sensor coordination policy to enhance target tracking accuracy. They improved tracking system’s accuracy by designing a coordination policy between sensors, which includes both sensor motion and their optimal selection. Zhang et al. [49] introduced efficient denial of service (DoS) attack scheduling policy, considering inadequate energy ava ilability at attacker’s side. Their objective is to schedule DoS attack which maximizes the attacking effects on the wireless networked control system.

III.P ROBLEM D EFINITION

In [15-17], the authors introduced the concept of energy level based routing, ELBRP, classifies energy level of the nodes according to their available energy. The node energy level classification adopted in four phases (I).Safe Phase (II).Sub-Safe Phase (III).Danger Phase and (IV).High Danger Phase. In addition to this, the approach uses the requested delaying mechanism for calculating the route. However, the approach only adopts the delaying mechanism for sub-safe phase nodes and turn their radio state off for the high danger phase nodes. But the proposals mentioned above do not consider the individual classified node energy level and adopts the forwarding accordingly. If safe phase ranges from 100-50 (available energy (%)), the approach avoids the approach of delaying the route request (RREQ) packet. However, the idea of taking similar consideration (avoiding delaying mechanism) between the nodes whose available energy is approximately 95 % and those whose available energy is around 55 % (but both nodes belong to safe phase) is not up to the mark. The scheme of using the same forwarding strategy within an individual classified energy level reduces the possibility of better-balanced energy level and also equalized their (95 and 55 % available energy node) probability of inclusion in route discovery phase in the network. Moreover, ELBRP uses a simple forwarding mechanism (likewise in AODV routing strategy) when the nodes are in danger phase. Hence, there has a possibility of the inclusion of danger phase nodes instead of sub-safe nodes in the route construction phase. It causes over-utilization of danger phase nodes while; some of the available sub-safe nodes underutilized and leads to the unbalanced energy level in the network. In addition to the flaw as mentioned above, ELBRP does not take care of power consumption while data transmissi on is taking place. There’s a possibility that initially discovered route could be disconnected either because of dead nodes and link failures which result in the low performance of a network.

IV.T HE P ROPOSED S OLUTION

The primary objective of the proposed method is to well utilize those nodes which are affluent concerning their current available energy for better-balanced energy level in the network. Additionally, with the purpose of better-balanced energy level together with curtailing down the possibility of the inclusion of the lower energy level node in route construction phase, the proposed method, considers the delaying mechanism for every range of classified energy levels. For practical classification purpose, we have used the fuzzification method. The proposed method has focused on designing the routing strategy in such a way that, energy-rich nodes should always be the part of a route, considering MAC layer’s retransmission as a parameter and current radio state of a mobile node. Moreover, the proposed method also considers congestion as a parameter and adapts the MAC retransmission rate accordingly for every range of classified energy levels. While, for danger and high danger phase nodes, the proposed method turn off their radio state accordingly as discussed in further Sec. IV (E) in detail. Moreover, the proposed method also adapts according to the currently available energy of a node while intense data transmission is taking place. It also bifurcates the transmission load dynamically over other energy-rich nodes.

A. Analyzing the Effects of MAC Retransmissions over Total Energy Consumption

This sub-section shows the effects of MAC retransmissions over total energy consumption in the network. According to the wireless communication standards such as IEEE 802.15.4 and 802.11, the receiver transmitted an acknowledgment packet to the sender on each successful reception of a unicast data packet. If it fails to receive an acknowledgment, it simply retransmits the packet. It could be either because of the loss of a unicast or acknowledgment packet in the network. The IEEE 802.11 performs the link layer retries before dropping a packet by implementing ARQ (Automatic Repeat Request) scheme. These data packets retransmitted at a maximum of retransmissions specified by the MAC layer. These frequent packet losses are due to nature of a wireless channel and buffer overflow (congestion). Moreover, the wireless channels are highly susceptible to channel errors because of wireless channel fading, or its wireless circuitry compared to the wired channels. Hence, each packet transmission and reception causes the significant amount of energy consumption in network either because of its single or multiple transmissions in the network. The energy consumption calculated by the help of the Eq. (1) presented as follows [15] [36]. In Eq. (1), “Ene i ” represents energy consumption of a node “i ”, “Pow i ” represents either transmitting or receiving power of a node “i ” and “Time i ” represents either transmitting or receiving time of a node “i ”.

i i i Time Pow Ene *= (1)

The transmissions, receiving, idle, and sleep, energy consumption of a node “i ” is shown in Eq. (2-5) [36]. The node “i ” consumes “Pow Tx (i)” power in transmitting UDP segments, “Pow Rx (i)” po wer in receiving UDP segments or MAC ACKs, “Pow Idle (i)” power for waiting for UDP segments or MAC ACKs.

i Tx Tx TxTime i Pow i Ene *)()(= (2)

i Rx Rx RxTime i Pow i Ene *)()(= (3)

i Idle Idle IdleTime i Pow i Ene *)()(= (4)

i Sleep Sleep SleepTime i Pow i Ene *)()(= (5)

The idle time of a node “IdleTime i ” is calculated as in Eq. (6). While, the total time of UDP connection is “Time Total ”. Hence, the total power consumption “Pow_Cons Total (W)” for a UDP connection is shown in Eq. (7) [37] presented as follows.

i i Total i TxTime RxTime i Time IdleTime --=)( (6)

)()()()()(_i Ene i Ene i Ene i Ene W Cons Pow Sleep Rx Tx Idle Total +++= (7)

It is quite noticeable that total energy consumption is directly dependable on above mentioned parameters in Eq. 7, followed by Eq. 1-6. More the number of retransmissions more will be the total energy consumptions in the network. We have simulated a network as discussed in Sec. V, and calculate the amount of energy consumed at each MAC retransmissions, as shown in Fig. 1. The total energy consumption is continuously decreasing as the retransmission decreases. At initial energy (11 J), the average energy consumption is approximately 206.50 J at retransmission count “7”. While it is around 196.82 J at retransmission count “1”. The similar effects also observed for other two initial energy cases (10 and 9 J). B. Selecting the Energy Affluent Nodes for Forwarding Traffic

The proposed method selects the energy-rich nodes by using the requested delaying mechanism [15-17]. During the route discovery phase, each node (despite those, which are having an available route to the destination or they itself are the destination nodes) according to their possible energy level delayed the RREQ packet. The holding delay is inversely proportional to currently available energy of a node according to the Eq. (8) presented as follows.

Node Available

Delay

Pkt Ene RREQ 1α (8)

Fig.1. MAC retransmissions effect over total energy consumption.

The higher available energy leads to lesser RREQ

packet delay. The idea motivates this delaying of RREQ packet; each node only accepts the earlier RREQ packet and discards the later ones. Hence, those nodes which are having the lesser available energy level hold the RREQ packet for a longer period, and the possibility of their inclusion in the route is very less. Finally, a path is constructed with higher energy nodes in the network. As far as delay is concerned, in IEEE 802.11 DCF standard, a transmitted packet has influenced by the number of delays associated with each node in the network. These delays are (I).Carrier sense delay (II).Back off delay (III). Transmission delay (IV).Propagation delay and (V).Queuing delay [23] [24]. Apart from these delays as mentioned above, an additional delay is requested delay, experiences by the RREQ packets, and periodic sleeping delay experienced by all the packets in the proposed method.

C. Fuzzy based Energy Classification Scheme

The proposed method classifies the current status of a node according to their available energy level by using the fuzzy method. This classification done in three energy levels: [1, α], [α, β] and [β, 0] called safe phase , danger phase, and high danger phase respectively. Where, α is first energy level and β, is the second energy level as shown in Algorithm EnergyAwareForwarding. The proposed method uses the delaying mechanism for every range of classified energy level for better-balanced energy level as mentioned earlier. The proposed method uses the fuzzy based energy classification scheme for adaptive route maintenance and load distribution scheme as discussed in further Sec. IV (F). The fuzzy thresholding applied to the available energy of nodes that are actively participating in forwarding the packets. The proposed energy classification scheme utilizes the fuzzy inference system [38], classifies the current status of a node (regarding currently available energy) more accurately. For a fuzzy system, we have used these three fuzzy sets [1, α], [α, β], and [β, 0]. These sets are used with “currently available energy” as a linguistic variable to describe the status of a node “n i ”, defin ed as, safe phase, danger phase, and very high danger phase. The numerical variable “currently available energy”, varied between the numbers 0-100 (%) (Universe of discourse is “currently available energy”) are called as a base variable for aforementioned linguistic variable [39] [57]. These

aforementioned fuzzy sets depicted through a membership function. It constructed from the set of energy input values of the variable. The degree of membership (μ) varied between interval [0, 1] and it is associated corresponding to each energy input value. The membership value defines, how firmly an input value describes the variable. If it is one, input values adequately specify the variable, and it is a perfect member corresponding to a fuzzy set. If it is zero, input value does not belong to a fuzzy set at all. Otherwise, the membership value between zero and one denotes the degree of belongingness to a particular fuzzy set. Three trapezoidal membership functions depict the “current ly available energy”. This membership function is specified by four parameters (a, b, c and d) as shown in Eq. (9). We have essentially used the trapezoidal fuzzy membership function because this function gives the more appropriate classification results concerning the currently available energy in the proposed method compared to other available fuzzy membership functions. However, we have tested our proposed method by considering the triangular membership function as well, but, the appropriateness in the classification (as the vagueness is more) is not up to the mark as compared to trapezoidal fuzzy membership function. Consequently, we consider trapezoidal fuzzy membership function that well affects the energy-aware forwarding capability of the proposed method.

?????

????≥<≤--<≤<≤--<=d i Ene d

i Ene c c d i Ene d c

i Ene b b

i Ene a a b a i Ene a i Ene d c b a i Ene Trapezoid Ava Ava

Ava Ava Ava Ava Ava Ava )(0

)()())(()(1)()())(()(0

),,,:)(( (9)

Fig.2. Output membership function indicating state of a node

D. Cross Layer Adaptive MAC Retransmission Scheme

(Adaptive MAC ReTx)

The output membership function (shown in Fig.2), accurately defines the current status of a node. As the route constructed through a requested delaying mechanism (mentioned in Sub-sec. B), use for intense data transmissions over the network. In this paper, we have considered congestion at the local level (at every node) and adapt the MAC retransmission rate accordingly.

The proposed method monitors each packet dropping event. If it is because of reason buffer overflow, the drop queue information module (DQIM) monitors and calculate the current congestion intensity level. If current congestion intensity level is more than a specified congestion threshold “drop Thresh ” as shown in Algorithm MAC_ReTx, the DQIM passes this information into ARxM (Adaptive Retransmission Scheme) for dynamic adaptation of MAC level retransmissions for controlling congestion and avoid unnecessary energy consumption at

the local level as shown in Fig. 3. Otherwise, there is no need to adapt the retransmission rate.

