6.科里奥利力演示仪

6.科里奥利力演示仪
6.科里奥利力演示仪

科里奥利力演示仪

【仪器介绍】

如图6-1所示,科里奥利力演示仪由底座、

转盘、飞轮、塑料串珠等构成。 【操作与现象】

一手握住底座上方的转盘,使传盘固定,另

一手驱动飞轮,使飞轮绕水平自转轴转动,可以

观察到飞轮边缘上的塑料串珠都在同一竖直平

面内作圆周运动,呈一朵花的形状。

飞轮绕自转轴转动的同时,驱动转盘使飞轮

绕转盘支承轴转动,可以观察到塑料串珠构成的

花的形状发生了改变,串珠产生了向竖直转动平

面内或外的偏移,一眼望去,串珠的边缘似乎起

了波浪。 【原理解析】

塑料串珠发生偏移的原因,是因为受到了科里奥利力的作用。科里奥利力是由法国气象学家科里奥利在1835年提出的,是为了描述非惯性系(旋转体系)的运动而需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理非惯性系(旋转体系)中的运动方程,大大简化了非惯性系的处理方式。 科里奥利力:ω ?=v m f 2 (6-1)

式中f 就为科里奥利力,v 为质点相对非惯性系

(旋转体系)运动的线速度,ω 为质点绕垂直轴转动的角速度。f 的方向可由右手螺旋法则来判

断。

取四个特殊位置(上、下、左、右)的珠子

来判断串珠的运动变化。假设转盘是逆时针转动,

即非惯性系的转动角速度ω 的方向竖直向上,若

飞轮绕自转轴在纸平面内的转动也是逆时针的,

此时四个位置上的珠子相对于飞轮(非惯性系)

的线速度v 如图6-2所示,则可以判断出:左、右

两颗珠子所受的科里奥利力为零;上面的珠子受到的科里奥利力为ωmv f 2=,方向垂直纸面向内(如图6-2所示),从而该位置上的串珠向内偏移;下面的珠子也受到同样大小的科里奥利力,方向却是垂直纸面向外图6-1 科里奥利力演示仪

(如图6-2所示),从而该位置上的串珠向外偏移。

【知识拓展】

由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。通常情况下,科里奥利力是一个比较微弱的力,只有物体相对地球的运动速度比较大、时间比较长时,科里奥利力的作用效果才比较显著。

科里奥利力产生的影响总结如下:

1 、在地球科学领域

由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。

2、傅科摆

摆动可以看作一种往复的直线运动,在地球上的摆动会受到地球自转的影响。只要摆面方向与地球自转的角速度方向存在一定的夹角,摆面就会受到科里奥利力的影响,而产生一个与地球自转方向相反的扭矩,从而使得摆面发生转动。1851年法国物理学家傅科预言了这种现象的存在,并且以实验证明了这种现象,他用一根长67米的钢丝绳和一枚27千克的金属球组成一个单摆,在摆垂下镶嵌了一个指针,将这个巨大的单摆悬挂在教堂穹顶之上,实验证实了在北半球摆面会缓缓向右旋转(傅科摆随地球自转)。由于傅科首先提出并完成了这一实验,因而实验被命名为傅科摆实验。

3、信风与季风

地球表面不同纬度的地区接受阳光照射的量不同,从而影响大气的流动,在地球表面延纬度方向形成了一系列气压带,如所谓“极地高气压带”、“副极地低气压带”、“副热带高气压带”等。在这些气压带压力差的驱动下,空气会沿着经度方向发生移动,而这种沿经度方向的移动可以看作质点在旋转体系中的直线运动,会受到科里奥利力的影响发生偏转。由科里奥利力的计算公式不难看出,在北半球大气流动会向右偏转,南半球大气流动会向左偏转,在科里奥利力、大气压差和地表摩擦力的共同作用下,原本正南北向的大气流动变成东北-西南或东南-西北向的大气流动。

随着季节的变化,地球表面延纬度方向的气压带会发生南北漂移,于是在一些地方的风向就会发生季节性的变化,即所谓季风。当然,这也必须牵涉到海陆比热差异所导致气压的不同。

科里奥利力使得季风的方向发生一定偏移,产生东西向的移动因素,而历史上人类依靠风力推动的航海,很大程度上集中于延纬度方向,季风的存在为人类的航海创造了极大的便利,因而也被称为贸易风。

