王正行简明量子场论(第三章+矢量场)

量子场论1

量子场论1 课程编号:Y08037D 量子场论 Quantum Fields Theory 开课单位:理学院教学大纲撰写人:冯笙琴课程学分 2.5 课程学时:45 学生层次:硕士研究生课程性质:选修课授课方式:讲授考试方式:考查适用专业:凝聚态物理 教学目标: 课程主要内容: 一、绪论 物理理论的发展和量子场论的建立;组成物质的基本粒子;自然单位、度规与记号; 二、相对论波动方程 广义Lorentz变换;张量;电磁场方程;Klein-Gordon方程;Dirac方程;电子的自旋角动量;Dirac方程的协变性;Dirac方程的平面波解;Dirac方程的解的正交归一性与完备性;二分量中微子理论; 三、经典场论 最小作用量原理与场方程;Noether定理;时空平移与能量、动量守恒定律;时空旋转 变换与角动量守恒定律;第一规范变换与电荷守恒定律; 四、场量子化概述 场量子化的物理基础;二次量子化;场量子化的正则形式; 五、标量场量子化

实标量场量子化;复标量场量子化; ,介子的同位旋; 六、旋量场量子化 经典场;场的量子化和粒子性;协变形式的对易关系;核子的同位旋; 七、矢量场量子化 经典场;场的量子化和粒子性;Lorentz条件;不定度规; 八、Green函数 Green函数的形式定义;标量场的传播函数;电磁场的传播函数;旋量场的传播函数; 九、量子场的相互作用 相互作用的描述;相互作用的分类;电磁相互作用;强相互作用;弱相互作用; 十、散射矩阵和协变微扰论 相互作用图象;量子场论的求解和U矩阵;散射矩阵S和跃迁振幅;S矩阵的化简; 费曼图;动量表象; 十一、微扰论的应用 跃迁几率与反应截面;对自旋(极化)求和与求平均;矩阵的性质和求迹公式;Compton,散射;正、负电子湮没;轫致辐射; 十二、重整化理论 发散困难和重整化思想的引进;闭合回路、真空起伏;自由电子的自能;电子自能部 分;真空极化;顶角部分;重整化一般理论; 十三、规范场

量子场论

1、证明Dirac 场的非等时对易关系在lorentz 变换下的不变性。 2、若lorentz 变换:νμνμμx a x x =→',场变换中)()(''x x φφφ=→,设四维时空的)(2 1φφφμμV L -??=。问作用量x Ld I ?=4在lorentz 变换下是不变的。求相应的Nother 守恒说。 3、由电荷守恒定律推导复标量场的总电荷的表达式? --=]1)()()()([**3k b k b k a k a x d e Q 。 4、说明下列困难产生的原因及克服这些困难的办法。 5、比较经典电磁场和量子电磁场的lorentz 条件,并说明其物理意义。 6、何为相互作用图像?它与Schrodinger 图像关系如何?在量子场论中利用相互作用图像有何好处? 7、写出量子电动力学的S 矩阵一级微扰项,并算出一级S 矩阵对应的费曼图。说明分别代表什么物理过程,这样的过程实际上能否发生?为什么? 8、试写出电子和电子辐射后的费曼图,并按费曼规则写出相最低数的S 矩阵元。 1、论述产生下列困难的原因及克服这些困难的办法。 (1)负几率困难;(2)负能困难;(3)真空中场物理量(能量、动量、电量)为无穷大困难。 2、电磁波是横波。将电磁场量子化之后,理论上不仅有横光子,还有纵光子和标量光子。如何解决这一矛盾? 3、以某一场(标量场、或者电磁场、或者旋量场)为例简述场量子化的正则方法。 4、Klein-Gordon 方程描述自旋为零的标量光子,它有平面波解。(1)写出其平面波展开式,并说明解的物理意义;(2)试以场的动量(x d x x p ? ?-=→3)()(?π)为例标量场的量子特性。 5、何谓相互作用图像?它与Schrodinger 图像的关系如何?在量子场论中采用相互作用图像有何好处? 6、说明下列Feynman 图代表的物理过程,这些过程能否实现?为什么? 7、在QED 中,最低级的S 矩阵为 ??????=∧∧+∞∞ -+∞∞-??))()()(())()()((!2222_111_24142)2(x x A x N x x A x N x d x d e S ψψψψ (1)用Wick 定理将)2(S 展开为正则乘积; (2)上图展开式中,哪些项对一对电子的散射有贡献? (3)画出一对电子散射过程的Feynman 图,并按Feynman 规则写出其最低能级S 矩阵元,并化简。

量子场论讲义1-4

第一章预备知识 §1 粒子和场 以现有的实验水平,确认能够以自由状态存在的各种最小物质,统称为粒子。电子、光子、中子、质子等是最早认识的一批粒子,陆续发现了大量的粒子、介子和共振态,粒子的数目达数百种,它们是物质存在的一种形式。 场是物质存在的另一种形式,这种形式主要特征在于场是弥散于全空间的,全空间充满着各种不同的场,它们互相渗透和相互作用着。按量子场论观点,每一种粒子对应一种场,场的激发表现为粒子的出现,不同激发态表现为粒子的数目和状态不同,场的退激发,表现为粒子的湮沒。场的相互作用可以引起激发态的改变,表现为粒子的各种反应过程,也就是说场是物质存在的更基本的形式,粒子只是场处于激发态时的表现。 1. 四种相互作用 目前已确定的粒子之间的相互作用有四种,即在经典物理中人们早已认识到了的引力相互作用和电磁相互作用,以及在原子核物理的研究中才逐步了解的强相互作用和弱相互作用。四种相互作用的比较见表 电磁相互作用的强度是以精确结构常数 2 3 1 7.297310 4137.036 e c α π - ===? h 来 表征的,可以同时参与四种相互作用的粒子(例如质子p)为代表,通过典型的反应过程的比较研究,确定各种作用强度的大小。 2. 粒子的属性 不同粒子有不同的内禀属性,这些属性不因粒子产生的来源和运动状态而改变。 最重要的属性有:

质量m ,粒子的质量是指静止质量,以能量为单位,它和能量E 和动量→ P 的关系为42222c m c p E =- 电量Q ,粒子的电荷是量子化的,电荷的最小单位是质子的电荷。 自旋S ,粒子的自旋为整数或半整数,如π介子的自旋为0,电子的自旋为1/2 ,矢量介子的自旋为1。 平均寿命τ,粒子从产生到衰变为其它粒子所经历的时间称为粒子的寿命。由于粒子的寿命不是完全确定值,具一定的几率分布,如果0N 个相同粒子进行衰变,经过时间t 后还剩下N 个,则t e N N τ 10-=,式中τ即为粒子的平均寿命。 磁矩μ,指粒子的自旋磁矩μ。它与粒子的自旋S 满足关系:S m e g 2=μ,式中e 是粒子电荷,m 为粒子质量,g 是数量因子。 宇称P ,描述粒子在空间反演下的性质的一个量子数。若在空间反演下)(x x ? ?-→,若粒子的态函数改变符号,此粒子具奇宇称(P =-1)。若态函数保持不变,粒子具偶宇称(P=1)。 粒子的性质,可查阅有关资料。例如:Particle Data Group 编的 Review of Particle Physics , 刊登于Plys .Lett . B592 (2004)。 3. 粒子的分类 可按多种方式对粒子分类。 按参与相互作用的性质,可分为三类: (a ) 强子, 既参与强相互作用,也参与弱相互作用。已发现的粒子大多数 是强子,包括重子,介子。 (b ) 轻子,不参与强相互作用的粒子,有的参与电磁作用和弱作用,如电 子和μ 子,有的只参与弱作用。 (c ) 规范玻色子,传递作用力的粒子,如γ ,-+W W ,,0Z 。 按轻子——夸克层次可分三类: 按强子夸克结构理论,强子不是“基本”粒子,强子是复合粒子,是若干个夸克构成的复合体,夸克是构成强子的组元粒子。夸克有6种:上夸克(u ),下夸克(d ),奇异夸克(s ),粲夸克(c ),底夸克(b )和顶夸克(t )。按Gell_Mann & Zweig 理论,夸克带有分数电荷,理论上称有“六味”夸克,其所带电荷如下表:

中科院研究生院物理学院毕业要求

研究生院物理科学学院研究生培养方案 为了进一步加强研究生培养工作,规范和优化研究生培养过程,提升研究生培养质量,以适应国家战略和社会需求,根据《中华人民共和国学位条例》、《中华人民共和国学位条例暂行实施办法》,并根据研究生院直属院系学科特点,特制定培养方案总则,本方案适用于研究生院直属院系科学学位研究生。 一、培养目标 培养德智体全面发展、具有坚定的社会主义信念、爱国主义精神和社会责任感,具有进取、创新、协作、唯实的科研道德,具备严谨认真的科学态度,理论联系实际的工作作风的科学研究或专门技术领域的高级专业人才。 二、学科及研究方向 (0702)物理 (070201)理论物理 1. 基本粒子理论 2. 量子场论、弦论及数学物理 3. 粒子宇宙学 4. 原子分子物理 5. 凝聚态理论 6.统计物理、非线性动力学及复杂系统理论 7.天体物理 8.生物物理 (070202)粒子物理与原子核物理 1.粒子物理

2.原子核物理 3.核技术及应用 4.加速器物理 (070203)原子与分子物理 1.原子分子激发、电离和解离的实验和理论研究 2、天体物理、等离子体中的原子分子过程; 3、量子物理与量子信息、 (070205)凝聚态物理 1.凝聚态理论物理 2.凝聚态实验物理 3.原子分子物理 4.量子物理和量子信息理论 (0801)力学 (070102)固体力学 1.冲击动力学 2.弹塑性力学 3.非线性动力学 4.结构动力学 (080103)流体力学 1. 生物流体力学 2. 空气动力学与气动热力学 3. 电磁流体力学 4. 流动稳定性及湍流 5. 非定常流与涡运动 6. 计算流体力学 7. 实验流体力学 8. 环境流体力学

CDMA的语音编码与信道编码

CDMA的语音编码与信道编码 摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步 入移动信息时代。CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。本文主要介绍CDMA中常用的语音编码技术与信道技术。 关键词:语音编码信道编码受激励线性编码码激励线性预测编码编码器解码器一、CDMA中的语音编码技术 语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质。 语音编码技术的分类 语音编码技术有三种类型:波形编码、参量编码和混合编码。 波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将幅度量化,对每个量化点用代码表示。解码是相反过程,将接收的数字序列经解码和滤波后恢复成模拟信号。参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个特征参量并进行量化编码,可实现低速率语音编码,达到2kbit/s-4.8kbit/s。但话音质量只能达到中等。 混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量优点又有参量编码的低速率优点。其压缩比达到4kbit/s-16kbit/s。泛欧GSM系统的规则脉冲激励――长期预测编码(RPE-LTP)就是混合编码方案。. CDMA的语音编码 CDMA系统如同其它数位式行动电话系统,它也采用语音编码技术来降低语音的资料速率。CDMA系统的语音编码主要有从线性预测编码技术发展而来的激励线性预测编码QCELP和增强型可变速率编码EVRC。 (1)QCELP 受激线性预测编码 QCELP,即QualComm Code Excited Linear Predictive(QualComm受激线性预测编码)。这种算法不仅可工作于4/4.8/8/9.6kbit/s等固定速率上,而且可变速率地工作于800bit/s~9600bit/s之间。Q4401、Q4413单片语音编码器就是基于这种编码算法。QCELP算法被认为是到目前为止效率效率最高的一种算法,它的主要特点之一,是使用适当的门限值来决定所需速率。I‘1限值懈景噪声电平变化而变化,这样就抑制了背景噪声,使得即使在喧闹的环境中,也能得到良好的话音质量,CDMA8Kbit/s的话音近似GSM 13Mbit/s的话音。CDMA采用QCELP编码等一系列技术,具有话音清晰、背景噪声小等优势,其性能明显优于其他无线移动通信系统,语音质量可以与有线电话媲美。 (2) CELP 码激励线性预测编码 CELP 码激励线性预测编码是Code Excited Linear Prediction的缩写。CELP是近10年来最成功的语音编码算法。CELP语音编码算法用线性预测提取声道参数,用一个包含许多典型的激励矢量的码本作为激励参数,每次编码时都在这个码本中搜索一个最佳的激励矢