Algorithm: MAC_ReTx(Packet P, drop Thresh , MAC_Rx Count , CI Level ) Begin:

1: // For incoming packet at data-link layer 2: If type (p) == Application Then

3: // Condition for queue-overflow and packet drop from queue

4: If Queue Cur_Len ≥ Queue Len (max) Then

5: drop(p);

6: // Congestion intensity level 7: If CI Level > drop Thresh (P) Then

8: MAC_Rx Count = MAC_Rx Count -1; 9: Else Then

10: MAC_Rx Count = MAC_Rx Count +1; 11: End If 12: End If 13: End If End

Fig.3. Cross layer adaptive retransmission and load distribution scheme.

E. Adaptive Sleeping by Overhearing Avoidance for Danger Phase Nodes

In this subsection, we have dynamically adapted the forwarding scheme according to the availability of energy-rich nodes in the network. The design of MAC retransmission adaptation (as discussed in Sec. IV (D)) adopted for all classified range of energy levels belonging to a node. Moreover, the proposed approach considers idle and sleep energy consumption similarly as in PAMAS [21] and S-MAC [23] [24] protocol. However, these energy consumptions are only considered for the danger and high danger phase nodes in the proposed method. It considers the overhearing avoidance and adaptive listening [21] [23] [24] mechanisms to reduce the unnecessary power consumption in the network.

To overcome the problem of collision the contention-based MAC protocols adapts according to their contention adaptive channel access policy. In IEEE 802.11, the nodes keep on overhearing the neighbor’s traffic to compel a powerful virtual carrier sense, causes a significant amount of energy consumption in the network. In MANETs, the idea of overhearing (keep on listen to the traffic which not intended to itself) packets is advantageous because some of the routing strategies rely on gathering the local (neighbor) information, some information required for maintaining and monitoring the

network’s status. Howeve r, the idea of overhearing as mentioned above causes more power consumption and it is not helpful in the high energy-constrained networks. The proposed approach efficiently exploits the concept of overhearing avoidance (inspired by PAMAS and S-MAC protocol). The danger phase classified interfering nodes shut down their radio after hearing the short RTS and CTS control packets. The overhearing of long DATA packets with its acknowledgment (ACK) causes the significant amount of energy wastage. Hence, instead of overhearing the long DATA packets, nodes turn their state from active to sleep state and conserve the considerable amount of energy. Moreover, duration of the sleeping state entirely depends on the amount of time in duration field in RTS packet. The nodes on receiving RTS packet update their network allocation vector (NAV) on the basis of duration field. That duration states about “how long the current transmission is to be?”, hence, the node scheduled their sleeping period accordingly called adaptive sleeping mechanism. Otherwise, the nodes keep on sending traffic (likewise as safe phase nodes) until their NAV is not set as shown in Algorithm OverhearingAvoidance.

Algorithm: OverhearingAvoidance (Packet P, curr_time, nav_, state_, overhear_avoid) Begin:

1: // For each receiving RTS/CTS packets

2:If p.dst ≠ node_id Then

3:nav_= P.duration();

4:If curr_time + nav_ > nav_ Then

5: nav_= curr_time + nav_;

6:End If

7:// Check current status of a node

8: If state_== IDLE || state_== Carrier_sense Then

9:sleep();

10: overhear_avoid = TRUE;

11:End If

12: End If

End

Algorithm: EnergyAwareForwarding (First_ene_level (α), Second_ene_level (β), Curr Ene, E Initial, default Delay) Begin:

1:// Energy level classification in EM of Physical Layer 2:α = EM()→ level1();

3:β = EM() → level2();

4:// Current level of Energy Left

5:curr_ene_level_left = Curr Ene/E Initial;

6:// Requested delay function of ELBRP

7:modify Delay = default Delay + (5/Curr Ene+5);

8://Modified forwarding strategies

9://Fuzzy classification (safe phase nodes)

10:If curr_ene_level_left ≤ 1 && curr_ene_level_left ≥ α Then

11:forward(modify Delay); // RREQ Packets 12: // For incoming Packet at Data-link layer 13: If type(P) == broadcast_frame (P) Then 14: // Update neighbor’s state table

15:Insert_StateTable();

16: End If

17: End If

18:// Fuzzy classification (danger phase nodes)

19: If curr_ene_level_left≤ α && curr_ene_level_left ≥ β Then

20: forward(modify Delay); // RREQ Packets 21: // For incoming Packet at Data-link layer 22: If type(P) == broadcast_frame (P) Then 23: // Update neighbor’s state table

24: Insert_StateTable();

25: End If

26: // Start overhearing avoidance

27:OverhearingAvoidance(P);

28:// Fuzzy classification (high-danger phase nodes) 29: If curr_ene_level_left≤ β && curr_ene_level_left ≥ 0 Then

30: forward(modify Delay); // RREQ Packets 31: // Notify current state to neighboring nodes 32:send(broadcast_frame);

33: // For incoming Packet at Data-link layer 34: If type(P) == broadcast_frame (P) Then 35: // Update neighbor’s state table

36: Insert_StateTable();

37: End If

38: // Start periodic sleeping and overhearing avoidance

39:If overhear_avoid == TRUE Then 40:OverhearingAvoidance(P);41: Else Then

42:sleep(); // Periodic sleep

43:End If

44: End If

End

F. Cross Layer Adaptive Load Distribution Scheme

In this subsection, we have proposed an approach that dynamically distributes the traffic load over other energy-rich nodes, if a current forwarding traffic node belongs to high danger state. The DQIM, BxFrame (Broadcast Frame Module), and ARxM incorporated at data-link layer. RMM (Route Maintenance Module) included at the internet layer. EM (Energy Module) included at the physical layer and CLM (Cross-Layer Module) for passing dynamic information are the proposed modules. The high danger phase node notifies all of its neighbors about its current state by the help of BxFrame; for sending a broadcast packet (as shown in structure broadcast_frame) for the neighboring nodes as shown in Fig. 3. After receiving the broadcast packet, the neighbor nodes update their neighbor state table with the help of Algorithm Insert_StateTable (with an assist of structure neighbor_state). The idea for maintaining the state table is to keep track of high danger phase neighboring nodes. If the status of a neighboring node turns from danger to high danger phase, it notifies about its state to their neighboring nodes. The neighboring nodes update their aforementioned state table and the previous neighboring node dynamically distributes their traffic load over other energy-rich nodes (if available). For adaptive load distribution, the proposed method relies on the local route maintenance scheme (originally implemented in AODV [40] protocol) that bypasses high danger phase node with the help of RMM. Moreover, in proposed approach, high danger phase nodes turn off their radio state periodically. If they overhear some neighbor transmission, they just adopt the mechanism of overhearing avoidance (likewise as danger phase nodes). They take part in forwarding process only in the case, when no other energy-rich nodes are available in the network as shown in Algorithm EnergyAwareForwarding.

struct broadcast_frame struct neighbor_state

{ {

int length; int node_id;

int type; structbroadcast_frame Bx_Frame; int req_num; }; neighbor_state

int src_addr;

int state;

};

// Algorithm for inserting neighbor state table entries maintained by each node in network

Algorithm: Insert_StateTable (size (MAX), curr_size=0, node_id, req_num, structbroadcast_frame Bx_TxFrame) Begin:

1:// Initialize neighbor table

2:For curr_size < size (MAX) {

3: neighbor_state[curr_size].node_id =0;

4: neighbor_state[curr_size].req_num =0;

5: neighbor_state[curr_size].Bx_TxFrame .state=0; 6: }

7: End For

8: // Update neighbor table

9: For curr_size < size (MAX) {

10: neighbor_state[curr_size].node_id = Bx_TxFrame.src_addr;

11: neighbor_state[curr_size].req_num= Bx_TxFrame.req_num;

12: neighbor_state[curr_size]. neighbor_state.state= Bx_TxFrame.state; 13: E nd For End

V. S IMULATION S ETUP AND P ARAMETERS

The performance of the proposed method, ELBRP and the AODV approaches are evaluated via ns -2 simulator [36]. The transmission and interference range of each wireless node is 250 m and 550 m respectively, while, the effective distance is not more than 230 m among neighbor nodes. Consequently, wireless nodes can only communicated with their direct neighbors. As far as for

simulation purpose, we have assumed that the sender always have data for transmission during simulation phase. We have strictly followed all the IEEE 802.11 simulation parameters at both the data-link and physical layers. The wireless basic data rate is 1 Mbps and channel data rate is 2 Mbps. We have considered a random flat-grid topology of 1,200 * 1,200 m 2 with both static and 60% moving wireless node (with a velocity of 15 meters/second). The maximum queue size is 50, and for reception and transmission purpose an omnidirectional antenna has been used with two-ray ground propagation model. The packet size is 210 bytes with a traffic sending transport agent is UDP with AODV as a network routing protocol. The considered congestion threshold “drop Thresh ” is 1 Packet/second for the evaluation purpose. Additionally, we have considered 2-4 concurrent interfering traffic flows passing through a wireless link with traffic flow rate of 2 Mbps. The simulation topology with 14 competing flows is shown in Fig. 4. The fundamental behavior of MAC and the physical layer is similar in the proposed, ELBRP and the AODV approaches, regardless of the proposed modules (DQIM, BxFrame, ARxM, and EM).

Fig.4. Simulation Topology.

A. Energy Parameter Setup

For the evaluation purpose, we have considered the Chipcon’s CC2420 2.4 GHz for IEEE 802.15.4 RF transceiver radio parameters. The transmitting power “Pow Tx ”, receiving power “Pow Rx ”, sleep power “Pow Sleep ”, and idle power “Pow Idle ” are 31.32mW, 35.28mW, 144nW, and 712μW, respectively [41-43]. The simulated initial energy values are 2, 3, 4, 5, 6, 7, 8 and 9 Joule. The total energy consumption while transmission, reception, idle and sleep mode is according to the formulations as mentioned in Sec. IV (A).

VI. E XPERIMENTAL R ESULTS

This section illustrates the simulating results for AODV, ELBRP and the proposed method (Adaptive MAC ReTx, Adaptive Sleeping, and Adaptive Sleeping + Adaptive MAC ReTx). The obtained results have analyzed over total energy consumption, lifetime, and the total number of dead nodes in the network. To verify the

effects of proposed adaptive MAC retransmission scheme (Adaptive MAC ReTx) individually, we have simulated a network (as earlier mentioned in Sec. V). Figs 5, 6 and 7 illustrate the results of total energy consumption, the total number of dead nodes (%), and throughput (Kbps) with the aid of discrete initial energy values in the network. Concerning the UDP traffic; we use the parameters as mentioned in Sec. V. As initial energy increases, total energy consumption increases too for all shown approaches in Fig. 5. The results are relatively better in proposed (Adaptive MAC ReTx) compared with AODV and ELBRP approaches. All of the approaches (AODV, ELBRP, and Proposed (Adaptive MAC ReTx)) run over 2 Mbps traffic rate (with 2 Mbps channel data rate (mentioned earlier in Sec. V)). AODV and ELBRP approach do not consider the adaptive MAC retransmission scheme (while buffer overflow event arises to a node) or handling congestion at the local level. The approaches are continuously sending the packet up to their maximum MAC retransmissions, causes the significant amount of energy wastage. At initial energy (2 J) case, the ELBRP, AODV and Proposed (Adaptive

MAC ReTx) approach offer same performance (considering average throughput (Kbps) as shown in Fig. 7). While total energy consumption and the total number of dead nodes in proposed (Adaptive MAC ReTx) is approximately 60 J and 57% respectively. Moreover, AODV offers, 64 J (total energy consumption) and 65% (total number of dead nodes). While ELBRP offers 63 J (total energy consumption) and 63% (total number of dead nodes). At initial energy (5-9 J) cases, the performance of proposed (adaptive MAC Retx) regarding average throughput (Kbps) relatively outperforms the AODV approach and offers the significant amount of better results compared to ELBRP approach, together with better energy consumption and the total number of dead nodes. The proposed (adaptive MAC Retx) method offers 276 Kbps (Average Throughput), AODV provides 245 Kbps and ELBRP offers 260 Kbps, which is approximately 13% and 6% better than AODV and ELBRP respectively. The average number of dead nodes in AODV and ELBRP is about 44% and 41% respectively, while, in proposed method (adaptive MAC Retx), it is around 39%. In addition to this, the average energy consumption is approximately 213 J in AODV, 211 in ELBRP, and 207 J in the proposed method (adaptive MAC Retx).