4、热带气旋

马桶下水方向与科氏力有关,热带气旋(北太平洋上出现的称为台风)的形成也受到科里奥利力的影响。驱动热带气旋运动的原动力一个低气压中心与周围大气的压力差,周围大气中的空气在压力差的驱动下向低气压中心定向移动,这种移动受到科里奥利力的影响而发生偏转,从而形成旋转的气流,这种旋转在北半球沿着逆时针方向而在南半球沿着顺时针方向,由于旋转的作用,低气压中心得以长时间保持。

5、对分子光谱的影响

科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。

科里奥利质量流量计介绍

科里奥利质量流量计 科里奥利质量流量计(Coriolis Mass Flowmeter)简称科氏力流量计,是利用流体在振动管中流动时,将产生与质量流量成正比的科里奥利力的原理测量的。由于它实现了真正意义上的高精度的直接流量测量,具有抗磨损、抗腐蚀、可测量多种介质及多个参数等诸多优点,现已在石油化工、制药、食品及其他工业过程中广泛应用。 科氏力质量流量计计量准确、稳定、可靠,在需要对流体进行精确计量或控制的场合选用较多,但其售价较高,在不需要精确计量及控制的场合一般选用其他质量流量计代替。科氏力质量流量计对于液体和气体都可选用,但是在现场应用中,氢气流量的精确测量一般都选用热式质量流量计。 在我国,艾默生高准公司的科里奥利质量流量计已在兰州石化、安庆石化、新疆塔河油田、中国海洋石油等中低压天然气中的流量计量得到良好的应用。2007年末,高准公司的科里奥利质量流量计,顺利通过了中国最权威的原油大流量计量站成都天然气流量分站(CVB)的天然气实流测试,测量精度达到0.5%,并具有良好的重复性。 1 科里奥利质量流量计的工作原理 科氏力流量计由传感器和变送器两大部分组成。其中传感器用于流量信号的检测,主要由分流器、测量管、驱动、检测线圈和驱动、检测磁钢构成,如图1所示。 变送器用于传感器的驱动和流量检测信号的转换、运算及流量显示、信号输出,变送器主要有电源、驱动、检测、显示等部分电路组成。所有流量计都必须人为地建立一个旋转体系,以双“U”型测量管传感器为例,用电磁驱动的方法使“U”型测量管的回弯部分作周期性的微小振动。这相当于使“U”型管绕一个固定轴(OO 轴)作周期性时上时下的旋转,其旋转方向周期性的变化,像钟摆一样运动。“U”型管的出入口段被固定,这样就建立一个以“U”形管出入口段为固定轴的旋转体系。传感器力学分析如图2所示。

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

洛伦兹力的应用教案

洛伦兹力的应用 教学目标: 1.知识与技能 (1)理解运动电荷垂直进入匀强磁场时,电荷在洛仑兹力的作用下做匀速圆周运动。(2)能通过实验观察粒子的圆周运动的条件以及圆周半径受哪些因素的影响。推导带电粒子在磁场中做匀速圆周运动的半径周期公式,并会应用它们分析实验结果,并用于解决实际问题。 2.过程与方法 多媒体和演示实验相结合 3.情感态度及价值观 培养科学的探究精神 教学重点:掌握运动电荷在磁场中圆周运动的半径和周期的计算公式以及运用公式分析各种实际问题。 教学难点:理解粒子在匀强磁场中的圆周运动周期大小与速度大小无关。 教具:洛伦兹力演示仪 复习导入: 提问学生带电粒子在磁场中的受力情况: (1)平行进入磁场中:F=0;粒子将做匀速直线运动。 (2)垂直进入磁场中:F=Bqv。 猜想:粒子将做什么运动? 教学过程: 一、理论探究: 匀速圆周运动的特点:速度大小不变;速度方向不断发生变化;向心力 大小不变;向心力方向始终与速度方向垂直。 洛伦兹力总与速度方向垂直,不改变带电粒子的速度大小,所以洛伦兹 力对带电粒子不做功且洛仑兹力大小不变。 洛伦兹力对电荷提供向心力,故只在洛伦兹力的作用下,电荷将作匀速 圆周运动。 二、实验演示: 用Flash演示正电荷和负电荷垂直进入匀强磁场中得运动。 介绍洛伦兹力演示仪: (1)加速电场:作用是改变电子束出射的速度 (2)励磁线圈:作用是能在两线圈之间产生平行于两线圈中心匀强磁 场。 实验过程:a、未加入磁场时,观察电子束的轨迹; b、加入磁场时,观察电子束的轨迹;