2、量子场论中的量子真空概念

2、量子场论中的量子真空概念 现代真空理论实质上是量子的。具体说来,真空的众多新奇物理性质,正是被量子场论逐步的研究所揭示。可见在当今,只有理解量子场论,才有可能深刻而正确地掌握真空概念的物理内涵。量子场论是研究量子场的结构、运动及相互作用规律及其时空特征的物理理论。当今量子场论有阿贝尔的和非阿贝尔两种形式。在量子场论中,研究电磁作用的量子理论,是量子电动力学,属于阿贝尔量子规范场论;研究强作用的量子理论是量子色动力学,研究弱作用和电磁作用统一的量子理论是量子味动力学,两者都属于非阿贝尔量子规范场论。 1.量子电动力学真空 (1)光子真空 不少物理学家认为,量子理论中的真空概念,最早起源于P.狄拉克(Dirac,1902—— 1984)对电子相对论波方程的负能态研究,然而事实并非如此。量子真空的思想源于狄拉克对辐射电磁场量子化的探讨,所以最早的量子真空并非电子真空,而是光子真空。 1927年,狄拉克发表了题为《辐射的发射和吸收的量子理论》论文,标志着量子电动力学的诞生。在这篇文章中,狄拉克用两种不同的方法,研究了原子和电磁辐射场的相互作用问题,可称为微扰方法和波动方法。在微扰方法处理中,光量子被视为一种粒子集合,在这个粒子集合中没有相互作用,粒子以光速运动,并且满足爱因斯坦波色统计。狄拉克在证明哈密顿量能导致辐射和吸收所遵循的爱因斯坦定律时,首次提出和应用了真空思想。 狄拉克假定对于光量子,存在一种零态。在这种态中有无数个光子,但它们都是不可观测到的。这些光子可以从这些零态跃迁到生成可观测到的实光子,即零态的激发;而实光子也可跃迁回到这种零态,成为不可观测到的虚光子,即激发态的消失。这种实光子的产生和湮没图像是狄拉克第一次提出来的。可以看到这正是现今量子电动力学中真空态的概念和光子真空的思想,而电子真空的概念则是在他的这种思想的基础上提出来的。 (2)电子真空 1928年,狄拉克在电子量子理论方面发表了两篇文章。在这两篇论文中,狄拉克讨论了克莱因. 高登(Klein-Gordon)方程解的困难,并提出了著名的电子相对论波方程。利用这个方程来研究氢原子能级分布时,给出氢原子的能级结构,并和当时的实验很好符合。从这个方程还可以自然地导出电自旋为1/2,并且电子自旋的回磁比为轨道角动量回磁比的2倍,使得人们相信,这是一个正确描述电子运动的相对性量子力学波方程。

量子场论

量子场论 1、书名:量子场论第2版 书名(英文):Quantum Field Theory 2nd ed. 作/译者:L. H. Ryder 定价:89.00 现价:89.00 ISBN:978-7-5062-6644-4 本书是一本非常好的量子场论的入门书,虽然作者本是为不了解量子场论知识的基本粒子物理学专业的学生撰写的,但理论物理学领域的高年级大学生和低年级研究生都是能够阅读的。书中给出了量子场论的概念和方法的最新介绍,1985年第1版出版后,受到了大家的好评,这第2版在初版的基础上作了补充,增加了“超对称”一章。目次:粒子物理学概要;单粒子相对论波方程;拉格朗日表述,对称和规范场;正则量子化和粒子解释;路径积分和量子力学;路径积分量子化和费恩曼规则:标量场和旋量场;路径积分量子化:规范场;自发对称破缺和Weinberg角。 2、书名:量子场论导论 书名(英文):An Introduction to Quantum Theory 作/译者:M.E.Peskin, D.V.Schroeder 定价:79.00 现价:79.00 ISBN:978-7-5062-7294-0 本书是一部曾被美国许多大学选用的研究生教材,并受到普遍好评。与同类教材相比,该书的内容非常丰富。全书分三个部分。第一部分集中介绍场的正则量子化方法。量子电动力学和费曼图。第三部分是关于非阿贝尔规范场的详细讨论。而第二部分是在这两个部分之间搭建的一个桥梁,着重阐述泛函方法、重整化和重整化群以及临界指数等问题。作者从教学角度对于这三个部分的安排提出了详细的建议。鉴于作者的背景,这三个部分的全部内容是针对粒子物理专业研究生的需要而编排的。对于凝聚态和实验物理专业的研究生,作者建议可以把后两部分合并而舍弃用星号标记的章节即可。 作为一本教科书,作者很注重使其易读易懂和富于启发性,公式的推导和例题的分析尽可能地详尽。每一章都给出了几个习题,它们的总量虽然不大,但每个题目都经过了精心挑选,使其对深入理解课程内容和应用其解决实际问题有实质性的帮助。 我们相信,这本书不仅对于量子场论的教学(特别是双语教学)很有实际的应用价值,对于相关专业的科研人员也是一本很好的参考书。 3、书名:量子场论第1卷 书名(英文):The Quantum Theory of Fields Vol. 1 作/译者:S. Weinberg 定价:108.00 现价:108.00 ISBN:978-7-5062-6637-6 本书由诺贝尔物理学奖得主S.Weinberg教授撰写,是量子场论领域最具权威性的一套书,也是这一领域最优秀的一部研究生教材。本书给出了量子场论的最新的

