高中物理论文关于氢原子能级跃迁探析

高中物理论文关于氢原子能级跃迁探析
高中物理论文关于氢原子能级跃迁探析

氢原子能级跃迁探析

氢原子从低能级跃迁至高能级有两种方式:一是用光子照射使原子跃迁;另一是用实物粒子轰击使原子跃迁。这两种方式有何区别?许多学生搞不清楚,本文拟就光子、电子、原子等对基态氢原子作用后能否发生跃迁进行探讨。

根据光子说,光子是一份一份的,其能量也是一份一份的,每一个光子的能量为E h ν=,是不能被分割的。用光照射使原子跃迁的实质是通过共振达到的,入射光的频率要满足选择性原则:要共振就必须使光子的频率等于

n m

E E h

-,否则均不能发生共振,也就不能跃迁了。但应注

意:若电子得到一定的能量,彻底摆脱原子核的束缚而成为自由电子,这种情况称为电离,所需要的能量叫电离能。电离时,不受n m E E h ν-=条件的限制,这是因为原子一旦被电离,原子结构即被破坏,不再遵守有关原子的结构理论。

实物粒子使原子跃迁不是通过共振而是通过碰撞来实现的。若二粒子碰撞时,如果有一部分平移能量转化为内部能量,使原子被激发,称作“非弹性碰撞”。我们又知道:一切碰撞过程须同时遵守能量守恒定律和动量守恒定律,违背其中之一的过程就是不可能发生的。即二粒子的碰撞不可能把它们的全部动能转化为内部能量,因为碰后必须保留一部分动能以满足动量守恒的关系。

一、非弹性碰撞时能量损失的计算 1、系统能量损失的一般计算

设氢原子的质量为M ,实物粒子的质量为m ,为简化问题:不妨假设氢原子原来处于静止状态。实物粒子与氢原子做对心非弹性碰撞,氢原子碰撞前后的速度分别为零和V ;实物粒子碰撞前后的速度分别为0v 和v 。以实物粒子和氢原子作为一个系统,应有:

2

2

2

00111m v m v M V

m v m v M V E 22

2

=+=

+

+?

式中E ?为原子内部能量的增量,即实物粒子与氢原子做非弹性碰撞损失的部分能量转化为氢原子的内部能量,使氢原子跃迁。

由上述两式消去v 得:()()2

2

2

00m M m V 2m v V m m M v 2M E 0+-+-+?=

这是关于V 的一元二次方程,为使为实数则方程系数应满足: ()()2

2

2

00 (2v )4m m M [m m M v 2M E ]0 m --+-+?≥

()2

01m v 1m /M E 2

≥+?即:

式中

2

01

m v 2为外来实物粒子的动能,用0E 表示,则:0m M E E M ?≤+()

2、能量损失极值m E ?的简化计算

完全非弹性碰撞(即碰后实物粒子与氢原子有共同速度)时,系统损失的能量最大,这个最大值称为“能量损失极值m E ?”。 设实物粒子的质量为m 、动能为0E 、入射速度为0v ;氢原

子原来处于静止状态,质量为M 。则发生完全非弹性碰撞时,由动量守恒定律得:

0(m )m v M v =+ ,故系统能量损失的极值为:

2

2

0m 011

m ()2

2m M E E v M m v M ?=

-

+=

+()

3、常见实物粒子与氢原子碰撞时系统“能量损失极值m E ?”的讨论

“能量损失极值m E ?”不仅与实物粒子的初动能有关,还与实物粒子的质量有关。对于不同的入射实物粒子,这个极值一般是不相同的。

(l )电子入射:因其质量远小于氢原子质量,可近似认为系统损失动能的极值为0m E E ?= 。即有可能差不多使电子的全部动能转变成原子的内能,从动能利用的角度来考虑,用电子碰撞来激发原子更有利。

(2)质子、中子或氢原子入射:碰撞处于静止状态的另一氢原子,则因其质量m M = ,可得损失动能的极值012m E E ?=

(3)а粒子入射:碰撞处于静止状态的氢原子,因其质量4m M =,可得损失动能的极值

015m E E ?=

二、氢原子能级跃迁应用举例

例1、一个具有E K0=20.40eV 动能、处于基态的氢原子与一个静止的、同样处于基态的氢原子发生对心碰撞(正碰),则下列关于处于基态的氢原子向激发态跃迁的说法中正确的是( ) A.不可能发生跃迁 B.可能跃迁到n=2的第一激发态 C.可能跃迁到n=3的第二激发态 D.可能跃迁到n=4的第三激发态

【解析】两个氢原子做完全非弹性碰撞时损失的动能最大,损失动能的极值

0110.22

E E ev ?=

=,所以处于基态的氢原子只可能跃迁到n=2的第一激发态。故正确答案为B 。

例2、要是处于基态的、静止的氢原子激发,下列措施可行的是( )

A 、用10.2 eV 的光子照射;

B 、用11 eV 的光子照射;

C 、用11 eV 的电子碰撞;

D 、用11eV 的а粒子碰撞.