c 、改变线圈电流方向时,观察电子束的轨迹。 结论:带电粒子垂直进入匀强磁场时,做匀速圆周运动。 提问:若带电粒子是以某个角度进入磁场时,运动轨迹是什么呢? 用Flash 演示带电粒子以某个角度进入磁场时的运动轨迹。 提问:为什么轨迹是螺旋形? 小结:带电粒子在磁场中做匀速圆周运动的条件: (1)、匀强磁场 (2)、B ⊥V (3)、仅受洛伦兹力或除洛伦兹力外,其它力合力为零. 三、半径与周期 推导过程: 得: 提问: 磁场强度不变,粒子射入的速度增加,轨道半径将 增大 。 粒子射入速度不变,磁场强度增大,轨道半径将 减小 。 .......(1) .. (2) 由(1)(2)可得: 提问:周期与速度、半径有什么关系? 四、应用 例1、匀强磁场中,有两个电子分别以速率v 和2v 沿垂直于磁 场方向运动,哪个电子先回到原来的出发点? 例2、已知两板间距为d ,板间为垂直纸面向内的匀强磁场,带 电粒子以水平速度V 垂直进入磁场中,穿过磁场后偏转角 为30o 。求: (1) 圆心在哪里? (2) 圆心角为多大? (3) 轨道半径是多少? (4) 穿透磁场的时间? 五、作业:P123 1,2,3,4题 r mv Bqv 2=Bq mv r =v r T ?=π2Bq mv r =Bq m T π2=

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

科里奥利质量流量计的现状与未来

科里奥利质量流量计的现状与未来 引言质量流量计现在受到用户的青睐,是由于它能直接测量管道内流体 的质量流量,而不必像过去那样,分别测量被测流体的体积流量和密度,然后 计算求得。此外,它的精度和稳定度较高,量程比也比较大,但是其性能价格 比太高。对制造厂商而言,这是个利润颇丰的产品,所以对此产品的开发、试 制和推销,一直是积极的。原理柯氏质量流量计的原理,实质是利用一个弹 性体的共振特性:队友流体流动和无流体流动的振动(在共振区附近)的金属 管元件,测定其动态响应特性,求出此谐振系统的相位差(时间差)与质量流 量之间的关系。而有流体流动的金属管元件谐振的动态响应特性,与无流体流 动的金属管的动态响应特性之间的差别,是由于Coriolis 效应引起的。所谓柯 氏效应,是指当质点在一个转动参考系内作相对运动时,会产生一种不同于通 常离心力的惯性力作用在此质点上。其大小与方向可用2mvXw(公式)来表示。 这是法国科学家Coriolis 首先发现的。利用上述原理的弹性元件构成的流量计 又称为柯氏质量流量计。所以要在理论上分析、发展质量流量计,其难点实质 上是来计算弹性金属管的动态谐振特性。这主要是靠固体力学理论对弹性体作 振动分析来确定。现有的文献报道,一种是对挠性管进行动态响应分析。1. 挠性管的动态响应分析(i)挠性曲管的分析Hemp and Sultan (Cranfield Institute of Technology, England) 用Euler 梁理论,对挠性曲管的谐振的动态响应进行过分析,并结合U-型管作了具体计算。 a. 方程(Oscillating tube of cruved part) 对于不同的几何形状,上述的一般性公式和边界条件还可以在进一步简化。 譬如,对弹性金属管的直管部分,可以令a 趋于无穷即可。b. 边界条件 在端点上,有在不同形状的管段的连接点上,有c. 数值求解和计算结果