Fig.5. Total Energy Consumption (Joules).

Fig.6. Number of Dead Nodes (%). Fig.7. Average Throughput (Kbps).

For simulated network as discussed in Sec. V, Figs. 8 and 9 show the total energy consumption (J) and the total number of dead nodes (%), by using adaptive sleeping mechanism. Here, with the intention of evaluating the individual effects of adaptive sleeping, we are not considering the adaptive MAC retransmission effects [as earlier mentioned in Sec. IV (D)]. The results are significantly better in the proposed adaptive sleeping compared to ELBRP, as ELBRP does not consider the danger phase nodes and adapt the same delaying policy of AODV protocol, while, the proposed approach uses the delaying mechanism for all classified range of nodes. Moreover, the proposed approach avoid the overutilization of danger phase nodes by well utilized the safe phase nodes (as their RREQ packet delay is very much lesser than danger phase nodes and the probability of their inclusion is very high compared to danger phase nodes). Figs.8-10 illustrates total energy consumption (J), the total number of dead nodes (%) and the lifetime (sec) of a network, the average energy consumption in ELBRP is approximately 166 J, while, proposed adaptive sleeping method, offers around 152 J as shown in Fig.8. The proposed method provides 9 % lesser utilization of available energy in the network. Moreover, an average number of dead nodes in ELBRP approach is approximately 47 %, while, it is around 23 % in proposed adaptive sleeping method as shown in Fig.9. Furthermore, the optimal sleeping mechanism for both danger and high danger phase nodes improves the network’s lifetime by 6 % in proposed method as shown in Fig. 10.

To better understand the performance of the proposed method, we merge both approaches as mentioned earlier (Adaptive MAC ReTx [referred to in Sec. IV (D)] and Proposed Adaptive Sleeping [referred to in Sec. IV (E)]). Therefore, total energy consumption (J), the total number of dead nodes (%) and the lifetime of a network (sec), and throughput (Kbps) in proposed method (Proposed (Adaptive MAC ReTx) + Proposed Adaptive Sleeping) is compared to both ELBRP and AODV approach. As the proposed method uses the modified forward delaying (as

mentioned in Algorithm EnergyAwareForwarding in Sec. IV (E)) mechanism for every level of energy classification leads to the better-balanced energy level in the network compared to ELBRP.

Fig.8. Total Energy Consumption (J). Fig.9. Total Number of Dead Nodes (%).

Fig.10. Lifetime of Network (sec.).

Moreover, the proposed approach also considers the mechanism of unnecessary overhearing and MAC retransmissions which cause significant amount of energy wastage. The mechanism of overhearing avoidance adopted for danger phase nodes in the network. The danger phase sleeping nodes are awakened after its NAV is set to zero (neighbor transmission is over) as mentioned in Algorithm OverhearingAvoidance in Sec. IV (E). While, in the case of high danger phase nodes, the nodes periodically off their radio and sets a timer (until when it sleeps), and then awakened only when the timer reaches to zero. Otherwise, if their periodic sleeping timer is not set, the nodes checks for neighbor transmission (overhearing avoidance) as mentioned in Algorithm OverhearingAvoidance in Sec. IV (E). Furthermore, ELBRP only adapts its forwarding strategy for safe-phase (despite high danger phase nodes) nodes. As it causes a high probability of the inclusion of danger phase nodes (despite sub-safe phase nodes) in the route construction phase leads to under-utilization of sub-safe phase nodes and causes unbalanced energy level in the network. In the case of AODV approach, there is no provision for energy aware routing and the approach relies on shortest path construction, causes maximum amount of energy consumption with the most number of dead nodes in the network as shown in Figs. 11-13. Fig. 11, depicts total energy consumption for all of the approaches, the average energy consumption in AODV is approximately 168 J, while, it is around 166 J and 151 J

in ELBRP and proposed method respectively. The proposed method offers 11% and 9% lesser average energy consumption compared to AODV and ELBRP respectively. Furthermore, the optimal MAC retransmission and adaptive sleeping scheme improve the network’s l ifetime by 6% (shown in Fig.12).While the average number of dead nodes in AODV is approximately 50%, around 48% in ELBRP and 22% in the proposed method.

VII. C ONCLUSIONS

The majority of preceding energy aware approaches highlighted the benefits of routing through energy-rich nodes. However, routing through energy affluent nodes may not necessarily be the shortest path. Moreover, many of the previous approaches minimize the total energy consumption by considering the idle, sleep, and active communication energy expenditures. Thus, an appropriate complex synchronization based MAC protocol needed which effectively handles the abovementioned energy consumption parameters. In this paper, we have proposed an adaptive fuzzy based energy efficient load distribution scheme, which mainly focuses on minimizing the total energy consumptions considering congestion and the lower layer (MAC) parameters. Additionally, the proposed method classifies the current status of a node (either in safe, danger and high danger phase) and also handles the congestion at the local level

and adapts the MAC retransmission rate accordingly. The proposed method considers the idle and sleeps energy consumptions for danger and high danger phase nodes. The simulation results show that the proposed method performed better as compared to ELBRP and AODV considering total energy consumption, total number of dead nodes, network’s lifetime, and average throughput.

Fig.11. Total Energy Consumption (J).

Fig.12. Lifetime of Network (sec.).

Fig.13. Total Number of Dead Nodes (%). Fig.14. Average Throughput (Kbps)

R EFERENCES

[1] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A

survey of self organisation in future cellular n etworks,” IEEE Communications Surveys & Tutorials , vol. 15, pp. 336–361, Feb. 2013.

[2] S. Corson, and J. Macker, “Mobile Ad hoc Networking

(MANET): Routing protocol performance issues and evaluation considerations,” RFC 2501, IETF Internet draft , Jan. 1999. https://https://www.360docs.net/doc/2215281840.html,/html/rfc2501 [Accessed on 04.06.14.].

[3] N. Pogkas, G. E. Karastergios, C. P. Antonopoulos, S.

Koubias, and G. Papadopoulos , “Architecture design and

implementation of an ad-hoc network for disaster relief operations ,” IEEE Transactions on Industrial Informatics , vol. 3, pp. 63-72, Feb. 2007.

[4] J. M. Kim, and J. K. Jang, “AODV based energy efficient

routing protocol for maximum lifetime in MANET,” In: Proceedings of Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services (AICT/ICIW), pp. 77-83, Feb. 2006.

[5] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y.

Li, “A survey of energy-efficient wireless communications ,” IEEE Communications Surveys & Tutorials , vol. 15, pp. 167-178, Feb. 2013.

[6]L. Feeney, and M. Nilsson, “Investigating the energy

consumption of a wireless network interface in an ad-hoc networking,” In: IEEE INFOCOM, pp.1548-1557, Apr.

2001.

[7]J. H. Chang, and L. Tassiulas, “Maximum lifetime routing

in wireless sensor networks,” IEEE/ACM Transactions on Networking, vol. 12, no. 4, pp. 609-619, Aug. 2004.

[8] C. Yu, B. Lee, and H. Youn, “Energy efficient routing

protocol for mobile ad-hoc networks,” Wireless Communication and Mobile Computing, vol. 3, pp. 959-973, Dec. 2003.

[9] F. D. Rango, F.Guerriero, and P. Fazio, “Link-stability

and energy aware routing protocol in distributed wireless networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, pp. 713-726, Apr. 2012.

[10]X. Wu, H. R. Sadjadpour, J. J. Garcia-Luna-Aceves, and H.

Xu, “A hybrid view of mobility in MANETs: Analytical models and simulation study,”Computer Communication, vol. 31, pp. 3810-3821, Oct. 2008.

[11]Y. C. Tseng, Y. F. Li, and Y. C. Chang, “On route lifetime

in multihop mobile ad-hoc networks,”IEEE Transactions on Mobile Computing, vol. 2, pp. 366-376, Nov. 2003. [12]P.J.M. Havinga, and G.J.M Smit, “Energy-efficient

wireless networking for multimedia applications,”

Wireless Communication and Mobile Computing, vol. 1, pp. 165-184, Jan. 2001.

[13]G. Zussman, and S. Adrian, “Energy efficient routing in

ad-hoc disaster recovery networks,” In: IEEE INFOCOM, pp.682-691, Mar. /Apr. 2003.

[14]J. H. Chang, and L. Tassiulas, “Energy conserving routing

in wireless ad-hoc networks,” In: IEEE INFOCOM, pp.22-31, Mar. 2000.

[15]L. Li, C. Li, and P. Yuan, “An energy level based routing

protocol in ad-hoc networks,”Wireless Personal Communications, vol. 81, pp. 981-996, Apr. 2015. [16]L. Li, F. Zheng, C. Li, and P. Yuan, “An energy

constrained routing protocol for MANET,” In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, pp. 3205-3210, Aug.

2007.

[17]L. Li, C. Li, and P. Yuan, “An energy level based routing

protocol in ad-hoc networks,”In: Proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 306-312, Dec. 2006.

[18]J. Vazifehdan, R. V. Prasad, E. Onur, and I. Niemegeers,

“Energy-aware routing algorithms for wireless ad hoc networks with heterogeneous power supplies,” Computer Networks, vol. 55, pp. 3256-3274, Jun. 2011.

[19]C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen,

“A survey of energy efficient network protocols for wireless networks,” Wireless Networks, vol. 7, pp. 343-358, Jul. 2001.

[20] S. Singh, M. Woo, and C. Raghavendra, “Power-Aware

Routing in Mobile Ad Hoc Networks,” In: MobiCom 98 Proceedings of the 4th annual ACM/IEEE International Conference on Mobile computing and networking, pp.

181-190, Oct. 1998.

[21]S. Singh, and C. Raghavendra, “PAMAS: Power aware

multi-access protocol with signaling for ad-hoc networks,”

ACM SIGCOMM Computer Communication Review, vol.

28, pp. 5-26, Jul. 1998.

[22]P. Karn, “MACA-A new channel access method for packet

radio,” In: ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pp. 134-140, Sep. 1990.