【解析】氢原子基态与第一激发态的能量差值为10.2eV ,与第二激发态的能量差值为12.09eV ,故由吸收光子的选择性原则知:(A )所述措施可行,而(B )不行;电子入射动能损失极值0E E ?=故(C )可行;用а粒子碰撞氢原子时,其入射动能损失的极值015

E E ?=

,可知

(D )不行,故正确答案为A 。

总之,用光子照射使原子跃迁,入射光的频率要满足选择性原则;而用实物粒子轰击而使原子跃迁,能级跃迁的能量只能是损失极值m E ?的全部或部分,而不可能是碰前实物粒子动能的全部。

地址及邮编:湖北大学附属中学 430062 E-mail :yuqingshicn@https://www.360docs.net/doc/2416349868.html,

作者简介:余清士:男,高级教师,湖北大学附属中学物理教研组组长。2005年3月,在中央教育科学研究所组织的教育科研成果评比中,被评为全国教育科研先进个人。先后在《中学物理教学参考》、《物理教学》、《中学物理》、《中学生物理》、《学物理》、《数理天地》等报刊发表论文20余篇。

玻尔理论与氢原子跃迁含答案

玻尔理论与氢原子跃迁 一、基础知识 (一)玻尔理论 1、定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量. 2、跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=Em-En.(h是普朗克常量,h=6.63×10-34 J·s) 3、轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 4、氢原子的能级、能级公式 (1)氢原子的能级图(如图所示) (2)氢原子的能级和轨道半径 ①氢原子的能级公式:En=1 n2 E1(n=1,2,3,…),其中E1为基态能量,其数值为E1= -13.6 eV. ②氢原子的半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m. (二)氢原子能级及能级跃迁 对原子跃迁条件的理解 (1)原子从低能级向高能级跃迁,吸收一定能量的光子.只有当一个光子的能量满足hν=E末-E初时,才能被某一个原子吸收,使原子从低能级E初向高能级E末跃迁,而当光子能量hν大于或小于E末-E初时都不能被原子吸收.

(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差. 特别提醒 原子的总能量En =Ekn +Epn ,由ke2r2n =m v2rn 得Ekn =12ke2rn ,因此,Ekn 随r 的增大而减小,又En 随n 的增大而增大,故Epn 随n 的增大而增大,电势能的变化也可以从电场力做功的角度进行判断,当r 减小时,电场力做正功,电势能减小,反之,电势能增大. 二、练习 1、根据玻尔理论,下列说法正确的是 ( ) A .电子绕核运动有加速度,就要向外辐射电磁波 B .处于定态的原子,其电子绕核运动,但它并不向外辐射能量 C .原子电子的可能轨道是不连续的 D .原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差 答案 BCD 解析 根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故A 错误,B 正确.玻尔理论中的第二条假设,就是电子绕核运动可能的轨道半径是量子化的,不连续的,C 正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子能量取决于两个能级之差,故D 正确. 2、下列说法中正确的是 ( ) A .氢原子由较高能级跃迁到较低能级时,电子动能增加,原子势能减少 B .原子核的衰变是原子核在其他粒子的轰击下而发生的 C .β衰变所释放的电子是原子核的中子转化成质子而产生的 D .放射性元素的半衰期随温度和压强的变化而变化 答案 AC 解析 原子核的衰变是自发进行的,选项B 错误;半衰期是放射性元素的固有特性,不 会随外部因素而改变,选项D 错误. 3、(2000?)根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为E'的轨道,辐射出波长为λ的光.以h 表示普朗克常量,C 表示真空中的光速,则E ′等于( C ) A .E ?h λ/c B .E+h λ/c C .E ?h c/λ D E+hc /λ 4、欲使处于基态的氢原子激发,下列措施可行的是 A.用10.2 eV 的光子照射 B.用11 eV 的光子照射 C.用14 eV 的光子照射 D.用11 eV 的光子碰撞 [命题意图]:考查考生对玻尔原子模型的跃迁假设的理解能力及推理能力. [解答]:由"玻尔理论"的跃迁假设可知,氢原子在各能级间,只能吸收能量值刚好等于

高中物理专题:受力分析与动态平衡问题

图1 图1-4 高中物理专题:受力分析与动态平衡问题 例1.如图1所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°。则小球的质量比m 2/m 1为 A . B . C . D . 2. 如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止。物体B 的受力个 数为( ) A .2 B .3 C .4 D .5 例2. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 思考1:所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向左缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况? (答案:绳上张力减小,斜面对小球的支持力增大) 思考2:如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A 点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化? 例2.如图所示,质量为m 的小球用细线悬于天花板上。在小球上作用水平拉力F ,使细线与竖直方向保持θ角,小球保持静止状态。现让力F 缓慢由水平方向变为竖直方向。这一过程中,小球处于静止状态,细线与竖直方向夹角不变。则力F 的大小、细线对小球的拉力大小如何变化?

例3.轻绳一端系在质量为m 的物体A 上,另一端系在一个套在粗糙竖直杆MN 的圆环上。现用水平力F 拉住绳子上一点O ,使物体A 从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来位置不动。则在这一过程中,环对杆的摩擦力F 1和环对杆的压力F 2的变化情况是 A .F 1保持不变,F 2逐渐增大 B .F 1逐渐增大,F 2保持不变 C .F 1逐渐减小,F 2保持不变 D .F 1保持不变,F 2逐渐减小 思考:如图3-4所示,在做“验证力的平行四边形定则”的实验时, 用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时 α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点 位置不变,可采用的办法是( )。 (A)减小N 的读数同时减小β角 (B)减小N 的读数同时增大β角 (C)增大N 的读数同时增大β角 (D)增大N 的读数同时减小β角 例4.如图4所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 思考:如图所示,长度为5cm 的细绳的两端分别系于竖立地面上相距为4m 的两杆的顶端A 、B ,绳子上挂有一个光滑的轻质钩,其下端连着一个重12N 的 物体,平衡时绳中的张力多大? 思考:人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是( ) (A )绳的拉力不断增大 (B )绳的拉力保持不变 (C )船受到的浮力保持不变 (D )船受到的浮力不断减小 图3-4