2014_2015第二学期演示实验内容解析

第一次课: 锥体上滚演示装置 [实验原理] 不稳定平衡的物体偏离平衡位置时,物体总是向重心降低的方向运动。 在本装置中,影响锥体滚动的参数有三个,即导轨的坡度角α,双轨道的夹角γ和双锥体的锥顶角β。 β角是固定的,夹角γ和α是可调的。双锥体中心O 位于锥体轴线的中点。计算表明,当角α、β、γ三角满足22tg tg tg β γ α>时,重心O 下降,就会出现锥体主动上滚的现象。 [操作方法] 1、通过可调节支架调节α和γ 的大小使之满足上述关系; 2、将双锥体置于轨道低处,松手后锥体沿轨道自低向高处滚动; 3、调节α和γ中的一个角度,使之不满足上述关系,双锥体将不能上滚。 [思考] 上述公式22tg tg tg βγα>的推导过程如何? 科里奥利力演示仪 [实验目的] 模拟转动参考系中径向运动的小球的运动轨迹,直观地演示科里奥利力。 [实验仪器] 转盘 小球 [实验原理] 在相对于惯性系匀速转动的参考系(非惯性系) 中分析直线运动物体的运动时,应加以虚拟的惯性力即科里奥 利力: ω ?=r c v m f 2 其中,m 为物体质量,r v 为物体相对转动参考系的速度, ω 为转动参考系相对惯性系的转动角速度。 [操作方法] 1、转盘静止,让小球从狭槽的顶点向下运动,可以看到小球沿着狭槽的延长线方向继续向前作直线运动; 2、缓慢转动转盘,让小球从狭槽的顶点向下运动,可以发现小球在离开狭槽时,偏离原来的径向运动,其偏转方向与c f 方向相同; 3、改变转盘的转动方向,重复2的操作,可以观察到小球在离开狭槽后,向相反的方向偏离;改变转盘的转速,可以发现转盘转得越快,小球偏离原来的方向越远。 [思考] 上述观察结果是以地面为参考系还是以转盘为参考系?你能通过力的分析分析上述结果吗?若以地面为参考系,小球作什么运动? 傅科摆 [实验仪器] 摆绳长约1米的单摆。 [实验原理] 由于地球的自转,地球表面并不是惯性系。所以分析地球表面的物体运动规律时,应加上两个假想力:惯性离心力和科里奥利力 2F mv ω'=?科 北京处于北半球,地球自转的角速度方向垂直于地面向上。 故在地面上方运动的物体所侧视图 俯视图

洛伦兹力演示仪的设计制作

洛伦兹力试验仪的设计制作 第33届全国青少年科技创新大赛科技辅导员创新成果竞赛项目

洛伦兹力演示仪的设计制作 【关键词】:通电线圈磁场电解液定向移动洛伦兹力右手定则左手定则液体旋转 摘要 在线圈中有电流通过的时候,线圈周围和线圈内部就会产生磁场,而透明有机玻璃浅盘中的电解液正好处在通电线圈内部的磁场中,磁场方向始与电解液中带电粒子定向移动的方向垂直,受到洛伦兹力的作用发生偏转,使电解液旋转,偏转方向由加在线圈中的电流方向和加在电解液上的电流方向决定。能否旋转、旋转的快慢由加在线圈两段的电压和加在电解液两端的电压决定,电压越大,旋转越快。 设计背景 关于磁场的知识,在现行高中课程标准3—1中磁场一章,是高中物理的重点,也是难点,在高考中,电磁部分占有相当大的比例。为了激发学生学习物理知识的积极性,提高学习兴趣,必须加强有关磁场的演示实和学生实验。目前,有关洛伦兹力的演示实验,大部分学校都采用的是传统的演示方式:感应圈产生的高压电加在阴极射线管两端,使阴极射线管放电,然后教师拿着条形磁铁或蹄形磁铁在阴极射线管周围移动,使阴极射线改变方向的试验方法。这种演示方法的弊端是感应圈笨重、实验安全性差。为此,本人设计了使处在磁场中的电解液定向移动受磁场力,使电解液旋转的方法,操作简单、携带轻便、实验现象明显,可以演示电流磁场方向——右手定则;带电粒子受力方向——左手定则、以及洛伦兹力的大小与磁场强弱、带电粒子运动速度之间的关系等。 项目创新点