[23]W. Ye, J. Weidetnann, and D. Estrin, “An energy-efficient

MAC protocol for wireless sensor networks,” In: IEEE INFOCOM, pp. 1567-1576, Jun. 2002. [24]W. Ye, J. Weidetnann, and D. Estrin, “Medium access

control with coordinated adaptive sleeping for wireless sensor network,” IEEE/ACM Transactions on Networking, vol. 12, pp. 493-506, Jun. 2004.

[25]F. Bennett, D. Clarke, J. B. Evans, A. Hopper, A. Jones,

and D. Leask, “Piconet: Embedded mobile networking,”

IEEE Personal Communication Magazine, vol. 4, pp. 8-15, Oct. 1997.

[26]Y-C Tseng, C-S Hsu and T-Y Hsieh, “Power-saving

protocols for IEEE 802.11-based multi-hop ad hoc networks,” In: IEEE INFOCOM, pp. 200-209, Jun. 2002.

[27]K. Woo, C. Yu, H. Y. Youn, and B. Lee “Non-Blocking,

Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad-hoc Networks,”In: Proceedings of International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 117-124, Aug. 2001.

[28]M. Sami, N. K. Noordin, F. Hashim, S. Subramaniam, and

A. Akbari-Moghanjoughi, “An energy-aware cross-layer

cooperative MAC protocol for wireless ad-hoc networks,”

Journal of Network and Computer Applications, vol. 58, pp. 227-240, Dec. 2015.

[29]A. Nosratinia, T. E. Hunter, and A Hedayat, “Cooperative

communication in wireless networks,”IEEE Communication Magazine, vol. 42, pp. 74-80, Oct. 2004.

[30]Z. Weihua, and M. Ismail, “Cooperation in wireless

communication networks,” IEEE Wireless Communication, vol. 19, pp. 10-20, Apr. 2012.

[31]IEEE standard for wireless LAN medium access control

(MAC) and physical layer (PHY) specifications, ISO/IEC 802-11: 1999(E), Aug. 1999.

[32]F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS:

A Robust Energy Conserving Protocol for Long- Lived

Sensor Networks,” In: Proceedings of 23rd International Conference on Distributed Computing Systems (ICDCS’03), pp. 1-10, May 2003.

[33]M. Stemm, and R. H. Katz, “Measuring and reducing

energy consumption of network interfaces in hand-held devices,” IEICE Transactions Communications, vol. E80-B, pp. 1125-1131, Aug. 1997.

[34]H-T. Zhao, Y-N Dong, H. Zhang, and Y. Li, “A Cross-

Layer Routing Scheme Using Adaptive Retransmission Strategy for Wireless Mesh Networks,” Wireless Personal Communications, vol. 63, pp. 345-361, Aug. 2010. [35]J. He, J. Yang, C. An, H. Liu, and X. Li, “Analysis on

MAC Layer Retransmission Scheme in Wireless Networks,” In: Proceeding of the 6th ACM international symposium on Mobility management and wireless access, pp. 163-165, Oct. 2008.

[36]Home Page NS-2 Simulator Tool.

https://www.360docs.net/doc/2215281840.html,/nsnam/ns/, [Accessed on 04.12.14.] [37]H. Singh, S. Saxena, and S. Singh, “Energy consumption

of TCP in ad-hoc networks,” Wireless Networks, vol. 10, pp. 531-542, Sep. 2004.

[38]S. Guillaume, “Designing fuzzy inference systems from

data: An interpretability-oriented review,” IEEE Transactions on Fuzzy Systems, vol. 9, pp. 426-443, Jun.

2001.

[39]L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol.

8, pp. 338-353, Jun. 1965.

[40]C. E. Perkins, E. M. Royer, and S. R. Das, “Ad hoc on-

demand distance vector (AODV) routing,”, RFC 3561, IETF Internet draft, July 2003.

https://www.360docs.net/doc/2215281840.html,/citation.cfm?id=RFC3561 [Accessed on

04.06.14.].

[41]B. H. Li, M. U. H. A. Rasyid, and H. K.Wu, “Analysis of

super-frame adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks,” EURASIP Journal on Wireless Communications and Networking , vol. 219, pp. 1-12, July 2012.

[42] AS Chipcon, SmartRF? CC2420 datasheet (rev 1.2)

(Chipcon Corp, 2004).

[43] B. Gao, C. He, and L. Jiang, “Modeling and analysis of

IEEE 802.15.4 CSMA/CA with sleep mode enabled ,” In: International Conference on Communication Systems , pp. 6-11, Nov. 2008.

[44] M. J. Miller, and N. H. Vaidya, “A MAC protocol to

reduce sensor network energy consumption using a wakeup radio,” IEEE Transactions and Mobile Computing , vol. 4, pp. 228-242, Apr. 2005.

[45] T. V. Dam, and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor n etworks,” In: The First ACM Conference on Embedded Networked Sensor Systems (Sensys‘03), pp. 171-180, Nov. 2003.

[46] V. K. Sharma, and M. Kumar, “Adaptive congestion

control scheme in mobile ad-hoc networks ,” Peer-to-Peer Networking and Applications , vol. 10, pp. 633-657, May 2017.

[47] W. Meng, X. Wang, and S. Liu, “Distributed load sharing

of an inverter-based microgrid with reduced communication,” IEEE Transactions on Smart Grid , Jul. 2016. [doi: https://https://www.360docs.net/doc/2215281840.html,/10.1109/TSG.2016.2587685] [48] Z. Yang, X. Shi, and J. Chen, “Optimal coordination of

mobile sensors for target tracking under additive and multiplicative noises,” IEEE Transactions on Industrial Electronics , vol. 61, pp. 3459-3468, Jul. 2014.

[49] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal DoS

attack scheduling in wi reless networked control system,” IEEE Transactions on Control Systems Technology , vol. 24, pp. 843-852, May 2016.

[50] K. Wang, T. Y. Chai, and W-C. Wong, “Routing, power

control and rate adaptation: A Q-learning based cross-layer de sign,” Computer Networks , vol. 102, pp. 20-37, Mar. 2016.

[51] M. Akram, and T. H. Cho, “Energy Efficient Fuzzy

Adaptive Selection of Verification Nodes in Wireless Sensor Networks ,” Ad Hoc Networks , vol. 47, pp. 16-25, Sep. 2016.

[52] V. K. Sharma, S. S. P. Shukla, and V. Singh, “A tailored

Q-Learning for routing in wireless sensor networks,” In: 2nd IEEE International Conference on Parallel, Distributed and Grid Computing , pp. 663-668, Dec. 2012. [53] L. P. Verma, and M. Kumar, “An adaptive data chunk

scheduling for concurrent multipath transfer ,” Computer Standards & Interfaces , vol. 52, pp. 97-104, May 2017. [54] S. P. Singh, and S. C. Sharma, “A particle swarm

optimization approach for energy efficient clustering in wireless sensor networks,” International Journal of Intelligent Systems and Applications , vol. 6, pp. 66-74, Jun. 2017.

[55] Sivaraj C, Alphonse P J A, and Janakiraman T N,

“Energy -efficient and load distributed clustering algorithm for dense wi reless sensor networks,” International Journal of Intelligent Systems and Applications , vol. 5, pp. 34-42, May 2017.

[56] N. Arianpoo, and Victor C. M. Leung, “A smart fairness

mechanism for concurrent multipath transfer in SCTP over wireless multi-hop networks ,” Ad-hoc Networks , vol. 55, pp. 40-49, Feb. 2017.

[57] A. Amini, and N. Nikraz, “Proposing two defuzzification

methods based on output fuzzy set weights,” International Journal of Intelligent Systems and Applications , vol. 2, pp. 1-12, Feb. 2016.

[58] L. Baccouche, and J. D. Rekik, “A QoS architecture for

real-time transactions guarantee in mobile ad hoc networks ,” Wireless Personal Communications , vol. 83, pp. 1595-1616, Jul. 2015.

[59] W.A. Jabbar, M. Ismail, R. Nordin, and S. Arif, “Power -efficient routing schemes for MANETs: A survey and open issues,” Wireless Networks , Apr. 2016. [doi: 10.1007/s11276-016-1263-6]

[60] S. S. Basurra, M. D. Vos, J. Padget, Y. Ji, T. Lewis, and S.

Armour , “Energy efficient zone based routing protocol for MANETs ,” Ad-hoc Networks , vol. 25, pp. 16-37, Feb. 2015.

Authors ’ Profiles

Varun Kumar Sharma received the Masters of Technology in Computer Science and Engineering from Jaypee University of Engineering and Technology, Guna, India and Bachelors of Engineering (Honors) in Computer Science and Engineering from Rajiv Gandhi Technical University, Bhopal, India. He is currently

pursuing Ph.D. in Computer Science and Engineering from Jaypee University of Engineering and Technology, Guna, India. His research interests include performance evaluation of wireless network routing, cross-layer optimizations for ad-hoc and sensor networks, and energy aware routing.

Lal Pratap Verma received his B.Tech. degree in Computer Science and Engineering from Dr. R.M.L. Avadh University, Faizabad, India in 2007 and M.Tech. degree in Information Technology from YMCA University of Science and Technology, Faridabad, India in 2011. He is pursuing Ph.D. degree in Computer

Science and Engineering at Jaypee University of Engineering and Technology, Guna, India. His research interests include network systems, network security and Mobile Ad-hoc Network.

Mahesh Kumar is working as Assistant Professor in the Department of Computer Science and Engineering at Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India. He earned his Ph. D. in Computer Science and Engineering, and M.Tech. in Information Technology. He has more

than 15 years of experience in teaching and research. His current research interests include Wireless and Wired Networks, Internet Routing, and Network Security.