氢原子跃迁与氢原子光谱解读

氢原子跃迁与氢原子光谱 玻尔原子理论第三条假设的“跃迁’指出:原子从一个定态(设能量为En )跃迁到另一种定 )时.它輻射和吸收一定频率的光于.光子能量由这两个定态能量差决定,即 态(没能量为E K hυ=En-Ek 若原于原来处于能级较大的定态——激发态.这时原子处于不稳定的能量状态,一有机会让会释放能量.回到能量较小的激发态或基态(能级最小的定态).这一过程放出的能量以放出光于的形式实现的,这就是原于发光原因。可见原子发光与能级跃迁有必然联系。对于氢原子它们对应关系如上图所示,从图可知当电子从n=3、4、5、6这四个激发态跃迁到n=2的激发态时,可得到可见光区域的氢原子光增,其波长"入"用下列公式计算 hc/入=E (1/n2-1/n2) 1 其中n=3,4,5,6.相应波长依次为: h α=656.3nm,hβ=486.1nm,hδ=434.1nm,hγ=410.1nm. 它们属于可见光,颜色分别为红、蓝、紫、紫。组成谱线叫巴耳末线系;若从n>1的激发态跃迁到基态,放出一系列光子组成谱线在紫外区,肉眼无法观测,叫赖曼线系.....。 当原子处于基态或能级较低的激发态向高能级跃迁,必须吸收能量。这能量来源有两种途径。 其一、吸收光子能量、光子实质上是一种不连续的能量状态。光的发射与吸收都是一份一份的,每一份能量E=hυ叫光子能量.光子能量不能被分割的。因此原子所吸收的光子只有满足

hυ=En-Ek时,才能被原子吸收,从En定态跃迁到Ek定态。若不满足hυ=En-Ek的光子均不被吸收,原子也就无法跃迁。 例如用能量为123eV的光子去照射一群处于基态的氢原子.下列关于氢原子跃迁的说法中正确的是() 1)原子能跃迁到n=2的轨道上;2)原子能跃迁到n=3的轨道; 4)原子能跃迁到n=4的轨道上;3)原子不能跃迁。 通过计算可知E 1-E 2 =10.2eV<I2.3ev;E 3 -E 1 =12.09ev<12.3eV,E 4 一E 1 =12.75eV>12.3eV, 即任意两定态能级差均不等于12.3eV.此光子原子无法吸收。答案D)正确。 其二、吸收电子碰撞能量。夫兰克——赫兹实验指出:当电子速度达到一定数值时,与原子碰撞是非弹性的,电子把一份份能量传给原子,使原子从一个较低能级跃迁到较高能级,原子从电子处获得能量只能等于两定态能量差。电子与光子不同.其能量不是一份一份的只要人射电子能量大于或等于两定态能量差. 均可使原子发生能级跃迁。 例如,已知汞原子可能能级如下图所示,一个自由电子总能量为9.0电子伏与处于基态的汞原子发生碰撞,已知碰撞过程中不计汞原子动能变化,则电子剩余能量为() (A)0.2eV;(B)1.4eV(C)2.3eV(D)5.5eV. 因为E 2-E 1 =4.9ev<9.0eV,E 3 -E 1 =7.7eV<9.0ev,E 4 -E 1 =8.8ev<9.0ev. 满足人射电子能量大于两定态能量差 .处于基态汞原子分别吸收电子部分能量跃迁到n= 2、3.4能级,而电子剩余能量分别为4.1ev,1.3ev,0.2ev,只选项(A)正确。 摘自《物理园地》

高一物理动态平衡问题处理方法及答案

动态平衡分析 一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 正确答案为选项B 跟踪练习: 如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。 (A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 图2-1 图2-2 图2-3 图1-1 图1-2 F 1 G F 2 图1-3

例3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 解析:取绳子c 点为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。设角∠OAD 为θ;根据三个力平衡可得:θ sin 21G F = ;在三角形AOD 中可 知,AD OD = θsin 。如果A 端左移,AD 变为如图3-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。如果B 端下移,BC 变为如图3-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。 二 物体受四个力及以上 例 4 .如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是: A .地面对人的摩擦力减小 B .地面对人的摩擦力增加 C .人对地面压力增大 D .绳对人的拉力变小 跟踪练习: 如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中 A 、绳子的拉力不断增大B 、绳子的拉力保持不变 C 、船受的浮力减小 D 、船受的浮力不变 三 连接体问题 例5 有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 图3-1 A B C G O A B C G D F 1 F 2 F 3 O θ 图3-2 A B C G D F 1 F 2 F 3 O θ A ′ D ′ 图3-3 A B C G D F 1 F 2 F 3 O θ C ′ B ′ 图3-4 F

高中物理复习教案.氢原子的能级跃迁.doc

氢原子的能级跃迁 [P 3.]复习精要 一、玻尔的原子理论——三条假设 (1)“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。 定态假设实际上只是给经典的电磁理论限制了适用范围:原子中电子绕核转动处于定态时不受该理论的制约。 (2)“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。 跃迁假设对发光(吸光)从微观(原子等级)上给出了解释。 (3)“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足 )3,2,1(2 ==n nh mvr π 。 轨道量子化假设把量子观念引入原子理论,这是玻尔的原子理论之所以成功的根本原因。 [P 4.] 二、氢原子能级及氢光谱 (1)氢原子能级: 原子各个定态对应的能量是不连续的,这些能量值叫做能级。 ①能级公式:)6.13(1112eV E E n E n -==; ②半径公式:)m .r (r n r n 1011210530-?==。 (2)氢原子的能级图 (3)氢光谱 在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系; n=3,4,5,6向n=2跃迁发光形成巴耳末线系; n=4,5,6,7……向n=3跃迁发光形成帕邢线系; n=5,6,7,8……向n=4跃迁发光形成布喇开线系, 其中只有巴耳末线系的前4条谱线落在可见光区域内。 [P5 .]三、几个重要的关系式 (1)能级公式 2126131n eV .E n E n -== (2)跃迁公式 12E E h -=γ (3)半径公式 )m .r (r n r n 1011210530-?== (4) 动能跟n 的关系 由 n n n r mv r ke 222 = 得 2221221n r ke mv E n n kn ∝== (5)速度跟n 的关系n r mr ke v n n n 112∝== n E /eV ∞ 0 4