1、用电流的磁场替代了磁铁的磁场,在电解液所在区域当中磁场方向基本保持一致、磁场强弱基本保持一致,带电粒子的受力方向更容易判定。 2、由于使用最高电压24v,可连续变化的电源适配器,磁场强弱、带电粒子运动速度调节方便、安全可靠,实验中不再小心翼翼、胆战心惊。减轻了重量,整个装置、两个电源适配器、以及电解液,质量不足2kg,携带方便, 3、电路连接设计中采用了香蕉头固定式插头和双位红黑连体接线柱的配套使用,电路连接、电流方向调整快捷方便,可以节省演示时间。 4、可以演示带电粒子受到的磁场力的方向与磁场方向、粒子运动方向之间的关系,洛伦兹力大小与磁场强弱、带电粒子速度大小的关系,演示效果明显。 工作原理 1、在线圈中有电流通过的时候,线圈周围和线圈内部就会产生磁场,而透明有机玻璃浅盘中的电解液正好处在通电线圈内部的磁场中,磁场方向要嘛向上,要嘛向下,只有这两种情况,磁场方向取决于电流方向和线圈的绕向,磁场强弱取决于电流强弱和线圈的匝数。 线圈内部的磁场强弱与匝数N成正比、与线圈中的电流强度I成正比,与线圈面积成S正比,既:B∝N I/S,而I=u/R,R=ρL/S1 (其中,ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积),又由于N 与导线长度成正比,由此推论得: B∝U S1/ρS 在线圈绕制完成定型的情况下,电阻率、导线截面积、线圈面积一定情况下,线圈内部的磁场强弱与所加的电压成正比。虽然与导线长度无关,由于电源的最大输出电流是有限的,还得考虑导线的长度。本实验中电源最大电压24v,最大

教科版高中物理选修3-1:《洛伦兹力的应用》教

教科版高中物理选修3-1:《洛伦兹力的应用》教案-新版

3.5 洛伦兹力的应用(3课时) 【教学目的】 1.理解运动电荷垂直进入匀强磁场时,电荷在洛仑兹力的作用 下做匀速圆周运动。 2.能通过实验观察粒子的圆周运动的条件以及圆周半径受哪 些因素的影响。推导带电粒子在磁场中做匀速圆周运动的半径周期公 式,并会应用它们分析实验结果,并用于解决实际问题。 3.能通过定圆心,求半径,算圆心角的过程利用平几知识解决 磁场中不完整圆周运动的问题。 4.了解带电粒子在磁场中偏转规律在现代科学技术中的应用。 (如质谱仪、回旋加速器等,了解我国在高能物理领域中的科技发展 状况。 5.能应用所学知识解决电场、磁场和重力场的简单的综合问 题,如速度选择器、磁流体发电机、电磁流量计等。 其中(1)~(2)为第1课时,(3)~(4)为第2课时,(5)为第3课时。 【教学重点】 掌握运动电荷在磁场中圆周运动的半径和周期的计算公式以及运用公式分析各种实际问题。 【教学难点】 理解粒子在匀强磁场中的圆周运动周期大小与速度大小无关。 【教学媒体】 洛仑兹力演示仪/回旋加速器FLASH/质谱仪图片。 【教学安排】 【新课导入】 上节课我们学习讨论了磁场对运动电荷的作用力──洛仑兹力,下面请同学们确定黑板上画的正负电荷所受洛仑兹力的大小和方向(已知匀强磁场B、正负电荷的q、m、v.). 通过作图,我们再一次认识到,洛仑兹力总是与粒子的运动方向垂直.所以洛仑兹力对带电粒子究竟会产生什么影响?这样一来粒子还能做直线运动

吗?——改变速度的方向,但不变速度大小,所以如果没有其他力的作用,粒子将做曲线运动。 那么粒子做什么曲线运动呢?是不是向电场中一样的平抛运动?——不是,平抛必须是恒力作用下的运动,象匀强电场中的电场力或重力,但洛仑兹力会随速度的方向改变而改变,是变力。 板书(课题):带电粒子在磁场中的运动. 【新课内容】 1.带电粒子在磁场中的运动规律 研究带电粒子在磁场中的运动规律应从哪里着手呢?我们知道,物体的运动规律取决于两个因素:一是物体的受力情况;二是物体具有的速度,因此,力与速度就是我们研究带电粒子在磁场中运动的出发点和基本点.黑板上画的粒子,其速度及所受洛仑兹力均已知,除洛仑兹力外,还受其它力作用吗?严格说来,粒子在竖直平面内还受重力作用,但通过上节课的计算,我们知道,在通常情况下,粒子受到的重力远远小于洛仑兹力,所以,若在研究的问题中没有特别说明或暗示,粒子的重力是可以忽略不计的,因此,可认为黑板上画的粒子只受洛仑兹力作用. 为了更好地研究问题,我们今天来研究一种最基本、最简单的情况,即粒子垂直射入匀强磁场,且只受洛仑兹力作用的运动规律. 下面,我们从洛仑兹力与速度的关系出发,研究粒子的运动规律,洛仑兹力与速度有什么关系呢? 第一、洛仑兹力和速度都与磁场垂直,洛仑兹力和速度均在垂直于磁场的平面内,没有任何作用使粒子离开这个平面,因此,粒子只能在洛仑兹力与速度组成的平面内运动,即垂直于磁场的平面内运动. 第二、洛仑兹力始终与速度垂直,不可能使粒子做直线运动,那做什么运动?——匀速圆周运动,因为洛仑兹力始终与速度方向垂直,对粒子不做功,根据动能定理可知,合外力不做功,动能不变,即粒子的速度大小不变,但速度方向改变;反过来,由于粒子速度大小不变,则洛仑兹力的大小也不变,但洛仑兹力的方向要随速度方向的改变而改变,因此,带电粒子做匀速圆周运动,所需要的向心力由洛仑兹力提供.