理论物理专业070201培养方案

理论物理专业(070201)培养方案 (学术型硕士研究生) Theoretical Physics 一、培养目标和要求 1.努力学习马列主义、毛泽东思想和邓小平理论,坚持党的基本路线,热爱祖国,遵纪守法,品德良好,学风严谨,具有较强的事业心和献身精神,积极为社会主义现代化建设服务。 2. 培养掌握坚实宽广的理论基础和系统深入的专门知识,能将物理理论与实际问题关联起来的、具有理论与实践相结合能力的研究与应用性专业人才。 3. 积极参加体育锻炼,身体健康。 4. 硕士研究生应达到的要求: (1)掌握本学科的基础理论和相关学科的基础知识,有较强的自学能力,及时跟踪学科发展动态;能广泛获取各类相关知识,对科技发展具有敏感性。 (2)具有项目组织综合能力和团队工作精神,具有强烈的责任心和敬业精神。 (3)有扎实的英语基础知识,能流利阅读专业文献,有较好的听说写译综合技能。 (4)获得具有创新价值的研究结果。 5. 本专业的主要学习内容有:高等量子力学,群论,广义相对论,统计物理和多体理论,量子场论,宇宙学,物理中的数学方法,激光物理,光电子物理,计算物理,专业英语等课程,另外还要参加教学实习,全国性学术交流会议,撰写毕业论文等实践环节。硕士生毕业可以继续深造攻读博士学位,或从事中学教学以及在相关企事业任职。 二、学习年限 1. 学习年限 硕士研究生:学制3年,培养年限总长不超过5年。在完成培养要求的前提下,对少数学业优秀的研究生,可申请提前毕业。 三、研究方向与导师 (一)研究方向 1.引力与宇宙学,导师主要有翟向华教授、冯朝君副研究员、奚萍副研究员等。 2. 量子宏观效应与量子场论,导师主要有刘道军研究员、张一副教授、Sven Ahrens 副研究员等。 3.光与物质相互作用,导师主要有张敬涛研究员、冯勋立研究员等。 4.计算物理,导师主要有叶翔研究员。 (二)导师简介: 翟向华,女,理学博士,博士生导师,教授,上海市学位委员会学科评议组成员。1969年7月生,1998年于华东理工大学获得理学博士学位,上海市启明星学者,主要在宇宙真

#物理学硕士研究生培养方案

物理学硕士研究生培养方案 (学科代码:0702 ) 一、培养目标 本学科培养的硕士研究生应是热爱祖国、崇尚科学,能自觉遵守学术道德和学术规范,学风严谨、踏实勤奋、积极进取,身心健康,有良好的团队协作能力;具备扎实的理论基础知识和熟练的数理推演能力,具备实验研究的设计和操作技能,并有一定的创新能力,熟练使用一门外语,有及时了解本专业前沿动态的能力;初步具有独立从事和物理学科相关专业的教学、科研和管理等方面的专业人才。 二、学科专业 1. 理论物理(070201) 2. 原子和分子物理(070203) 3. 等离子体物理(070204) 4. 凝聚态物理(070205) 5. 光学(070207) 三、学习年限及应修学分 全日制硕士研究生的学习年限一般为3年。在完成培养要求的前提下,对少数学业优秀、科研成果突出的硕士生,可推荐提前攻读博士学位或允许申请提前毕业,提前毕业期一般不超过1年。如确需延长学习年限的,延长期一般不超过1年。 各专业的硕士研究生应至少须修满35学分,其中课程学习32学分,实践环节3学分。 四、课程设置及考核方式(具体见本学科课程设置和教学计划表) 五、培养方式 依据本学科理论物理、原子和分子物理、等离子体物理、凝聚态物理以及光学等专业特点,硕士研究生的主要培养环节由学院隶属的各研究所统筹安排,按导师及指导小组制定的具体培养计划执行。基础理论课的教学采取教师讲授为主的方式进行,通过测试取得学分;专业课及专业选修课的教学采取教师讲授和小组讨论相接合的方式进行,通过测试(或考查)取得学分;实践教学环节中的科研实践要求研究生除参加研究小组、研究所乃至学院例行的学术讨论会外,还要求每个研究生在不同场合至少分别各作一次文献综述报

2015年中国人民大学理论物理专业真题解析,考研真题,考研笔记,复试流程,考研经验

【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站: https://www.360docs.net/doc/2615937789.html, 12015年中国人民大学考研指导 育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育孙老师。 理论物理专业 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域的很多重大基础和前沿研究密切相关。理论物理以解析分析与数值计算为手段,研究物质在不同层次上的基本物理规律,研究内容涵盖了从高能到低能,从微观到宏观甚至宇观的各个前沿研究领域,如:基本粒子物理、原子与分子物理、凝聚态物理、复杂系统以及广义相对论等。