动力学动态问题的类型和分析技巧9

动力学动态问题的类型和分析技巧 一、动力学动态问题的类型 施加在物体上的力随着物体的速度变化、位置变化而变化,物体的加速度也随之变化,加速度的变化反过来影响速度、位置的变化,如此循环推进的问题,就是动力学动态问题。 根据物体受力的决定因素不同,可将高中物理中常见的动力学动态问题分为两大基本类型: 1、受力与速度有关的动态问题:机车恒定功率启动问题——牵引力与速度有关,雨滴收尾速度问题——空气阻力与速度有关,洛伦兹力相关动态问题——洛伦兹力以及其影响下弹力、摩擦力与速度有关,感应电路安培力相关动态问题——安培力与速度有关,等等。 2、受力与位置有关的动态问题:弹簧、库仑力、曲线约束类问题等,这类问题中,弹簧弹力、电荷之间库仑力、重力电场力沿曲线切向分量、弹力进而影响到的摩擦力,与物体的位置有关,等等。 根据物体的运动轨迹曲直不同,又可将之分为直线运动动态问题和曲线运动动态问题,其中直线运动是曲线运动分析的基础,而曲线运动则需要结合运动的分解与合成来进一步分析。 二、动力学动态问题的分析技巧 1、写出瞬间状态的动力学方程并据此分析:初态、转折点处动力学方程,以及各阶段动力学方程;

2、抓住运动、受力变化的转折点:加速度为0(速度出现极值)、速度为0或者弹力为0等; 3、借助v -t 图象、对称法、微元(积分)法、分解与合成等分析。 三、典型示例 1、直线运动中的动态问题 (1)受力与速度有关的问题 【例1】机车恒定功率启动问题 一汽车在平直公路上行驶。从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示。假定汽车所受阻力的大小f 恒定不变。下列描述该汽车的速度v 随时间t 变化的图像中,可能正确的是 【例2】雨滴收尾速度问题 从地面上以初速度v 0竖直上抛一质量 为m 的小球,若运动过程中受到的空气阻 力f 与其速率v 成正比,比例系数为k .球运动的速率随时间变化的规律如图2-4所示,t 1时刻到达最高点,再落回地面,落地速率为v 1,且落地前小球已经做匀速运动.下列说法正确的是( ) A .上升过程比下降过程所用时间长 B .比例系数k =mg v 0

高中物理《受力分析动态分析》练习题

高中物理《受力分析动态分析》练习题 1.如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N 1,球对木板的压力大小为N 2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中( ) A. N 1始终减小,N 2始终增大 B. N 1始终减小,N 2始终减小 C. N 1先增大后减小,N 2始终减小 D. N 1先增大后减小,N 2先减小后增大 2. 我国运动员陈一冰勇夺吊环冠军,为中国体育军团勇夺第一金,其中有一个高难度的动作就是先双手撑住吊环(设开始时两绳与肩同宽),然后身体下移,双臂缓慢张开到如图所示位置,则在两手之间的距离增大过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( ) A .F T 增大,F 不变 B .F T 增大,F 增大 C .F T 增大,F 减小 D .F T 减小,F 不变 3.如图所示,在一根水平直杆上套着两个轻环,在环下用两根等长的轻绳拴着一个重物。把两环分开放置,静止时杆对a 环的摩擦力大小为F f ,支持力为F N 。若把两环距离稍微约缩短一些,系统仍处于静止状态,则( ) A .F N 变小 B .F N 变大 C .F f 变小 D .F f 变大

4.如图所示,质量不计的定滑轮以轻绳牵挂在B点,另一条轻绳一端系重物C 绕过滑轮后另一端固定在墙上A点,若改变B点位置使滑轮发生移动,同时适当调节A点的位置使AO段绳子始终保持水平,则可以判断悬点B所受拉力F的大小变化情况是() A.若B左移,F将增大 B.若B右移,F将减小 C.无论B左移、右移,F都保持不变 D.无论B左移、右移,F都减少 5.如图半圆形支架BAD,两细绳OA和OB结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移至竖直位置C的过程中,分析OA绳和OB绳所受的力大小如何变化( ) A.OA绳拉力逐渐变大 B.OA绳拉力逐渐变小 C.OB绳拉力先变小后变大 D.OB绳拉力逐渐变小 6.如图所示,用挡板将斜面上的光滑小球挡住,当挡板由竖直位置缓慢转到水平位置的过程中,小球对挡板的压力 A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大 7.如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。现用水平力拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动。则在这一过程中,环对杆的摩擦力f和环对杆的压力F N 的变化情况是() A.f不变,F N 不变 B.f增大,F N 不变 C.f增大,F N 减小 D.f不变,F N 减小