科里奥利质量流量计工作原理和基本结构

标 题: 科里奥利质量流量计工作原理和基本结构 说明:众所周知,当一个位于旋转系内的质点作朝向或者离开旋转中心的运动时,将产生一惯性力。如 图6-1所示,当质量为(δm的质点以匀速u在一个围绕旋转轴P以角速度ω旋转的管道内轴向移动时,这个质点将获得两个加速度分量: (1)法向加速度a r (向心加速度),其值等于ω2r,方向指向P轴。 (2)切向加速度a t (科里奥利加速度),其值等于2ωu,方向与a r 垂直,正方向符合右手定则,如图6-1所示。 为了使质点具有科里奥利加速度a t ,需在a t 的方向上加一个大小等于2ωuδm的力,这个力来自 管道壁面。反作用于管道壁面上的力就是流体施加在管道上的科里奥利力F c 。 方向与α t 相反。 从图6-1可以看出,当密度为ρ的流体以恒定流速u沿图6-1所示的旋转管流动时,任一段长度ΔX的管道都将受到一个大小为ΔF e的切向科里奥利力: 式中,A为管道内截面积。由于质量流量q m =ρuA,因此: 基于上式,只要能直接或者间接地测量出在旋转管道中流动的流体作用于管道上的科里奥利力,就可以测得流体通过管道的质量流量。 在过程工业应用中,要使流体通过的管道围绕P轴以角速度ω旋转显然是不切合实际的。这也是早期的质量流量计始终未能走出实验室的根本原因。经过几十年的探索,人们终于发现,使管道

绕P轴以一定频率上下振动,也能使管道受到科里奥利力的作用。而且,当充满流体的管道以等于或接近于其自振频率振动时,维持管道振动所需的驱动力是很小的。从而从根本上解决了CMF 的结构问题。为CMF的迅速商用化打下了基础。 经过近二十年的发展,以科里奥利力为原理而设计的质量流量计已有多种形式。根据检测管的形状来分,大体上可以归纳为四类,即:直管型和弯管型;单管型和多管型(一般为双管型)。 弯管型检测管的仪表管道刚度低,自振频率也低,可以采用较厚的管壁,仪表耐磨、耐腐蚀性能较好,但易存积气体和残渣引起附加误差。直管型仪表不易存积气体,流量传感器尺寸小,重量轻。但自振频率高,为使自振频率不至于太高,往往管壁做得较薄,易受磨损和腐蚀。单管型仪 表不分流,测量管中流量处处相等,对稳定零点有好外,也便于清洗,但易受外界振动的干扰,仅见于早期的产品和一些小口径仪表。双管型仪表由于实现了两管相位差的测量,可降低外界振动干扰的影响。 科氏力质量流量计的性能特点: 与传统的流量测量方式相比,该流量计具体优点有如下几个方面: 直接测量管道内流体的质量流量 测量准确度高、重复性好,可在较大量程比范围内,对流体质量流量实现高准确度直接测量。 计量的准确度高 该流量计的质量流量测量准确度是0.2级;同时,它还能准确地测出流体介质的温度和密度。 工作稳定可靠 流量计管道内部无障碍物和活动部件,因而可靠性高、寿命长、维修量小;使用方便、安全。 适应的流体介质面宽 除一般粘度的均匀流体外,还可测量高粘度、非牛顿型流体;不仅可以测量单一溶液的流体参数,还可以测量混合较均匀的多相流;无论介质是层流还是紊流,都不影响其测量准确度。 广泛的应用领域 可在石油化工、制药、造纸、食品、能源等多种领域实施计量和监控。 防腐性能好 能适用各种常见的腐蚀性流体介质。 多种实时在线测控功能 除质量流量外,还可直接测量流体的密度和温度。智能化的流量变送器,可提供多种参数的显示和控制功能,是一种集多功能为一体的流量测控仪表。 可扩展性好 公司可根据用户需要,专门设计和制造特殊规格型号和特殊功能的质量流量计;还可进行远程监控操作等。 两相分离计量的另一种形式的计量设备由两相分离器、质量流量计和气体流量计组成。质量流量计测量分离出的液量,并计算出其中的含水率,从而测量出油井的油、气、水产量。这种计算装置投资较少、操作简便,在我国油田中获得了较多的应用。 由这一段话可以看出液体和气体的计量是有区别的。 点击下面的文字可以看清楚的。