【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站 :https://www.360docs.net/doc/2615937789.html, 2本专业主要培养具有坚实的理论物理基础和必要的数学功底,了解学科发展前沿,能够从事理论物理方面的科研教学的高层次、全面发展的学术型人才。毕业生既可以继续攻读博士学位或赴海外深造,也可以在科研机构、高等院校、国家政府部门和相关领域从事物理方面的教学、服务和管理工作,或在信息、材料、能源等相关高技术的企事业单位从事技术性工作。 目前理论物理专业的主要研究方向有:高温超导微观机理、低维强关联系统、量子临界现象、原子与分子物理中的与超冷原子相关理论问题、介观物理以及与统计力学相关的交叉学科。主要开设高等量子力学、群论、量子统计物理、高等固体理论、量子场论、相变与重正化群理论、计算物理、凝聚态物理前沿、经济与金融物理、理论生物物理等专业课程。此外,我们还将保持一定数量的由研究生、博士后和国内外访问学者组成的流动性科研队伍,促进学术交流与合作。同时,还计划组织每周一次的学术报告、每月一次名家讲坛或者前沿论坛、每个季度一次的期刊俱乐部,以及每年一两次的国内或国际的学术研讨会或夏(冬)季学校。 理论物理专业目前共计有十七位博士生导师和一位硕士生导师,博士生导师分别是Bruce Normand 教授、郭茵教授、韩强副教授、季威副教授、李涛教授、李茂枝教授、刘凯副教授、刘玉良教授、卢仲毅教授、同宁华副教授、王孝群教授、王雷教授、魏建华教授、张芃教授、张威副教授、俞榕副教授和朱传界教授,硕士生导师是徐靖讲师。这批教师年龄在33岁-52岁之间,正处于科学研究的活跃时期,并且已在计算凝聚态物理、超导物理、高温超导机理,超冷原子物理、杂质物理、复杂系统等领域取得了大量科研成果,这些科研成果的人均影响因子和引用次数均居全国著名高校物理系得前几位。除刚回国的成员外,其他成员都拥有自然科学基金项目和/或科技部973项目等。 首先要明确的几点:第一,不同的考试有不同的复习方法,千万不要把高考、四六级、期末考等考试的方法照搬到考研上,无论你这些考试考得有多好都不行。第二,每个人的具体情况都不同,有些方法对别人很有效,对你可能就没什么用,比如我,很多人都喜欢早上起床后学英语,而我却喜欢学数学,学英语的话就会打瞌睡。所以,大家不要照搬我的复习经验,一

一种改进的2_4kb_s混合激励线性预测声码器方案

2007 年 6 月 JOURNAL OF CIRCUITS AND SYSTEMS June 2007 文章编号:1007-0249 (2007) 03-0117-04 一种改进的2.4kb/s 混合激励线性预测声码器方案* 马欣, 刘常澍, 李文元, 张毓忠 (天津大学 电子信息工程学院,天津 300072 ) 摘要:本文针对标准的2.4kb/s MELP 声码器的不足之处提出了两项改进措施,一是提出了一种新的参数“能量—微分过零率比”,用来对语音的过渡段和弱能量浊音段的清浊音判决进行调整;二是对线谱对的多级矢量量化(MSVQ )提出了一种多径搜索算法。实验和主观听觉测试表明,在同样2.4kb/s 的码率下,改进MELP 声码器的合成语音在可懂度和自然度方面都有一定的提高。 关键词:清浊音判决;MELP ;声码器;多级矢量量化(MSVQ ) 中图分类号:TN912.3 文献标识码:A 1 引言 在美国联邦政府选择新一代 2.4kb/s 语音编码标准以代替原来的LPC-10e 模型的过程中,A.V. MaCree 等提出了一种混合激励线性预测(MELP ,Mixed Exitation Linear Prediction )声码器方案[1]。该方案以传统的LPC 线性预测声码器为内核,加入了混合激励、准周期脉冲、自适应频谱增强技术、脉冲波形发散和表示残差基音谐波的傅立叶幅度等五项改进技术。这些改进使得MELP 在2.4kb/s 的低码率下保证了良好的合成语音质量。 但是,经过大量的听觉测试,发现用MELP 方案合成的语音还是存在一些问题。特别是在语音的过渡区段,人工合成音的迹象比较明显,语音听起来显得有些生硬。为了使合成语音听起来更加自然,本文对MELP 算法模型提出了以下两项改进措施:(1)提出了一种新的表征语音特征的参数——短时能量—微分过零率比,以解决语音过渡期和弱能量浊音帧的清浊音误判问题;(2)提出了一种线谱频率多级矢量量化的多径搜索算法,解决了有些情况下编码矢量与输入矢量之间总体失真度偏大的问题。 实验和主观听觉测试结果表明,这两项措施是有效的。改进后的MELP 模型在同样的2.4kb/s 码率下,合成语音在可懂度和自然度上都有一定的提高。 2 改进的模型 2.1 能量—微分过零率比(edzc R )参数 实验表明,不自然合成音多发生在元音语音段的开始、结束或 两个元音发音之间的结合部分,也就是人的发音状态处于过渡态的 时期。在元音段的开始或结束时期,语音能量通常比较低。两个元 音之间,有一段基音周期不是很规则的时期。不规则的基音成分或 弱能量段使得基音相关性弱,难以准确判定其清浊音性质。标准 MELP 模型对这个问题的解决方法,是采用自相关系数检测法对5 个子带进行清浊音初判后,再计算残差信号的峰度(peakiness ),对 相应子带的清浊音判决进行调整。因为峰度是和语音段的能量相关的,通常浊音段的能量要比清音段或无声段高,所以通过残差信号峰度可以减少部分情况下的清浊音误判。但是峰度调整对于有些情况处理得还是不够理想。这是因为元音(浊音)开始段和结束段的能量水平通常也比较低,与清音段的能量水平差别并不显著。所以有时候能量较弱的浊音段还是会被误 * 收稿日期:2004-09-22 修订日期:2004-11-24 图 1 原始声音信号、采用标准MELP 算法的合成语音和采用能量—微分过零率比R edzc 改进的MELP 合成语音