高中物理专题练习电路的动态分析

电路的动态分析 例1.在如图所示的电路中,R 1,R2和R3皆为定值电阻,R4为可变电阻,电源的电动势为E,内阻为 r,设电流表的读数为I,电压表的读数为U,当R4的滑动触头向图中a端移动时() A.I变大,U变小B.I变大,U变大C.I变小,U变大D.I变小,U变小 【答案】D 例2.如图所示电路中,电源电动势为E,内阻为r,电路中O点接地,当滑动变阻器的滑片P 向右滑动时,M、N两点电势变化情况是() A.都升高B.都降低C.M点电势升高,N点电势降低D.M点电势降低,N点电势升高 【答案】B 例3.在如图所示的电路中,开关S闭合后,和未闭合开关S前相比较三个电表的读数变化情况是:() A.V变大、A1变大、A2变小B.V变大、A1变小、A2变大 C.V变小、A1变大、A2变小D.V变小、A1变小、A2变大 【答案】C 例4.为了儿童安全,布绒玩具必须检测其中是否存在金属断针,可以先将玩具放置在强磁场中,若其中有断针,则断针被磁化,用磁报警装置可以检测到断针的存在.如图所示是磁报警装置中的一部分电路示意图,其中RB是磁敏传感器,它的电阻随断针的出现而减小,A,B接报警器,当传感器RB所在处出现断针时, 电流表的电流I,A,B两端的电压U将() A.I变大,U变大B.I变小,U变小C.I变大,U变小D.I变小,U变大 【答案】C 例5.(多选)在如图所示的电路中,闭合电键S,当滑动变阻器的滑动触头P向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用I、U1、U2和U3表示,电表示数变化量的大小分别用ΔI、ΔU1、ΔU2和ΔU3表示.下列比值正确的是() A.U1/I不变,ΔU1/ΔI不变B.U2/I变大,ΔU2/ΔI变大 C.U2/I变大,ΔU2/ΔI不变吗D.U3/I变大,ΔU3/ΔI不变 【答案】ACD 同步练习: 1.在如图所示电路中,当滑动变阻器滑片P向下移动时,则() A.A灯变亮,B灯变亮,C灯变亮B.A灯变亮,B灯变亮,C灯变暗 C.A灯变亮,B灯变暗,C灯变暗D.A灯变亮,B灯变暗,C灯变亮 【答案】D 2.在如图所示的电路中,E为电源电动势,r为电源内阻,R1,R3均为定值电阻,R2为滑动变阻器,当R2的滑动触头

高中物理动态分析专题

高中物理动态分析专题 一、力学中的动态问题分析 1、变动中力的平衡问题的动态分析 ①矢量三角形法 物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。 用这个三角形来分析力的变化与大小关系的方法叫矢量三角形法,它有着比平行四边形更简便的优点, 特别在处理变动中的三力问题时能直观的反映出力的变化过程。 例1、如图1a 所 示,绳OA 、OB 等长,A 点固定不动,将B 点沿圆弧向C 点运动的过程中绳OB 中的张力将( ) A 、由大变小; B 、由小变大 C 、先变小后变大 D 、先变大后变小 解:如图1b,假设绳端在B'点,此时O点受到三力作用平衡:T A 、书的 大小方向不断的变化(图中T 'B 、T ''B T '''B 、、、、、、),但T 的大小方向始终 不变,T A 的方向不变而大小改变,封闭三角形关系 始终成立、不难瞧出; 当T A 与T B 垂直时,即 a+ =90时,T B 取最小值,因此,答案选C 。 ②相似三角形法 物体在三个共点力的作用下平衡,已知条件中涉及的就是边长问题,则由力组成的矢量三角形与由边长组成的几何三角形相似, 利用相似比可以迅速的解力的问题。 例2、如图2a 所示,在半径为R的光滑半球面上高h 处悬挂一定滑轮。重力为G的小球用绕过滑轮的绳子站在地 面上的人拉住。 人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球的支持力与绳子拉力如何变化? 分析与解:受一般平衡问题思维定势的影响,以为小球 在移动过程中对半球的压力大小就是变化的。对小球进行 受力分析:球受重力G、球面对小球的支持力N与拉力T, 如图2b 所示:可以瞧到由N、T、G 构成的力三角形与由边长L 、R 、h+R 构成的几何三角形相似,从而利用相似比 N/G=R /R+h,T /G=L /R+h 、 由于在拉动的过程中,R 、h 不变,L 减小,则N=R G/R+h 大小不变, 绳子的拉力T =L G/R+h 减小。 T A 图2a