6.科里奥利力演示仪

科里奥利力演示仪 【仪器介绍】 如图6-1所示,科里奥利力演示仪由底座、 转盘、飞轮、塑料串珠等构成。 【操作与现象】 一手握住底座上方的转盘,使传盘固定,另 一手驱动飞轮,使飞轮绕水平自转轴转动,可以 观察到飞轮边缘上的塑料串珠都在同一竖直平 面内作圆周运动,呈一朵花的形状。 飞轮绕自转轴转动的同时,驱动转盘使飞轮 绕转盘支承轴转动,可以观察到塑料串珠构成的 花的形状发生了改变,串珠产生了向竖直转动平 面内或外的偏移,一眼望去,串珠的边缘似乎起 了波浪。 【原理解析】 塑料串珠发生偏移的原因,是因为受到了科里奥利力的作用。科里奥利力是由法国气象学家科里奥利在1835年提出的,是为了描述非惯性系(旋转体系)的运动而需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理非惯性系(旋转体系)中的运动方程,大大简化了非惯性系的处理方式。 科里奥利力:ω ?=v m f 2 (6-1) 式中f 就为科里奥利力,v 为质点相对非惯性系 (旋转体系)运动的线速度,ω 为质点绕垂直轴转动的角速度。f 的方向可由右手螺旋法则来判 断。 取四个特殊位置(上、下、左、右)的珠子 来判断串珠的运动变化。假设转盘是逆时针转动, 即非惯性系的转动角速度ω 的方向竖直向上,若 飞轮绕自转轴在纸平面内的转动也是逆时针的, 此时四个位置上的珠子相对于飞轮(非惯性系) 的线速度v 如图6-2所示,则可以判断出:左、右 两颗珠子所受的科里奥利力为零;上面的珠子受到的科里奥利力为ωmv f 2=,方向垂直纸面向内(如图6-2所示),从而该位置上的串珠向内偏移;下面的珠子也受到同样大小的科里奥利力,方向却是垂直纸面向外图6-1 科里奥利力演示仪

质量流量计原理:科里奥利力

科里奥利力 科里奥利力(英语:Coriolis force,简称:科氏力)是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 概述 认识历史 旋转体系中质点的直线运动 科里奥利力是以牛顿力学为基础的。1835年,法国气象学家科里奥利(Gaspard-Gustave Coriolis)提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。 物理学中的科里奥利力 科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。

如右图所示,当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力一样,都不是真实存在的力,而是惯性作用在非惯性系内的体现。 科里奥利力的计算公式如下: 式中为科里奥利力;m为质点的质量;为质点的运动速度;为旋转体系的角速度;表示两个向量的外积符号。 科里奥利力与科里奥利加速度的关系 通常,在惯性系中观察到的科里奥利加速度,其中为圆盘转动的角速 度矢量,为质点所具有的径向速度。可见科里奥利加速度的方向与科里奥利力的方向 相反。这是因为,科里奥利加速度是在惯性系中观察到的,由作用力产生;而科里奥利力则是在转动的参考系中观察到的,它产生的加速度是相对于非惯性系而言的。不能认为科里奥利加速度是由科里奥利力产生的[1]。 科里奥利力产生的影响 在地球科学领域 由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。 傅科摆