量子场论笔记

量子场论笔记 WangHongyu June22,2011 1Why Quantum Field Theory is So Di?cult?The key point 对于量子场论有两种比较容易的理解,一是标准量子力学的相对论形式:传统量子力学是非相对论的,为了处理高能量粒子的运动,必须引入相对论效应,将量子力学改写成协变形式;然而在这修改过程中必然出现反粒子问题和粒子对的产生过程,于是原来针对单粒子的量子力学转变成了粒子数可变(随时增减)体系的量子力学,为了处理粒子数的改变,需要使用将原来的波函数改写成算符,这就是所谓“二次量子化”过程,完成了二次量子化的量子理论被看作量子场论。 第二种理解要更加简单而直接:许多物理体系都是场体系,例如光本身就是一种电磁场,为了研究其量子效应,需要按照量子力学的原则对电磁场运动方程进行量子化。由于场是全空间分布的连续目标,其量子力学理论将是具有无穷自由度体系的量子理论;为了求解这样的体系,需要对自由度进行分解,得到的平面波解称为粒子或者量子,而这种理论就是量子场论。 1.1量子化 我们采用第二种理解。和传统量子力学一样,量子场论也是基于量子化的手续,比较流行的方案包括正则量子化手续和路径积分量子化。在大部分情况下,两种手续都要交替使用。 正则量子化的基本手续就是写出场的拉格朗日量,定义正则坐标和正则动量,引入正则坐标和正则动量之间的对易关系: [?(x,t),Π(x′,t)]=iδ3(x?x′) 原则上就完成了正则量子化步骤。 在实践中,由于自由度之间可能存在复杂的耦合,上述量子化需要对独立的正则动量来完成,因此首先要分解出独立的自由度。对于连续存在于平直空间的的场,最简单的方法是进行傅立叶分解。对场变量的傅立叶分解得到一系列平面波态,而自由场的哈密顿变成所有平面波哈密顿的和。对每个平面波态求解得到其能量和动量,结果表明每个态的能量和动量都是分立的,于是将这种平面波态称为“粒子”。 1

计算机三级网络知识点总结分章节

第一章计算机基础知识 1.1计算机概述 一、计算机的四特点:1.有信息处理的特性2.有程序控制的特性3.有灵活选择的特性4.有正确应用的特性 二、计算机发展经历5个重要阶段,它们是并行关系:1.大型机阶段40-50年代2.小型机阶段60-70年代3.微型机阶段70-80年代4.客户机/服务器阶段5.Internet阶段(Arpanet 是在1983年第一个使用TCP/IP协议的;在1991年6月我国第一条与国际互联网连接的专线建成,它从中国科学院高能物理研究所接到美国斯坦福大学的直线加速器中心;在1994年实现4大主干网互连(中国公用计算机互联网Chinanet、中国科学技术网Cstnet、中国教育和科研计算机网Cernet、中国金桥信息网ChinaGBN),即全功能连接或正式连接) 三、计算机应用领域:1.科学计算2.事务处理3.过程控制4.辅助工程(CAE,CAI,CA T) 5.人工智能6.网络应用7.多媒体应用 1.2计算机硬件系统 1.一个完整的计算机系统由软件和硬件两部分组成。 2.硬件具有原子的特性,成本低速度快;软件具有比特的特性,成本高速度慢。二者在功能上具有等价性、且具有同步性。 3.计算机硬件组成四个层次:①芯片②板卡③整机④网络 一、计算机硬件的种类:计算机传统分类:巨型机、大型计算机,中型计算机,小型计算机、微型计算机。 IEEE1989年分类:大型主机、小型计算机、个人计算机、工作站、巨型计算机、小巨型计算机。 计算机现实分类:服务器(按处理器体系结构分CISC\RISC\VLIW三种,按结构分刀片式),工作站(基于RISC和UNIX操作系统的份额专业工作站和基于Interl和Windows的PC工作站),台式机,笔记本,手持设备。 二、计算机指标: 1.字长(位数)。8位是一个字节,16位是一个字,32位是一个双字长,64位是两个双字长。指CPU一次能处理寄、存器能储存32位数据 2.速度。MIPS是表示单字长定点指令的平均执行速度,MFLOPS是考察单字长浮点指令的平均执行速度。3.容量。Byte用B表示。4.数据传输率(带宽)。Bps用b。5.可靠性。平均无故障时间MTBF和平均故障修复时间MTTR来表示。6.产品名称和版本。越高越好。 3. 微处理器简史:Intel8080(8位)→Intel8088(16位)→奔腾(32位)→安腾(64位)三.奔腾芯片的技术特点:奔腾32位芯片,主要用于台式机和笔记本,奔腾采用了精简指令RISC技术。 ⑴超标量技术。通过内置2条U、V(仅精简指令)整数指令流水线和1条浮点指令流水线,同时执行多个处理,其实质是用空间换取时间。 ⑵超流水线技术。通过细化流水,提高主频,使得机器在一个周期内完成一个甚至多个操作,其实质是用时间换取空间。经典奔腾每条整数流水线分为四级流水:指令预取,译码,执行和写回结果。浮点流水线分8级流水,前4点同,后4点:二级浮点操作、一级4舍5入及写回浮点运算、一级为出错报告 ⑶分支预测。为提高流水线吞吐率,内置分支目标缓存器,动态的预测程序分支的转移情况。 ⑷双CACHE哈佛结构:指令与数据分开。⑸固化常用指令。⑹增强的64位数据总线。内部总线是32位,外部总线增为64位。

从爱因斯坦到霍金的宇宙--听课笔记

从爱因斯坦到霍金的宇宙---听课笔记 第一节爱因斯坦与物理学的革命: 1、普朗克是个深明大义的人,对于爱因斯坦发表的光量子理论,虽持反对意见,但依旧支持发表,并在爱因斯坦后来后来的论文发表给予了很大的支持。 2、爱因斯坦的求学经历告诉我们,自由的思考空间,独立的思考,是非常重要的。 3、爱因斯坦的最初的人生路途坎坷。 4、狭义相对论对于时空的解释相当的独特。 第二节弯曲的时空—广义相对论 1、狭义相对论无法引入万有引力定律; 2、广义相对论解释行星绕日运动为惯性运动; 3、爱因斯坦创建广义相对论的过程中,借助了黎曼几何; 4、广义相对论证明了水星绕太阳的转动是一百年43秒的进动; 5、爱因斯坦为了解释狭义相对论无法解释的东西,进一步创建了广义相对论。 第三节从白矮星、中子星到黑洞 1、200多年前,法国天文物理学家拉普拉斯和英国剑桥大学学监米歇尔几乎同时预言了暗星(即黑洞)的存在。 2、拉普拉斯用万有引力预言了黑洞的存在,并利用牛顿的微粒说计算了黑洞形成的原因(公式解释形成的原因)(结果正确,过程存在