氢原子跃迁应注意的四个不同

氢原子跃迁应注意的四个不同 一. 应注意一群原子和一个原子跃迁的不同 一群氢原子就是处在n轨道上有若干个氢原子,某个氢原子向低能级跃迁时,可能从n能级直接跃迁到基态,产生一条谱线;另一个氢原子可能从n能级跃迁到某一激发态,产生另一条谱线,该氢原子再从这一激发态跃迁到基态,再产生一条谱……由数学知识得到一群 氢原子处于n能级时可能辐射的谱线条数为。对于只有一个氢原子的,该氢原子可从n能级直接跃迁到基态,故最少可产生一条谱线,不难推出当氢原子从n能级逐级往下跃迁时,最多可产生n-1条谱线。 例1. 有一个处于量子数n=4的激发态的氢原子,它向低能级跃迁时,最多可能发出几种频率的光子 例2. 现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少 假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的() A. 2200 B. 2000 C. 1200 D. 2400 二. 应注意跃迁与电离的不同 根据玻尔理论,当原子从低能态向高能态跃迁时,必须吸收光子方能实现;相反,当原子从高能态向低能态跃迁时,必须辐射光子才能实现,不管是吸收还是辐射光子,其光子的能量必须满足,即两个能级的能量差。使基态原子中的电子得到一定的能量, 彻底摆脱原子核的束缚而成为自由电子,叫做电离,所需要的能量叫电离能。光子和原子作用而使原子发生电离时,不再受“”这个条件的限制。这是因为原子一旦被电离,原子结构即被破坏,因而不再遵守有关原子的结构理论。 例3. 当用具有能量的光子照射n=3激发态的氢原子时,氢原子 A. 不会吸收这个光子 B. 吸收该光子后被电离,电离后的动能为 C. 吸收该光子后被电离,电离后电子的动能为零 D. 吸收该光子后不会被电离 三. 要注意辐射谱线频率、波长的不同 氢原子能级图形象地给出了各能级的能量大小关系。当氢原子从n能级直接跃迁到基态时,两能级能量差值最大,由能的转化与守恒 可知,辐射的光子频率最大,对应的波长最小,表达式为,,同理从n能级跃迁到n-1能级时,两能级能量的差值最小,辐射的光子频率最小,波长最长,即,。 例4. 氢原子能级图的一部分如图所示,a、b、c分别表示在不同能级之间的三种跃迁途径,设在a、b、c三种跃迁过程中,放出光子的能量和波长分别是和,则() A. B. C. D. 四. 应注意入射光子与入射的实物粒子不同 根据光子说,每一个光子的能量均不可“分”,也只有频率的光子才能使k态的原子跃迁到n态。实物粒子与光子不同,其能量不是一份一份的。实物粒子使原子发生能级跃迁是通过碰撞来实现的。当实物粒子速度达到一定数值,具有一定的动能时,实物粒子与原子发生碰撞,其动能可全部或部分地被原子吸收,使原子从一个较低的能级跃迁到另一个较高的能级,原子从实物粒子所处获得的能量只是两个能级的能量之差。只要入射粒子的能量大于或等于两个能级的能量差值,均可使原子发生能级跃迁。 例5. 用能量为12eV的光子照射处于基态的氢原子时,则下列说法中正确的是() A. 使基态电子电离 B. 使电子跃迁到n=3的能级 C. 使电子跃迁到n=4的能级 D. 电子仍处于基态 例6. 用总能量为13eV的一个自由电子与处于基态的氢原子发生碰撞(不计氢原子的动量变化),则电子可能剩余的能量(碰撞中无能量损失)是() A. B. C. D.

最新高中物理 第3章 电能的输送与变压器 变压器的动态分析 远距离输电练习 沪科版选修3-2(考试必备)

微型专题5 变压器的动态分析 远距离输电 一、选择题 考点一 变压器电路的动态分析 1.如图1所示,理想变压器原线圈输入电压u =U m sin ωt ,副线圈电路中R 0为定值电阻,R 是滑动变阻器.和是理想交流电压表,示数分别用U 1和U 2表示;和是理想交流电流表,示数分别用I 1和I 2表示.下列说法正确的是( ) 图1 A.I 1和I 2表示电流的平均值 B.U 1和U 2表示电压的最大值 C.滑片P 向下滑动过程中,U 2不变、I 1变大 D.滑片P 向下滑动过程中,U 2变小、I 2变大 答案 C 解析 电路中的电压表和电流表表示的都是有效值,选项A 、B 错误.根据U 1U 2=n 1n 2得U 2=n 2n 1 U 1, U 1不变,U 2不变,滑片P 向下滑动过程中,接入电路中的电阻变小,由闭合回路欧姆定律知I 2变大,根据I 1I 2=n 2n 1得I 1=n 2 n 1 I 2,I 1变大,故C 正确,D 错误. 2.(多选)为保证用户电压稳定在220 V ,变电所需适时进行调压,图2甲为变压器示意图.保持输入电压u 1不变,当滑动接头P 上下移动时可改变输出电压.某次检测得到用户电压u 2随时间t 变化的曲线如图乙所示.以下说法正确的是( ) 图2 A.u 2=1902sin (50πt ) V B.u 2=1902sin (100πt ) V

C.为使用户电压稳定在220 V ,应将P 适当下移 D.为使用户电压稳定在220 V ,应将P 适当上移 答案 BD 解析 由电压u 2随时间t 变化的曲线可知,用户电压的最大值是190 2 V ,周期是2×10-2 s ,所以u 2=1902sin (100πt ) V ,A 错误,B 正确;根据n 1n 2=U 1 U 2 ,n 1减小,U 2增大,因此为使用户电压稳定在220 V ,应将P 适当上移,C 错误,D 正确. 3.如图3所示,用理想变压器给负载供电,变压器输入电压不变,变压器降压后用总电阻为 R 的输电线对用电器供电,设两个灯泡的电阻相同,且都在发光,若将滑动变阻器的滑片P 向N 移动,会出现的现象是( ) 图3 A.电流表的示数变大,灯泡L 1、L 2均变暗 B.电流表的示数变小,灯泡L 1、L 2均变暗 C.电流表的示数变大,灯泡L 1变亮,L 2变暗 D.电流表的示数不变,灯泡L 1变暗,L 2变亮 答案 C 解析 副线圈输出电压不变,滑动变阻器的滑片P 向N 移动的过程中,并联部分电阻减小,副线圈中的电流增大,但因为灯泡L 2两端的电压减小,所以通过灯泡L 2的电流减小,又因为总电流增大,所以通过灯泡L 1的电流增大,即灯泡L 1变亮,灯泡L 2变暗.副线圈上的电流增大,根据I 1=n 2n 1 I 2可知,输入电流变大,电流表的示数变大. 4.(多选)如图4所示,理想变压器的副线圈上通过输电线接有两个相同的灯泡L 1和L 2,输电线的等效电阻为R .开始时,开关S 断开.当开关S 接通时,以下说法中正确的是 ( ) 图4 A.副线圈两端M 、N 的输出电压减小 B.副线圈输电线等效电阻R 上的电压增大 C.通过灯泡L 1的电流减小