How to cite this paper: Varun Kumar Sharma, Lal Pratap Verma, Mahesh Kumar, "A Fuzzy-based Adaptive Energy Efficient Load Distribution Scheme in Ad-hoc Networks", International Journal of Intelligent Systems and Applications(IJISA), Vol.10, No.2, pp.72-84, 2018. DOI: 10.5815/ijisa.2018.02.07

浅谈计算机网络问题及对策

浅谈计算机网络问题及对策 发表时间:2019-08-29T14:24:36.407Z 来源:《基层建设》2019年第16期作者:马千贺 [导读] 摘要:计算机网络问题在当今的计算机使用中是较为重要的一个内容,本文主要针对计算机数据问题进行了探讨,分析了数据信息的有效性问题以及网络安全性问题,并结合数据信息收集的技术手段对IT企业运营对计算机网络应用造成的问题进行了讨论,文章后半部分对这些问题从日志技术的使用以及防火墙技术改进和网络信息集成技术的运营等多个方面提出了相应的对策,对计算机网络进行改进。 哈尔滨市剑桥三中黑龙江哈尔滨 150036 摘要:计算机网络问题在当今的计算机使用中是较为重要的一个内容,本文主要针对计算机数据问题进行了探讨,分析了数据信息的有效性问题以及网络安全性问题,并结合数据信息收集的技术手段对IT企业运营对计算机网络应用造成的问题进行了讨论,文章后半部分对这些问题从日志技术的使用以及防火墙技术改进和网络信息集成技术的运营等多个方面提出了相应的对策,对计算机网络进行改进。 关键词:计算机;网络安全;防火墙技术; 前言:计算机网络的发展与我国每个人息息相关,互联网由各个用户共同组成,因此其中数据相对较多,在运用互联网的过程中,人们可以获得较多工作所需要信息数据,但是在进行使用时,也会存在着各种各样的风险及问题,对于计算机网络来说,主要是信息收集效率问题以及安全问题。 1.使用计算机网络时遇到的问题 1.1数据信息出现泄漏情况 当今社会在较多的领域进行工作时,往往会采用大数据技术,采用大数据技术能够有效地进行数据分析,进行完数据分析之后再进行工作能够更具有针对性,提高工作效率和质量。然而在利用数据带来的便利的同时还应考虑到随之而来的问题。部分网民在使用网络的过程中,缺乏专业的知识,无法对自身数据进行有效的保护,最终会出现自身数据泄露的现象。数据泄露对用网络用户来说是使用网络时对其影响较大的问题。如果用户的信息被泄露,极有可能会遭到信息轰炸,用户的个人隐私也会失去保护,用户的日常生活可能会受到严重的影响。对于一些企业来说,数据信息泄露造成的危害会更大,企业的核心数据信息能够为企业提供较强的竞争力,一旦这些信息被泄露,企业在进行商业竞争的过程中便会处于不利地位,企业的经济利益便会受到严重的影响,更严重者甚至会影响到企业正常工作的进行。企业数据受法律保护,一般只会由于操作人员失误泄露。为了避免出现这种情况,应加强计算机操作人员的责任意识,提高其专业水平。 1.2受到来自网络的恶意攻击 在使用计算机时,仅仅确保自己在使用网络时具有安全意识是不足的,在当今社会人们的法制意识不断增强,使得人们在使用互联网时能够遵守网络文明公约,不去做危害其他人的事情。然而,却还有少部分人缺乏法律观念,使用网络对他人进行攻击,以达到自身的目的。在用户使用网络的过程中,这些来自网络的恶意攻击也是不得不考虑的安全问题。这些网络攻击往往是以病毒的形式存在,攻击人员往往会通过网络将病毒植入用户的电脑,然后盗取用户的数据信息或者对用户进行勒索。网络攻击离我们并不远,网络攻击人员往往会利用一些工具入侵当今的主流系统,并将病毒进行植入。最近较为具有代表性的病毒攻击事件是代号为Petya的病毒攻击事件。这个病毒瞄准了多家跨国公司,导致这些公司不得不停止业务,经过统计由于该病毒造成的经济损失高达三亿元。网络攻击事件一直在发生,在过去熊猫烧香病毒曾攻击了我国大半的网络系统,导致我国大部分居民无法正常使用网络,严重影响了社会工作的运行,造成了极大的恐慌,威胁了我国社会和谐。用户在使用网络的过程中应当提防来自网络的攻击。 1.3网络信息收集存在的问题 网络虽然具有较高的自由度和开放性,但是在运营的过程中依旧有一些企业凭借较为先进的技术,在网络中占据着主导地位,这些企业往往负责大范围信息集成技术软件开发工作,软件在投入市场后,用户越多,企业便能够获得更高的利益。当今大部分计算机网络运营大型企业在进行运营时,会制作适应于自身的网络信息集成系统,对自身需要的信息进行高效的收集,但是在市场营销的过程中,往往不会投入过多的精力设计质量水平较高的网络集成系统,存在有网络信息技术垄断的现象,人们如果需要利用较为先进的信息集成技术,需要耗费大量的资金成本,导致部分领域在进行信息收集时,缺乏必要的应用软件。而且用户所用信息集成系统软件的技术水平会受到限制,避免大型网络企业的专业技术出现泄漏影响其效益。而拥有着优势地位的网络运营企业,甚至可能会对用户的信息进行恶性收集,进行信息交易,获取相应的经济效益,严重影响网络市场的诚信度。 2.通过对防火墙技术的应用来确保网络用户安全 2.1通过日志监控对数据进行处理保护 日志是在应用数据库系统时,能够自动生成的一种记录文件,能够对各种数据操作进行记录,在各个领域中进行网络数据操作,都需要通过相应的数据库系统,而其中较为重要的操作大多会记录在安全日志中。对日志进行有效的调用管理,可以充分了解数据库各种数据的管理进程,通过日志可以监测重要信息调动情况,以及对其进行的保护水平,通过对日志进行分析,能够对数据重要性进行评价,并将日志记录的数据作为一种资源制作相应的程序根据日志对数据进行分类,提高数据管理效率。采用日志监控还可以在出现问题之后寻找出问题出现的原因,并据此来对防火墙进行不断地完善,提高防火墙防护能力,提高防火墙的防护效率,为用户提供有效的保护。 2.2通过防火墙进行网络安全访问 在进行一些信息访问的过程中往往会遇到一些不良的信息,在访问一些网站时甚至会遭到信息轰炸,这时,便需要防火墙来对这些信息进行过滤和筛选。随着科技的不断进步,防火墙技术也得到了较为明显的提高,在进行一些信息的刚问过程中,人们防火墙可以实现对访问的信息进行判断定位,如果是不良信息便会对用户进行提醒,保证用户的上网体验。此外,防火墙还能够避免用户被信息轰炸,用户可以通过防火墙对信息进行过滤,不需要的信息便会被防火墙拦下来,这样在进行网络访问时可以更加安全高效。 2.3提高网络信息集成管理效果 信息集成技术是当今IT企业较为重视的一项内容,也是一个具有较大市场空间的一个领域,要提高对网络信息进行集成的效果,需要在信息集成系统中,对索引系统进行更加精确的划分,并简化索引技术的操作流程,能够简化网络信息集成软件的应用过程。要实现这一目的,需要IT企业进行较为全面的人才培养,不仅要保障前端界面的简洁,方便用户使用以提高销量,还需对后端程序算法进行改进,使其能够进行更多的操作,对后端程序进行有效封装,能够简化对程序的更改,在短时间内建立适用于多个领域的信息集成系统。企业要提

浅析无线通信网络技术及发展趋势

浅析无线通信网络技术及发展趋势 发表时间:2018-11-16T09:48:48.303Z 来源:《基层建设》2018年第30期作者:戴山壮[导读] 摘要:近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 中国移动广东有限公司东莞分公司 523129 摘要:近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。本文探讨了光纤通信技术的特点以及发展趋势,旨在为下一步的研究工作指明方向。 关键词:无线通信;网络技术;网络安全 现代科技的发展使得通信技术得到较快发展。在通信产业高速运行的中国,也让人感受到通信市场竞争越来越激烈。各通信公司争先强化通信网络的建设工作以赢得市场份额。可以说,通信网络的建设是保证营运商赢得市场的关键。然而在其建设中不可避免的出现了很多网络安全问题,直接影响了通信网络服务质量,降低了人们的生活安全度,甚至威胁着人们的隐私权和国家的信息安全。 1通信网络建设中不安全问题存在的特点 各种通信建设项目都存在着这样或那样的安全问题,通信网络建设也不列外,其建设过程中同样充满了各种大大小小的风险。然而,有时仅以人的力量是无法控制这种不安全问题的不确定性的,因为它们有些是由客观因素造成的,有些又是由人为因素造成的。我们能做的就是在建设过程中控制那些可以预见的不安全因素,把建设中的不安全因素降到最低,减少损失度,尽量保障公民与企业与国家的信息安全。通信网络建设除具有一般网络建设中的不安全因素的特点外,还具有它自身独特的的特点: 1.1 不安全因素存在客观性 通信网络建设中的不安全问题有着一定的客观性,如客观存在对网络有害的地质环境等。 1.2 不安全因素存在主观性 由于社会的不安定因素的存在,在通信网络建设中还存在人为破坏网络安全的主观因素。 1.3 不安全因素存在偶然性 任何一种风险都存在着偶然性,网络建设过程中的风险不安全因素也同样,有时因多种其他因素引起的偶然性原因造成。 1.4 不安全因素存在必然性 在经过大量的不安全因素的事故资料研究后,我们发现通信网络建设过程中存在着某些必然发生的不安全因素,需要我们找出规律,有效避免。 1.5 不安全因素存在可变性 在通信网络建设过程中,各种不安全因素会随着项目的进度而变化,因此在建设过程中的任何一个时期都要注意这些可变性的不安全因素。 2通信网络建设的中存在的不安全问题 2.1 通信网络建设中设备因素 通信网络建设过程中需要大量网络建设本身的设备如大型交换机、服务器、光纤、光缆、电缆和相关土建的大型设备,这些与网络计算机相关的设备的易损性也极大地影响网络安全,同样如果这些网络设备本身存在质量问题,将极大关系到通信网络建成后的通信网络质量。 2.2 通信网络建设中系统平台问题 如果说通信网络建设中,硬件好比是一个人的躯体,那么软件平台就相当一个人的中枢神经,软件平台质量的好坏,包括此平台的运行是否稳定,后续售后服务是否到位,软件平台是否可以升级,是否具有可持续发展性,都大大地关系到通信网络建设中的安全问题。另外由于目前我国通信系统所使用的软件平台多是商用软件或是在商用的基础上加以改进的,因此源代码的不安全性,是通信网络建设中的一个重大的安全隐患。 2.3 人类或动物因素的破坏 人为因素的破坏主要由两部分组成,一是人类活动的无意识的偶然性的破坏,如在建筑过程中将通信网络的光缆挖断等;二是人们主观性有意的破坏活动,有的甚至是一种犯罪活动,如偷挖光缆,或是因某种行业竞争进行网络破坏,或是损害社会利益破坏通信网络建设的一种行为。动物破坏网络建设的安全问题一般都比较小,影响面不大,一般指被动物咬断光纤,咬断网线的一些偶然性的事件。 2.4 自然灾害的影响 近年来,地球上的自然灾害频发,如海啸、地震、泥石流、水灾、火灾等,这些自然灾害对通信网络建设的损害是巨大的,有的是无法恢复的,但这一切又是现有人类的技术水平,人类的力量所不能抵抗的,在损害网络安全的这些灾害发生后,人类只能尽可能地恢复和弥补,将损失降到最小。 2.5 战争的影响 世界的总体虽然是和平的,但某些在局部地区也常常有局域性的战争爆发,像海湾战争等,各国家内也时有发生的各种不同等级不同性质的战争,由于现代科技的发展,现代战争对地球的损害几乎是毁灭性的,战争离不开通信设备,也是战争双方首先要破坏的设施,因此战争成为通信网络建设不安定因素和破坏者之一。 3提高通信网络建设安全的策略 通信网络建设过程中,建设周期内会面临各种各样的安全问题,并且大量的安全问题之间存在着内在的错综复杂的关系,有的安全问题与外界因素交互影响,使得网络建设的安全问题题显得复杂化、多样化和多层次化。我们应该在网络建设过程中采取有力的方法手段将这些安全问题最小化,保证通信网络建设的正常运行。 3.1 加强网络建设人员管理 通信网络建设项目往往周期长、规模大、涉及范围广,人员是决定通信网络建设项目的重要因素,项目决策人可以为项目起到好的导向和管理作用,技术人员、施工人员和具体的业务管理人员,则细致到网络建设的各个部分,每个人的工作都影响到网络建设的安全问题,如,采买设备的人员采买的质量是否过关,技术人员在具体实施过程中是否认真等。