两个错误)。 3、黑洞的奇点密度无穷大。 4、黑洞有温度。 5、广义相对论无法解释暗物质和暗能量。贝尔和休伊士发现了脉冲星。 第四节霍金与黑洞 1、霍金生于1972年一月八日,伽利略逝世300周年。 2、霍金推翻了了霍伊尔的稳恒态宇宙模型。 3、彭若斯与霍金的齐性定理。 4、霍金提出面积定理和霍金辐射。 5、霍金否定了自己最初的想法,肯定了贝肯斯坦的说法,并用弯曲时空量子场论证明黑洞有温度。 6、信息是否守恒惹争议。 第五节膨胀的宇宙 1、超新星爆发的结果是可以形成中子星的。 2、银河系大约有1000亿到2000亿颗恒星。银河系2.5亿年自转一周。 3、太阳系以250千米每秒的速度围绕银心旋转。 4、银河系直径十万光年左右。 5、星系群,星系团的定义。 6、宇观尺度:10的8次方光年以上,物质均匀各向同性分布。 7、爱因斯坦认为:广义相对论不该应用于原子现象的研究,而该应

矢量量化器

最佳矢量量化器码本设计 指导教师姓名: ××× 报告提交日期: 20××年×月×日

摘要 矢量量化技术作为一种有损压缩编码技术在语音信号的存储和低码率传输过程中起到了巨大的推动作用。本文主要介绍了适量量化的一些基本概念,以及矢量编码器的码本设计方法。 关键词 适量量化矢量量化器 矢量量化 矢量量化介绍 矢量量化是70年代后期发展起来的一种数据压缩技术基本思想:将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息。矢量量化技术是七十年代后期发展起来的一种数据压缩和编码技术,广泛应用于语音编码、语音合成、语音识别和说话人识别、图像压缩等领域。矢量量化的基本原理是:将若干个标量数据组成一个矢量(或者是从一帧语音数据中提取的特征矢量)在多维空间给予整体量化,从而可以在信息量损失较少的情况下压缩数据量。矢量量化有效地应用了矢量中各元素间的相关性,因此可以有比标量量更好的压缩效果。一般来说矢量维数越大量化越优越。

矢量量化原理概述 标量量化 将抽样值的整个动态范围被分成若干个小区间,每个小区间有一个代表值,量化时落入小区间的信号值就用这个代表值代替,或者叫被量化为这个代表值。这时的信号量是一维的,所以称为标量量化。 矢量量化 若干个标量数据组成一个矢量,矢量量化是对矢量进行量化,和标量量化一样,它把矢量空间分成若干个小区域,每个小区域寻找一个代表矢量,量化时落入小区域的矢量就用这个代表矢量代替,或者叫被量化为这个代表矢量。 矢量量化的要点 首先设计一个好码本。关键在于如何划分J个区域边界。这需要大量的输入信号矢量,经过统计实验才能确定,这个过程称为“训练”或“学习”。 应用聚类算法,按照一定的失真度准则(失真测度),对训练的数据进行分类,从而把训练数据在多维空间中划分成一个以码字为中心的胞腔,常用的是LBG算法来实现。 未知矢量的量化。按照选定的失真度准则(失真测度),把未知矢量,量化为失真度最小的码字。

量子场论 课程教学大纲

量子场论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子场论 所属专业:理论物理 课程性质:专业课 学时:72 学分:4 (二)课程简介、目标与任务; 近一个世纪以来,量子场论一直是了解微观世界的重要工具,是粒子物理的重要理论基础,并已广泛应用于微观物理其他领域。场的量子化解释了场与粒子之间的内在联系,而量子场论合理地描述了粒子的产生、湮灭,及其相互转化现象。上世纪五十年代初建立的体系完整的量子电动力学(QED),是关于带电粒子、光子及其相互作用的量子场论,是U(1)的阿贝尔规范场理论。光子的辐射与吸收、光电效应、Compton散射,特别是氢原子的Lamb移动、电子磁矩的计算与实验的精确符合等,足以说明量子电动力学的正确性。此外,量子电动力学中建立的重整化理论也是成功的。弱电统一理论克服了过去四个费米子直接相互作用理论不能重整化的困难;预言了中性流并得到严格的实验支持;中微子、反中微子与核子和电子碰撞等过程与实验符合得很好。在强相互作用领域,上世纪七十年代发展和建立的量子色动力学(QCD)是SU(3)非阿贝尔规范理论,它是1954年杨振宁建立的SU(2)非阿贝尔规范理论的推广。由量子色动力学探讨核子之间相互作用的严格理论目前尚未解决。基本粒子之间的电磁相互作用、弱相互作用、强相互作用都是由规范理论建立起来的,三种相互作用是由三类规范玻色子传递的。量子场论就是研究以三代轻子和三代夸克作为基本粒子,以强子夸克模型和弱电统一理论与量子色动力学为基础的标准模型。量子场论(一)主要研究量子电动力学。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 分析力学、电动力学、量子力学 (四)教材与主要参考书。 量子场论,段一士,高等教育出版社,2015年 二、课程内容与安排 第一章绪论(4学时) 1.1 组成物质的基本粒子,轻子和夸克 1.2 量子场论、规范场论和规范玻色子 1.3 自然单位