高中物理氢原子跃迁问题分析

氢原子跃迁问题例谈 玻尔的氢原子模型是高中物理的重要模型之一。以此知识点为背景的考题,往往具有较强的抽象性和综合性,一直都是学生学习的难点。本文试图就其中涉及氢原子跃迁的几个常见问题一一举例说明。 问题一:一个原子和一群原子的不同 例1 有一个处于量子数n =4的激发态中的氢原子,在它向低能态跃迁时,最多可能发出________种频率的光子;有一群处于量子数n =4的激发态中的氢原子,在它们发光的过程中,发出的光谱线共 问题二:分清跃迁与电离的区别 例2 欲使处于基态的氢原子激发,下列措施可行的是 ( ) A.用10.2 eV 的光子照射 B.用11 eV 的光子照射 C.用14 eV 的光子照射 D.用10 eV 的光子照射 解析:基态氢原子向激发态跃迁,只能吸收能量值刚好等于某激发态和基态能级之差的光子。由氢原子能级关系不难算出,10.2 eV 刚好为氢原子n =1和n =2的两个能级之差,而10 eV 、11 eV 都不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后二者。对14 eV 的光子,其能量大于氢原子电离能13.6 eV ,足可使其电离,故而不受氢原子能级间跃迁条件限制。由能的转化和守恒定律知道,氢原子吸收14 eV 的光子电离后产生的自由电子仍具有0.4 eV 的动能。故正确选项为AC 。 归纳:依据玻尔理论,氢原子在各能级间跃迁时,只能吸收或辐射能量值刚好等于某两个能级之差的光子,即光子能量值为Em En h -=ν,多了或少了都不行。如果光子(或实物粒子)与氢原子作用而使氢原子电离(绕核电子脱离原子的束缚而成为“自由电子”,即n =∞的状态)时,则不受跃迁条件限制,只要所吸收光子能量值(或从与实物粒子碰撞中获得能量)大于电离能即可。 问题三:注意直接跃迁和间接跃迁

高中物理动态力学分析

专题动态平衡中的三力问题图解法分析动态平衡 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持力F1、挡板支持力F2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F1的方向不变,但方向不变,始终与斜面垂直。F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F2。由此可知,F2先减小后增大,F1随增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)

氢原子的能级解析及经典例题

氢原子的能级: 1、氢原子的能级图 2、光子的发射和吸收 ①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。 ②原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率为ν,:hυ=E m-E n。 ③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。 ④原子处于第n能级时,可能观测到的不同波长种类N为:。 ⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量 E n=E Kn+E Pn。轨道越低,电子的动能越大,但势能更小,原子的能量变小。 电子的动能:,r越小,E K越大。 ⑥电离:就是从外部给电子以能量,使其从基态或激发态脱离原子核的束缚而成为自由电子。 例1.对于基态氢原子,下列说法正确的是() A.它能吸收12.09ev的光子 B.它能吸收11ev的光子 C.它能吸收13.6ev的光子 D.它能吸收具有11ev动能的电子部分能量

A、基态的氢原子吸收12.09eV光子,能量为-13.6+12.09eV=-1.51eV,可以从基态氢原子发生跃迁到n=3能级,故A正确; B、基态的氢原子吸收11eV光子,能量为-13.6+11eV=-2.6eV,不能发生跃迁,所以该光子不能被吸收.故B错误; C、基态的氢原子吸收13.6eV光子,能量为-13.6+13.6eV=0,发生电离,故C正确; D、与11eV电子碰撞,基态的氢原子吸收的能量可能为10.2eV,所以能从n=1能级跃迁到n=2能级,故D正确; 故选:ACD 例2.氢原子的能级图如图所示.欲使一处于基态的氢原子释放出一个电子而变成氢离子,该氢原子需要吸收的能量至少是() A.13.60eV B.10.20eV C.0.54eV D.27.20eV 例3.氢原子的部分能级如图所示,下列说法正确的是() A.大量处于n=5能级氢原子向低能级跃迁时,可能发出10种不同频率的光 B.大量处于n=4能级的氢原子向低能级跃迁时,可能发出的最长波长的光是由n=4直接跃到n=1的结果 C.大量处于n=3能级的氢原子向低能级跃迁时,可能发出的不同频率的光中最多有3种能使逸出功为2.23ev的钾发射光电子 D.处于基态的氢原子可以吸收能量为10.5ev的光子而被激发 A、根据C52==10知,这些氢原子可能辐射出10种不同频率的光子.故A正确; B、氢原子由n=4向n=1能级跃迁时辐射的光子能量最大,频率最大,波长最短,故B错误; C、氢原子由n=3能级的氢原子向低能级跃迁时,n=3→n=1辐射的光子能量为 13.6-1.51eV=12.09eV,n=3→n=2辐射的光子能量为3.40-1.51=1.89eV,n=2→n=1辐射的光子能量为13.6-3.40=10.20eV,1.89<2.23不能发生光电效应,故有两种光能使逸出功为2.23ev的钾发射光电子,故C错误;D、只能吸收光子能量等于两能级间的能级差的光子,n=1→n=2吸收的光子能量为13.6-3.40=10.20eV,n=1→n=3吸收的光子能量为13.6-1.51eV=12.09eV,故能量为10.5ev的光子不能被吸收,故D错误. 故选:A.