浅论网络技术的发展趋势

浅论网络技术的发展趋势 概要:面临着网络的普及,日益恶化的网络安全威胁是网民们生畏,那如今的网络技术发野兔没迅猛…… 关键词:网络安全技术、网络安全威胁、网络安全意识、解决方案 正文: 随着信息时代的全球化,信息化网络裂变式高速发展,网络交流的频繁化促使人们利用网络进行一些如银行事务,电子邮件、电子商务和自动化办公等事务,但随之网络特别是互联网的开放性、互联性、匿名性也给网络应用带来了安全隐患…… 网络安全: 网络安全是指致力于解决诸如如何有效进行介入控制,以及何如保证数据传输的安全性的技术手段,主要包括物理安全分析技术,网络结构安全分析技术,系统安全分析技术,管理安全分析技术,及其它的安全服务和安全机制策略。 网络安全威胁: 1) 网络窃听:由于在广播网络系统中,每个结点都可以读取网上传送的数据,网络体系结 构允许监视器接受网上传送的所有数据,使得窃取网上的数据或非授权访问变得很容易。 2) 假冒:利用重放数据帧的方法,产生被授权的效果,假冒另一实体进行网络非授权活 动。 3) 数据修改:在非授权和不能检测的环境下对数据的修改,当节点修改加入网中的帧 并传送修改版本时就发生了数据修改》 4) 完整性破坏:破坏数据完整性,包括设备故障或人为有意无意破坏修改系统信息。 5) 服务否认:受到网络攻击使网络设备或数据遭到破坏,并可能产生拒绝某种网络服务 功能的后果。 6)重发:重发就是重复一份保文或报文的一部分,以便产生一个被授权效果, 7)计算机病毒:这是一种人为编制隐藏在计算机中很难别发现且具有破坏能力的程序或代码,能够通过软盘、硬盘、通信连路和其他路径在计算机网络传播额和蔓延。 网络安全技术的分类: 一.虚拟网技术 虚拟网技术主要基于近年发展的局域网交换技术(ATM和以太网交换)。交换技术将传统的基于广播的局域网技术发展为面向连接的技术。因此,网管系统有能力限制局域网通讯的范围而无需通过开销很大的路由器。 网络层通讯可以跨越路由器,因此攻击可以从远方发起。IP协议族各厂家实现的不完善,因此,在网络层发现的安全漏洞相对更多,如IP sweep, teardrop, sync-flood, IP spoofing攻击等 二.防火墙技术 网络防火墙技术是一种用来加强网络之间访问控制,防止外部网络用户以非法手段通过外部网络进入内部网络,访问内部网络资源,保护内部网络操作环境的特殊网络互联设备.它对两个或多个网络之间传输的数据包如链接方式按照一定的安全策略来实施检查,以决定网络之间的通信是否被允许,并监视网络运行状态. 防火墙产品主要有堡垒主机,包过滤路由器,应用层网关(代理服务器)以及电路层网关,屏蔽主机防火墙,双宿主机等类型. 三.病毒防护技术 1) 阻止病毒的传播。 在防火墙、代理服务器、SMTP服务器、网络服务器、群件服务器上安装病毒过

无线网络技术特点简明分析

无线网络技术特点简明分析 本文我们将从传输方式、网络拓扑、网络接口等几个方面来描述无线网的特点。 一、传输方式 传输方式涉及无线网采用的传输媒体、选择的频段及调制方式。目前无线网采用的传输媒体主要有两种,即无线电波与红外线。在采用无线电波做为传输媒体的无线网依调制方式不同,又可分为扩展频谱方式与窄带调制方式。 1、扩展频谱方式 在扩展频谱方式展频谱方式中,数据基带信号的频谱被扩展至几倍-几十倍后再被搬移至射频发射出去。这一作法虽然牺牲了频带带宽,却提高了通信系统的抗干扰能力和安全性。由于单位频带内的功率降低,对其它电子设备的干扰也减小了。 采用扩展频谱方式的无线局域网一般选择所谓ISM频段,这里ISM分别取于Industrial、Scientific及Medical的第一个字母。许多工业、科研和医疗设备辐射的能量集中于该频段,例如美国ISM频段由902MHz-928MHz,2.4GHz-2.48GHz,5.725GHz-5.850GHz三个频段组成。如果发射功率及带宽辐射满足美国联邦通信委员会(FCC)的要求,则无须向FCC提出专门的申请即可使用ISM频段。 2、窄带调制方式 在窄带调制方式中,数据基带信号的频谱不做任何扩展即被直接搬移到射频发射出去。 与扩展频谱方式相比,窄带调制方式占用频带少,频带利用率高。采用窄带调制方式的无线局域网一般选用专用频段,需要经过国家无线电管理部门的许可方可使用。当然,也可选用ISM频段,这样可免去向无线电管理委员会申请。但带来的问题是,当临近的仪器设备或通信设备也在使用这一频段时,会严重影响通信质量,通信的可靠性无法得到保障。 3、红外线方式 基于红外线的传输技术最近几年有了很大发展。目前广泛使用的家电遥控器几乎都是采用红外线传输技术。做为无线局域网的传输方式,红外线的最大优点是这种传输方式不受无线电干扰,且红外线的使用不受国家无线电管理委员会的限制。然而,红外线对非透明物体的透过性极差,这导致传输距离受限。 二、网络拓扑 无线局域网的扩扑结构可归结为两类:无中心或对等式(Peer to Peer)拓扑和有中心(HUB-Based)拓扑。 1、无中心拓扑 无中心拓扑的网络要求网中任意两个站点均可直接通信。 采用这种拓扑结构的网络一般是用公用广播信道,各站点都可竞争公用信道,而信道接入控制(MAC)协议大多采用CSMA(载波监测多址接入)类型的多址接入协议。 这种结构的优点是网络抗毁性好、建网容易、且费用较低。但当网中用户数(站点数)过多时,信道竞争成为限制网络性能的要害。并且为了满足任意两个站点可直接通信,网络中站点布局受环境限制较大。因此这种拓扑结构适用于用户相对减少的工作群网络规模。 2、有中心拓扑 在中心拓扑结构中,要求一个无线站点充当中心站,所有站点对网络的访问均由其控制。这样,当网络业务量增大时网络吞吐性能及网络时延性能的而恶化并不剧烈。由于每个站点只需在中心站覆盖范围之内就可与其它站点通信,故网络中点站布局受环境限制亦小。此外,中心站为接入有线主干网提供了一个逻辑接入点。 有中心网络拓扑结构的弱点是抗毁性差,中心点的故障容易导致整个网络瘫痪,并且中心站点的引入增加了网络成本。 在实际应用中,无线网往往与有线主干网络结合起来使用。这时,中心站点充当无线网

基于位置的Adhoc网络路由协议研究报告

基于位置的Ad hoc网络路由协议研究 【摘要】基于位置的ad hoc网络路由协议利用节点地理位置信息指导数据包的转发,具有可扩展性强,路由效率高等优点。分析了ad hoc网络中基于位置的路由协议以及位置信息服务,对几种协议进行了分析比较,并指出了基于位置的路由协议的研究重点。 【关键词】ad hoc网络;路由;协议;位置 【abstract 】ilocation-based unicast routing protocol uses geographical location information of nodes to direct the forward of data package, superior to scalability and high efficiency in routing. in this paper, we introduced location-based unicast routing protocols and location information services for ad hoc network. analysed and pared several protocols, we pointed at the research emphasis on location-based unicast routing protocol. 【keywords 】ad hoc network;routing;protocol;location 1 引言 ad hoc网络是由一组带有无线收发装置的移动终端组成的多跳临时自治系统。路由协议一直是ad hoc网络研究的重点。根据不同的路由策略,ad hoc网络的路由协议可以分为基于拓扑的路由协议和基于位置的路由协议。与传统的基于拓扑的路由协议相比,基于位置的路由协议利用节点的位置信息来指导包的转发,其基本思想是利用节点的位置信息来选择下一跳,将包向目的节点的方向上进行

浅谈计算机网络安全技术

浅谈计算机网络安全技术 近年来,随着计算机在社会生活各个领域的广泛运用,网络已成为一个无处不在、无所不用的工具。然而,网络安全问题也越来越突出,特别是计算机病毒以及计算机网络联接形式的多样性、终端分布的不均匀性、网络的开放性、网络资源的共享性等因素,致使计算机网络容易遭受病毒、黑客、恶意软件和其它不轨行为的攻击。为确保信息的安全与畅通,我们必须不断加强和提高网络安全防范意识。网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭受到破坏、更改、泄露,系统连续可靠正常地运行,网络服务不中断。网络安全从其本质上来讲就是网络上的信息安全。从广义来说,凡是涉及到网络上信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是网络安全的研究领域。网络安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。从技术上来说,主要由防病毒、防火墙等多个安全组件组成,一个单独的组件无法确保网络信息的安全性。目前广泛运用和比较成熟的网络安全技术主要有:防火墙技术、数据加密技术、PKI技术等。网络安全的具体含义会随着“角度”的变化而变化。比如:从用户(个人、企业等)的角度来说,他们希望涉及个人隐私或商业利益的信息在网络上传输时受到机密性、完整性和真实性的保护,避免其他人或对手利用窃听、冒充、篡改、抵赖等手段侵犯用户的利益和隐私。 网络安全应具有以下四个方面的特征: (1)保密性:信息不泄露给非授权用户、实体或过程,或供其利用的特性。完整性:数据未经授权不能进行改变的特性。即信息在存储或传输过程中保持不被修改、不被破坏和丢失的特性。 (2)可用性:可被授权实体访问并按需求使用的特性。即当需要时能否存取所需的信息。例如网络环境下拒绝服务、破坏网络和有关系统的正常运行等都属于对可用性的攻击; (3)可控性:对信息的传播及内容具有控制能力。 (4)可审查性:出现的安全问题时提供依据与手段。 从网络运行和管理者角度说,他们希望对本地网络信息的访问、读写等操作受到保护和控制,避免出现“陷门”、病毒、非法存取、拒绝服务和网络资源非法占用和非法控制等威胁,制止和防御网络黑客的攻击。对安全保密部门来说,他们希望对非法的、有害的或涉及国家机密的信息进行过滤和防堵,避免机要信息泄露,避免对社会产生危害,对国家造成巨大损失。从社会教育和意识形态角度来讲,网络上不健康的内容,会对社会的稳定和人类的发展造成阻碍,必须对其进行控制。随着计算机技术的迅速发展,在计算机上处理的业务也由基于单机的数学运算、文件处理,基于简单连接的内部网络的内部业务处理、办公自动化等发展到基于复杂的内部网(Intranet)、企业外部网(Extranet)、全球互连网(Internet)的企业级计算机处理系统和世界范围内的信息共享和业务处理。在系统处理能力提高的同时,系统的连接能力也在不断的提高。但在连接能力信息、流通能力提高的同时,基于网络连接的安全问题也日益突出,整体的网络安全主要表现在以下几个方面:网络的物理安全、网络拓扑结构安全、网络系统安全、应用系统安全和网络管理的安全等。因此计算机安全问题,应该象每家每户