原子与分子物理学专业硕士研究生培养方案(精)

原子与分子物理学专业硕士研究生培养方案 (专业代码:070203) 一、学科概况 原子与分子物理学研究原子分子结构、性质、相互作用和运动规律,阐明物理学基本定律,提供各种原子分子的科学数据。原子与分子物理学是揭示微观世界奥秘的先驱,是现代物理学创立的奠基石。原子、分子和团簇是物质结构从微观过渡到宏观过程的必经层次和桥梁。从天体到凝聚态、等离子体,从化学到生命过程都与原子分子过程密切相关。 原子与分子物理学是基础性强、渗透面宽、应用范围广的物理学分支学科。不仅为现代科学各分支学科提供基础理论、实验方法和基本数据,而且在能源、材料、环境、医学和生命科学以及国防研究中发挥重要作用,在开拓高新技术产业、推动科技发展和促进社会进步方面占有不可忽视的重要地位。 二、培养目标 本专业培养的硕士研究生应是热爱祖国、学风良好、治学严谨、身体健康,具有本专业扎实的理论基础和系统的专门知识及技能,有一定的创新能力,较熟练的掌握一门外语,并初步具有独立从事与原子分子物理学专业有关学科的教学、科研和管理工作的专门人才。 三、研究方向 A、原子结构与原子光谱 B、原子碰撞 C、激光与原子、分子和物质的相互作用 D、分子结构与分子光谱 四、学习年限及应修学分 学习年限为三年;应修34分。 五、课程设置(见课程设置与教学计划表) 六、培养方式与方法 本专业硕士生的培养主要由导师或指导小组负责,对课程学习和科研工作进行指导。课程学习应采取教师授课和小组式讨论的方式进行,并在学习过程中强调对研究生能力的培养。对研究生的课程考试采用书面考试和提交与该课程有关的小型论文结合进行。对实验课程的教学要充分发挥研究生的创造能力,与教师密切配合,共同参与对实验内容的制定、实验过程的具体操作以及对实验结果的分析。科研工作应在导师的指导下结合学位论文进行。 七、学位论文 研究生在修满规定学分后,可开始进入学位论文阶段。学位论文应在导师指导下,在通过阅读文献资料、调查研究、分析总结前人工作的基础上,结合导师的科研课题,提出开题报告和设计方案,经导师组讨论通过后实施。在论文撰写阶段,导师要经常检查并和学生进行必要的讨论,对论文中出现的问题及时加以解决。研究生独立完成学位论文撰写后,应聘请本专业有影响的专家学者进行评阅,评阅人至少应有三分之一为外单位具有副高级职称人员。学位论文评阅通过后,可组织答辩,答辩通过后方能授予硕士学位。 - 385 -

量子场论

量子场论 概述 量子场论是量子力学和经典场论相结合的物理理论,已被广泛的应用于粒子物理学和凝聚态物理学中。量子场论为描述多粒子系统,尤其是包含粒子产生和湮灭过程的系统,提供了有效的描述框架。非相对论性的量子场论主要被应用于凝聚态物理学,比如描述超导性的BCS理论。而相对论性的量子场论则是粒子物理学不可或缺的组成部分。自然界目前人类所知的有四种基本相互作用:强作用,电磁相互作用,弱作用,引力。除去引力,另三种相互作用都找到了合适满足特定对称性的量子场论来描述。强作用有量子色动力学;电磁相互作用有量子电动力学,理论框架建立于1920到1950年间,主要的贡献者为狄拉克,福克,泡利,朝永振一郎,施温格,费曼和迪森等;弱作用有费米点作用理论。后来弱作用和电磁相互作用实现了形式上的统一,通过希格斯机制产生质量,建立了弱电统一的量子规范理论,即GWS模型。量子场论成为现代理论物理学的主流方法和工具。 “量子场论”是从狭义相对论和量子力学的观念的结合而产生的。它和标准(亦即非相对论性)的量子力学的差别在于,任何特殊种类的粒子的数目不必是常数。每一种粒子都有其反粒子(有时,诸如光子,反粒子和原先粒子是一样的)。一个有质量的粒子和它的反粒子可以湮灭而形成能量,并且这样的对子可由能量产生出来。的确,甚至粒子数也不必是确定的;因为不同粒子数的态的线性叠加是允许的。最高级的量子场论是“量子电动力学”--基本上是电子和光子的理论。该理论的预言具有令人印象深刻的精确性。然而,它是一个没有整理好的理论--不是一个完全协调的理论--因为它一开始给出了没有意义的“无限的”答案,必须用称为“重正化”的步骤才能把这些无限消除。并不是所有量子场论都可以用重正化来补救的。即使是可行的话,其计算也是非常困难的。 使用“路径积分”是量子场论的一个受欢迎的方法。它是不仅把不同粒子态(通常的波函数)而且把物理行为的整个空间--时间历史的量子线性叠加而形成的(参阅费因曼1985年的通俗介绍)。但是,这个方法自身也有附加的无穷大,人们只有引进不同的“数学技巧”才能赋予意义。尽管量子场论勿庸置疑的威力和印象深刻的精确度(在那些理论能完全实现的很少情况),人们仍然觉得,必须有深刻的理解,才能相信它似乎是导向“任何物理实在的图像”。 简介 根据量子力学原理建立的场的理论,是微观现象的物理学基本理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。场的物理性质可以用一些定义在全空间的量描述〔例如电磁场的性质可以用电场强度和磁场强度或用一个三维矢量势A(X,t)和一个标量势嗘(X,t)描述〕。这些场量是空间坐标和时间的函数,它们随时间的变化描述场的运动。空间不同点的场量可以看作是互相独立的动力学变量,因此场是具有连续无穷维自由度的系统。场论是关于场的性质、相互作用和

相关文档
最新文档