最新高中物理气体练习(动态分析)

如图所示,粗细均匀的玻璃管,当温度为27℃时,封闭在管内的空气柱AB 长为30cm ,BC 长为10cm ,管内水银柱水平部分CD 长为18cm ,竖直部分DE 长为15cm ,外界大气压强为75cmHg ,问:要使水平管内没有水银柱,温度至少要升高到多少℃? 现有某同学的解法如下: 以ABC 管中的气体为研究对象,各状态参量如下: cmHg cmHg p 60)1575(1=-= S cm S cm V ?=?+=40)1030(1(式中S 为玻璃管的横截面) K T 3001= 要使水平管内没有水银柱,则气体膨胀到D 处,这时气体的状态参量如下: cmHg cmHg p 42)181575(2=--= S cm S cm V ?=?++=58)181030(2(式中S 为玻璃管的横截面) ?2=T 因为2 22111T V p T V p =,将上述各已知量代入,可求得K T 5.3042=,5.312=t ℃ 所以要使水平管内没有水银柱,温度至少要升高到31.5℃ 已知上述计算无误,请问该同学求得的结果是否正确?倘若有错,请求出正确结果。 如图所示,左右两个底部截面均为S 的柱形容器竖直放置。左容器足够高,上端敞开,大气压强为p 0,右容器上端封闭。两个容器的下端由可忽略容积的细管连通。容器内两个活塞A 、B 的重力均为0.1p 0S ,忽略摩擦。初始时,两个活塞A 、B 下方封有高度均为h 的氮气,B 上方封有高度为h 的氢气。温度为T 0=273K ,系统处于平衡状态。现用外力将活塞A 固定,将系统的底部浸入恒温热水槽中,使氮气温度升高到与水温相同,保 持氢气的温度不变,再次平衡时,氢气柱高度变为0.8h 。求: (1)再次平衡时,氢气的压强是多少? (2)水的温度是多少? 、用如图所示的传统打气筒给容器打气,设打气筒的容积为V 0,底部有一阀门K 可自动开启并不漏气,活塞A 上提时外界大气可从其四周进入打气筒,活塞下移 时可把打气筒内气体推入B 中。若B 的容积为4V 0,A 、B 内气体初始压 强等于大气压P 0,为使B中气体压强达到10P 0,则需打气________次。 某同学设想在筒内焊接一卡环C (体积不计)来控制B 内的压强,为了控 制B内气体的压强最大不超过10 P 0,则卡环C 到打气筒顶部的距离h 与 打气筒总长H 的比值为__________ (所有摩擦不计,打气时温度不变, E

高中高考物理动态电路解析总结.docx

电路的动态分析 直流电流 分析思路 1 ( 多选 )(2015 长·沙四校联考 )如图所示,图中的四个电表均为理想电表,当滑动变阻器滑片 P 向右端移动时,下面说法中正确的是() A .电压表 V 1的读数减小,电流表 A 1的读数增大 B.电压表 V 1的读数增大,电流表 A 1的读数减小 C.电压表 V 2的读数减小,电流表 A 2的读数增大 D.电压表 V 2的读数增大,电流表 A 2的读数减小 2. (多选 ) (2015 ·湖北省公安县模拟考试)如图所示电路中,电源内阻不能忽略,两个电压表 均为理想电表。当滑动变阻器R2的滑动触头P 移动时,关于两个电压表V 1与V 2的示数,下列判断正确的是() A . P 向 a 移动, V 1示数增大、 V 2的示数减小 B.P 向 b 移动, V 1示数增大、 V 2的示数减小 C.P 向 a 移动, V 1示数改变量的绝对值小于V 2示数改变量的绝对值 D. P 向 b 移动, V 1示数改变量的绝对值大于V 2示数改变量的绝对值 3.(多选 )如图所示,电源的电动势和内阻分别为E、r ,R0= r ,滑动变阻器的滑片P 由 a 向b 缓慢移动,则在此过程中 (

A .电压表 V 1的示数一直增大 B.电压表 V 2的示数先增大后减小 C.电源的总功率先减小后增大 D.电源的输出功率先减小后增大 含电容器的电路 解决含电容器的直流电路问题的一般方法 (1)通过初末两个稳定的状态来了解中间不稳定的变化过程。 (2)只有当电容器充、放电时,电容器支路中才会有电流,当电路稳定时,电容器对电 路的作用是断路。 (3)电路稳定时,与电容器串联的电路中没有电流,同支路的电阻相当于导线,即电阻 不起降低电压的作用,与电容器串联的电阻为等势体,电容器的电压为与之并联的电阻两端的 电压。 (4)在计算电容器的带电荷量变化时,如果变化前后极板带电的电性相同,那么通过所 连导线的电荷量等于始末状态电容器电荷量之差;如果变化前后极板带电的电性相反,那么通过所连导线的电荷量等于始末状态电容器电荷量之和。 1(多选 )(2015 东·北三校二模 )如图所示, C1= 6 μF,C2=3 μF,R1=3 Ω,R2= 6 Ω,电源电动势 E= 18 V,内阻不计。下列说法正确的是() A .开关 S 断开时, a、 b 两点电势相等 B.开关 S 闭合后, a、b 两点间的电流是 2 A C.开关 S 断开时 C1带的电荷量比开关S 闭合后D.不论开关S 断开还是闭合,C1带的电荷量总比C1带的电荷量大C2带的电荷量大

相关文档
最新文档