我国无线网络技术现状分析、

我国无线网络技术现状分析、进入21世纪,我们都知道随着经济的发展与科技的进步,个人数据通信技术也得到了飞速发展,人们对功能强大、应用便捷的便携式数据终端也提出了愈来愈高的要求。然而与有线网络相比,无线网络具有其无可比及的安装便捷、移动性强、建设成本低、可扩充性强、兼容性强以及可实现多种终端接入等优点。 无线网络技术在当前的网络应用中占据着越来越重要的地位并且成为有线网的一个重要补充。目前运用较为广泛的无线网技术主要有:无线LAN(WLAN)、无线个人区域网(PAN)、无线广域网(W AN)及固定接入无线技术。其标准有IEEE802.11系列标准、hiperLAN 系列标准、Home、IrDa、蓝牙、Zigbee等。其应用领域有:石油工业、金融行业、金融服务、展览和会议、旅游服务、移动办公系统、石油工业、医护管理:、工厂车间等。 随着无线通信技术的广泛应用,传统网络已经越来越不能满足人们的需求,于是无线网络应运而生,且发展迅速。近年来,无线网络的技术产品逐渐走向成熟,正以它优越的灵活性和便捷性在网络应用中发挥日益重要的作用,其应用也越来越广泛。 一、无线网络技术的应用现状。 (一)无线网络的应用类型 1、无线局域网(W L A N) 使用无线网络技术的用户可以在任意地方创建本地的无线连接,因此能够使用户轻松实现随地办公和通信。一般情况下W L A N具有两种工作方式,第一种是在基础结构无线局域网中,将无线站连和无线接入点进行连接,后者主要是起纽带作用,将无线站点现有的网络中枢实现连接;第二种是在点对点的无线局域网中,有限区域内(如办公室)的多个用户在不需要访问网络资源的情况下,可以不通过接入点连接而直接建立临时网络。 2、无线广域网(W W A N) 目前的无线广域网技术被称作通讯第二代系统,及2G系统。用户通过该核心技术可以在远程公用网络或专用的网络建立起无线连接,并实现该连接覆盖广大的地理区域。2G系统的组成部分主要有码多分址(C D M A)、蜂窝式数字分组数据(C D P D)以及移动通信全球系统(G S M). 3、无线城域网络(W M A N) 使用无线城域网络,用户可以在城区的多个场所(如同一个城市的多个校园或同一个校园的多个建筑之间)建立无线连接。无线城域网络使用无线电波或红外光波进行数据传送,该网络覆盖区域较大,最远可达50公里,因此不同地方接受的信号功率和信噪比等也会有比较大的差别。 4、无线个人网络(W P A N) 用户可以通过无线个人网技术为个人操作空间创建临时的无线通讯。个人操作空间一般一般指以个人为中心的空间范围,其最大距离为10米。蓝牙技术是一种可以在30英尺内使用无线电波传送数据的电缆替代技术,该数据的传递可以穿透墙壁、文件袋等障碍。 (二)无线网络的应用领域 无线网络技术作为顺应信息时代而生的新技术,其应用领域在自身不断更新发展中得到迅速扩大。一般可以将无线网络的应用划分为室内和室外两种。前者主要有医院、工厂、办公室、商场、会议室以及证券市场等场所;室外的无线网络应用主要有学校校园网络、工矿企业区域信息管理网络、城市交通信息网络、移动通信网络、军事移动网络等。

Adhoc网络TORA和DSR路由协议的分析比较

Ad hoc网络TORA和DSR路由协议的分析比较 郑创明 张升华 (中国电子科技集团公司第七研究所 广州510310) 摘 要: T ORA和DSR路由协议是Ad hoc网络中具有成果性的两种后应式路由协议。分别对两种路由协议的建立、维护方面进行了分析对比,并给出了两种协议的优缺点。最后通过仿真从路由分组开销、路由建立时间和发送数据分组信息几个方面进行分析论证。 关键词: TORA DSR 路由协议 Ad hoc网络 在Ad hoc网络的路由协议中普遍认可的代表性成果有DSR[1]、TORA[2]、DSDV[3]、WRP[4]、AODV[5]、和ZRP[6]等。源头性的创新性研究主要集中在2001年以前,后续的成果多为这些协议的改进,目前路由协议的研究仍然是Ad Hoc网络成果最集中的部分。这些路由协议根据不同的角度进行分类,从路由发现策略的角度可分为先应式的路由协议(主动路由)和后应式的路由协议(按需路由)两种类型。DSR和T ORA是MANET工作组提出的比较具有成果性的后应式路由协议,本文通过深入研究DSR和T ORA的实现方法,对DSR和TORA 的性能进行分析比较,并通过仿真进行论证。 1 动态源路由协议(DSR) 动态源路由协议DSR(Dynamic Source Rout ing)最重要的一个特点是利用了源路由[1]。也就是说,发送包的源节点知道到达目的地的完整路径,即路径所经过的节点地址有序列表。这些路径存于路由缓存器中,数据分组的包头携带该源路由。这种源路由的方法避免了数据分组经过的中间节点不停更新路由的需要,而且允许节点在转发或无意中收到数据分组时,将最新的路由信息存于它的路由缓存器中以备将来所需。协议的所有操作都是基于按需求的,允许数据分组动态的根据需要对当前路径的变化做出反应。DSR协议包含两个重要的机制:路由搜索和路由维护。 1.1 路由搜索机制 当在MANET中的一个节点要发送数据分组给一个目的节点时,路由搜索程序向网络广播路由请求RREQ(Route Request)包(该包会记录下经过的节点地址有序列表),每个接到RREQ包的节点又重广播它(但丢弃收到的重复的路由搜索包)。RREQ包格式如图1所示。 分组类型分组ID其他控制信息源地址目的地址经过的节点列表信息 图1 RREQ数据分组格式 当目的节点或路由缓存中存在通向目的地的路径的中间节点收到RREQ时,发送一个路由应答包RACK(Route Acknow ledge),把RREQ包中的路由发回给源节点。由于无线链路存在不对称性,因此RACK包不能简单的按RREQ来时的路径发回源节点,若该节点的路由缓存器内已存在回源节点的路由,则RREQ可经这条路径回源节点;否则,要启动路由搜索程序,为了避免相互寻找对方,造成路由搜索循环,在此路由搜索报文中必须附带想要发送到源节点路由应答包RACK。源节点收到RACK 包后将此路径加入其路由缓存器中。RACK格式如图2。 分组类型分组ID其他控制信息源地址目的地址路径节点列表 图2 RACK数据分组格式 1.2 路由维护机制 只有当路由在使用时,才对它进行维护。即当路径上某个节点发现数据分组无法发送到下一跳节点,从自己路由缓存中找出路由,并向源节点发送一个路由出错包(RERR),使源节点将自己的路由缓 收稿日期:2005 01 22

浅谈计算机网络技术的教学

浅谈计算机网络技术的教学 【摘要】本文根据作者一年多的计算机网络教学的经验,结合我校教育教学实际,粗略地谈及了计算机网络技术教学的有关心得体会,包括对教学方法、教学模式、教师的有关要求和课程的有关设置的一些看法。 【关键字】计算机网络教学方法职业教育 《计算机网络技术》是中等职业学校计算机专业的一门专业理论课,在平常的教学过程中,绝大部分老师均采用的是“填鸭式”的教学方法,教师在课堂上围绕教材组织教学,基本上都是以教师讲、学生听的模式,完全是一种以教师为主体的教学模式,难以真正发挥学生学习的主动性和积极性、创造性和实践性。学生觉得枯燥无味,老师也感觉无从下手,直接影响了学生的学习兴趣,教学效果很不好。针对这种纯专业理论课,在学生基础差、底子簿、学习兴趣不高的情况下,该怎样进行教学的组织呢?为此,结合我校实际,我进行了一些思考。 一、重视实践,多调查研究 一般的计算机教学采用的是“两点一线”的模式,即教师在教室或者多媒体教室讲授相关课程的理论,学生在实验室或计算机房完成技能训练或验证理论。条件好的学校,操作性比较强的计算机课程已经不是“两点一线”了,而是只有一点,主要教学过程都是在计算机房或实验室完成的。但计算机网络技术是一门专业理论课,机房上机操作的内容非常少,所以这种模式并不适用。 那么,该怎么办呢?既然不能上机操作,而我们职业技术学校重视的是专业技能的培养,那我们只有走出学校、走向社会,多进行调查研究。比如:刚开始学习网络技术的时候,我们可以进行一次社会调查,调查一些单位网络的使用情况,包括其用途、采用的拓扑结构、网络的组织结构、连入因特网的情况等。通过调查,可使学生对网络有初步的认识,并了解到了网络的重要性,激发了学生学习网络技术的兴趣。在每学一部分内容之前做相应的调查,学完之后再进行相关的实践,并总结学习的心得体会。通过这样一种方式,可以达到学前有一定了解、学后知道其一定应用的效果。 这种方式看似简单,但组织起来却比较困难,得花不少的工夫。然而一旦组织成功,我想一定会有很好的教学效果。 二、注意联系实际,理论与实践相结合 本课程的教学目标是使学生掌握计算机网络技术的基本知识、基本技能,了解常用的网络设备及数据通信的基本原理,具有使用网络的初步能力,具有从网上获取信息的能力。理论学习是过程,实际应用才是目的。 在教学过程中,要注意联系实际生活,把课本的理论与现实中的应用联系起

浅谈无线技术及其应用(一)

浅谈无线技术及其应用(一) 【摘要】文章阐述了无线局域网技术的基本概念,从各个角度全面探讨了无线技术与传统有线网络的区别,并通过无线技术在悉尼机场的具体实施来深入分析无线技术所带来的效益。【关键词】无线技术;优势;互联网;应用 在信息化时代,计算机和网络已成为人们生活中的不可缺少部分。但传统有线网络在某些应用场合受到一定程度的限制:布线、改线以及调试的工程量大;线路容易损坏;网中的各节点不可移动等。从而使迅速增加的网络需求形成了严重的技术瓶颈。因此,以高效快捷、组网灵活为优势的无线局域网应运而生。 一、无线技术与传统有线网络的区别 无线互联网是计算机网络与无线通信技术相结合的产物,它采用无线传送方式提供传统有线互联网的所有功能,但不会受到线缆的限制。网络系统的基础设备不再需要埋在地下或藏在墙里,它可以是移动性的,也可以随组织的成长发生变化。在无线网络中,终端不像在有线网络中那样,必须保持固定在网络中的某个节点上,而是可以在任意的时间做任意的移动,同时要求能自如的访问网络中的资料。大体来讲,无线网络和传统的有线互联网相比,具有如下不同点。 (一)组网灵活性差异 由安装上无线网卡的几台PC机互通信息就可以组成一个纯无线网络系统,当然也可以与原有的有线网络相结合,对原有网络进行扩展。因此,无线网络组网方便、快捷,安装和拆除都很简单,有很好的灵活性,特别适合展馆的临时组网。相对而言,有线网络的组建就需要考虑网络设备以及线缆的选择,铺设线缆的场地的选择。如果对原有网络进行扩展,还要进行网络兼容性等问题的考虑和解决。 (二)网络部署方式不同 有线网络的建立必须依赖于一定的线缆,并且网络节点是固定的,只有确定了目的地点,才能进行访问。而无线网络不受网线限制,可以随时建立和拆除,它允许用户在一定范围内任何时候都可以访问网络数据,不需要指定明确的访问地点,用户可在网络中漫游,这是无线网络与有线网络的本质区别。 (三)网络各层的功能不同 为了达到网络的透明,无线网络希望在逻辑链路层就能和别的网络相通,这就使得无线网络必须将处理移动工作站以及保持数据传送可靠性的能力全做在介质访问控制层。这和有线网络在介质访问控制层的功能是不同的。 (四)抗干扰性差异 有线网络有一个很明显但又难以避免的弱点,就是线路本身容易遭到破坏,因此抗毁性较差。无线网络采用直接序列技术和跳频技术,因此,无线系统具有很强的抗干扰能力。 (五)长期投资费用不同 有线网络的安装,需要高成本费用的线缆,租用线缆的费用也较高,尤其是那些网络覆盖面比较广的大型网络系统。从长远来看,无线网络从安装到日后维护,以及网络的扩展都有很大的经济优势。 二、悉尼机场的无线技术实施背景 悉尼机场是澳大利亚历史最悠久、持续经营最长的商业机场之一,同时也是澳大利亚乃至全球最繁忙、规模最大的国际机场之一,每年至少有将近2500万名来自世界各地的旅客经由悉尼机场而出入澳大利亚,因此悉尼机场所要承受的旅客对高质量服务要求的压力也是显而易见的。 随着全球经济的高速发展,不管是到国内外旅游的旅客,还是商务出差的从职人员不断地增加,显然这势必给悉尼机场的经营者带来了丰厚的利润,但同时也给悉尼机场的各方面基础

Ad Hoc网络技术

Ad Hoc网络技术 随着人们对摆脱有线网络束缚、随时随地能够实行自由通信的渴望,近几年来无线网络通信得到了迅速的发展。人们能够通过配有无线接口的便携计算机或个人数字助理来实现移动中的通信。当前的移动通信大多需要有线基础设施(如基站)的支持才能实现。为了能够在没有固定基站的地方实行通信,一种新的网络技术——AdHoc网络技术应运而生。AdHoc网络不需要有线基础设备的支持,通过移动主机自由的组网实现通信。AdHoc网络的出现推动了人们实现在任意环境下的自由通信的进程,同时它也为军事通信、灾难救助和临时通信提供了有效的解决方案。 1AdHoc网络的概念 AdHoc网络是一种没有有线基础设施支持的移动网络,网络中的节点均由移动主机构成。AdHoc网络最初应用于军事领域,它的研究起源于战场环境下分组无线网数据通信项目,该项目由DARPA资助,其后,又在1983年和1994年实行了抗毁可适合网络 SURAN(SurvivableAdaptiveNetwork)和世界移动信息系统 GloMo(GlobalInformationSystem)项目的研究。因为无线通信和终端技术的持续发展,AdHoc网络在民用环境下也得到了发展,如需要在没有有线基础设施的地区实行临时通信时,能够很方便地通过搭建AdHoc 网络实现。 在AdHoc网络中,当两个移动主机(如图1中的主机A和B)在彼此的通信覆盖范围内时,它们能够直接通信。但是因为移动主机的通信覆盖范围有限,如果两个相距较远的主机(如图1中的主机A和C)要实行通信,则需要通过它们之间的移动主机B的转发才能实现。所以在AdHoc网络中,主机同时还是路由器,担负着寻找路由和转发报文的工作。在AdHoc网络中,每个主机的通信范围有限,所以路由一般都由多跳组成,数据通过多个主机的转发才能到达目的地。故AdHoc网络也被称为多跳无线网络。其结构如图2所示。

浅谈对计算机网络的认识

浅谈对计算机网络的认识 参考资料: 随着计算机网络的迅猛发展,计算机网络的应用日益广泛,并且已经渗透到生活的方方面面,对人们的生活起着不可忽视的作用。在这个信息化的社会中,了解网络是当代大学生必不可少的一门课程。尤其是对我们信息专业的学生,认识计算机网络的基本理论,以及其在生活中发挥的重大作用,为今后我们进一步深入学习专业课程,奠定了良好的基础。 科学技术日新月异蓬勃发展,从20世纪90年代初迅速发展起来的internet,已经飞速改变了人们的生活和工作。人们被其丰富无穷的信息资源、方便快捷的交流方式深深吸引。如今计算机网络的教育更是早已深入大学校园,尤其是对于我们信息管理与信息系统这个专业,网络是信息传播、资源共享的重要媒介,这门课程也是我们必不可少的一课。 随着计算机技术的迅猛发展,计算机的应用逐渐渗透到各个技术领域和整个社会的各个方面。社会的信息化、数据的分布处理、各种计算机资源的共享等各种应用要求都推动计算机技术朝着群体化方向发展,促使计算机技术与通信技术紧密结合。网络是计算机的一个群体,是由多台计算机组成的,这些计算机是通过一定的通信介质互连在一起的,计算机之间的互连是指它们彼此之间能够交换信息。计算机网络属于多机系统的范畴,是计算机和通信这两大现代技术相结合的产物,它代表着当前计算机体系结构发展的一个重要方向。 计算机网络技术的发展和普及日益改变着我们的学习和生活,各种各样的网络应用让我们眼花缭乱,因特网让我们真正体会到信息爆炸的威力……在信息管理系统认识实习课的第一讲上,张老师从网络的定义、基本概念、以及应用等三个方面,给我们介绍了计算机网络的基本理论,让我们对它有了最基础的认识。 计算机网络是多台地理上分散的、具有独立功能的计算机通过传输介质和通信设备连接,使用网络软件相互联系,实现数据通信与资源共享的系统。其目标就是信息资源共享和互效通信。计算机网络的组成分为硬件和软件,硬件又可分为主机、传输介质和通信设备,软件可分为操作系统和通信协议。所谓主机就是组成网络的各个独立的计算机。在网络中,主机运行应用程序;连接介质和通信网中的传输线路一样,起到信息的输送和设备的连接作用计算机网络的连接介质种类很多,可以是电缆、光缆、双绞线等“有线”的介质,也可以是卫星微波等“无线”介质,这和通信网中所采用的传输介质基本上是一样的;协议对于计算机网络而言是非常重要的,可以说没有协议,就不可能有计算机网。网络协议的定义:为了使网络中的不同设备能进行下沉的数据通信而预先制定一整套通信双方相互了解和共同遵守的格式和约定。每一种计算机网络,都有一套协议支持着。由于现在计算机网种类很多,所以现有的网络通信协议的种类也很多。典型的网络通信协议有开放系统互连(OSI)协议1、X.25协议等。TCP/IP则是为Internet互联的各种网络之间能互相通信而专门设计的通信协议。 其次,老师还给我们讲了讲关于网络的几个基本概念,包括IP地址和域名系统DNS,并以校园网举例,进行详细的说明讲解,使我们对逻辑地址和物理地址、子网、子网掩码等概念有了明确清晰的认识。开始很多概念对我来说都很陌生,但是短短两节课后,我便记住了它们,所以这一课是我觉得收获颇多,受益匪浅。 最后,我们对计算机网络的应用也有了进一步的了解。计算机网络的应用虽然已经渗透到生活的方方面面,但是在学习本课之前,很多人把对网络的认识还仅仅停留于浏览网页、收发邮件、网络聊天或游戏等日常生活的使用功能上,其实计算机网络的用途还有:资源共享、提供强大的通信手段、远程信息访问、娱乐、电子商务、远程教育、视频会议等。因此,我们也可以把所有的应有可以归结为资源共享、数据通信和分布式处理与分布式控制。 通过本课的学习,我对计算机网络的认识从最初接触得感性认识,也上升为现在较为理性的

WiFi的无线网状组网技术浅析汇总

WiFi的无线网状组网技术浅析 摘要:本文首先介绍了WiFi相关技术的特点,然后介绍了WIFI的无线网状组网技术,并在无线Mesh网络的规划流程的基础上,主要针对WiFi-Mesh网络规划中的关键问题进行了分析。 关键词: 无线网状网络;无线局域网;WiFi; ABSTRACT:This paper introduces the characteristics of WiFi technology, and then describes the WiFi wireless mesh network technology and wireless Mesh network planning process, based on mainly for WiFi-Mesh network planning key issues were analyzed. Keywords:Wireless Mesh Network;Wireless Local Area Networks;WiFi;

1.WiFi特点介绍 WiFi全称Wireless Fidelity,意思是无线保真技术。又称802.11b 标准,该技术使用的是2.4GHz附近的频段。WiFi传输速度较高,可以达到11Mbps,在信号强度小或者存在干扰的情况下,带宽可依次调整为 5.5Mbps、2Mbps和1Mbps。自动调整带宽有效地保证了网络的可靠性和稳定性。WiFi传输速度快,可靠性情况高,在开放性区域,通讯距离可达305米,在封闭性区域,通讯距离为76米到122米,方便与有线以太网络整合,组网的成本相对较低。而且WiFi 更健康更安全。IEEE802.11 实际发射功率约60~70 毫瓦,而手机的发射功率约200 毫瓦至1 瓦间,手持式对讲机则高达5 瓦,而且WiFi 无线网络使用方式不像手机直接接触人体,对人体的辐射较小,使用起来是绝对安全的。 WiFi 主要是由接入点AP(Access Point)和无线网卡组成的。AP在媒体存取控制层中连接无线工作站和有线局域网。 用户在安装了有线宽带后,找到并连接一个AP,接着给电脑装一块无线网卡,就能完成WiFi上网。一般来说,一个家庭有一个AP就够了,用户授权给附近邻居时,邻居甚至也能在不增加端口的前提下共享上网。如果网络建设较为完备,802.11b能达到100米以上的工作距离,而且会减少高速移动时的数据纠错问题和误码问题。WiFi相关设备与设备之间以及设备与基站之间的切换和安全认证也能得到不错的解决。 2. Mesh组网技术简介 作为一种新兴的组网技术, 无线网状网络( Wireless Mesh Network, WMN)在近年迅速引起业界的关注。WMN的出现是应用需求直接推动的结果。 无线Mesh技术的主要特点如下: 一、多跳性。数据包均能由每个网络节点以及用户端设备转发或者路由发送到另一个对端。Mesh还能选择确定从发端到对端的最佳路由。 二、自组织。Mesh网络能够自动寻找发现相邻AP并组建Mesh网络。 三、自配置。Mesh网络中的AP能够自动配置并集中管理,从而使网络的管理和维护得到简化。 四、自愈合。Mesh网络中的AP能够主动发现并且动态连接路由,单点故

相关文档
最新文档