科里奥利质量流量计的选用

科里奥利质量流量计的选用 基于流体在振动管中流动时将产生与质量流量成正比的科里奥利力,简称“科氏力”。科氏力流量计有很多分类:如按用途分类,可分为液体用和气体用;按测量管形状分类,有弯管型、直管型;按测量管段数分类,有单管型、双管型。 1、科氏力流量计的结构和特点 以常见的U形测量管为例。在单U形测量管结构中,电磁驱动系统以固定频率驱动U形测量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,测量管中流体在驱动点前产生一个向下压的力,阻碍管子的向上运动,而在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得测量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。测量扭曲的程度,与流体流过测量管的质量流量成正比,在驱动点两侧的测量管上安装电磁感应器,以测量其运动的相位差,这一相位差直接正比于流过的质量流量。在双U形测量管结构中,两根测量管的振动方向相反,使得测量管扭曲相位相差180°。相对单测量管型来说,双管型的检测信号有所放大,流体能力也有所提高。 科氏力流量计的特点。可以直接测量质量流量,不受流体物性(密度、黏度等)影响,测量精确度高。测量值不受管道内流场影响,无上、下游直管段长度的要求。可测量各种非牛顿流体以及粘滞的和含微粒的浆液。可做多参数测量,如同期测量密度、溶液中溶质所含浓度。

影响测量精确度因素较多,如零点不稳定形成零点漂移;管路振动;测量管路腐蚀与磨损、结垢等。不能用于低密度气体的测量,液体中含气量较大会影响测量值。阻力损失较大。 2、科氏力流量计的选用及安装使用注意事项 大部分科氏力流量计只适合测量液体,如果要测量气体,须明确在什么工况下使用。科氏力流量计对被测液体的黏度适应性范围宽,从低黏度的液化石油气到高粘度原油和沥青液,适用于非牛顿流体和液固双相流体,如乳胶、悬浮高岭土液、巧克力、肉糜浆等。用于混相流测量时,气液混合物中气泡小且均匀,以及液固混合物中含少量固体杂质是可以应用的。要注意游离气体的排出,注意测量管的磨损和堵塞。近年来,科氏力流量计的制造技术获得了快速发展,例如CMF100 传感器与2400S 变送器配用,测量液体时,液体的质量流量精确度可达流量值得±0.05%,而且已延伸到气体流量的测量。应用上述配置的流量计测量气体质量流量,精确度可达流量值得±0.35%。因为它能直接显示质量流量,所以更简单、更准确,但因气体管道直径一般比较大,选用科氏力流量计去测量投资很高,所以具体选型时应根据必要性决定取舍。应用科氏力流量计测量气体流量时还要考虑一个重要问题,即可行性。因为现有的产品测量压力很小的气体流量,目前还有困难,所以选型时还应列出具体测量点的工况条件及物性数据,向供应商咨询,确认是否在可测范围内。 科氏力流量计安装使用注意事项

旋转摆球式洛伦兹力演示仪

总第322 期 2019年9月 教具设计与制作 旋转摆球式洛伦兹力演示仪* 王 磊 陈建文 摘 要:洛伦兹力的学习是高中物理教学的一个重点和难点,洛伦兹力的实验主要以阴极射线在磁场中偏转的形式为主,设备较昂贵,实验较危险。研究将范德瓦尔斯起电机原理、洛伦兹力和圆锥摆理论结合起来,制作一种新型的洛伦兹力实验教学仪器,并对该仪器的应用进行探讨。关键词:洛伦兹力;范氏起电;圆锥摆;实验 作者简介:王磊,硕士,一级教师。辽宁省盘锦市高级中学,124000陈建文,硕士,一级教师。辽宁省辽东湾实验高级中学,124000 基金项目:盘锦市教育科学“十三五”规划2018年度立项课题《中学物理科学史与新型实验研究》(编号:PJKG135-2018-001)。 一、洛伦兹力研究的发展背景 自从库仑提出电和磁有本质上的区别以后,安培和毕奥等很多物理学家也都认为电和磁不会有任何关系。但深受康德哲学思想影响的丹麦物理学家奥斯特始终相信电、磁、光、热等物理现象存在内在联系,尤其是在富兰克林发现莱顿瓶放电能使钢针磁化的现象后,更坚定了他的观点。经过长期的大量实验探索,终于在1820年,奥斯特发现了电流的磁效应,开启了电磁学研究的新纪元[1]。此后,以法、德两国物理学家为代表的“源派”物理学家对电磁学做出了许多重大贡献,例如,库仑建立了库仑定律,安培提出磁现象的本质是电流,建立了两电流元作用力的安培定律,1845年韦伯明确提出带电粒子是既有质量又带电的粒子的概念,认为电就是带电粒子,电流就是带电粒子的运动[2]。以英国物理学家法拉第、麦克斯韦为代表的“场论派”持近距作用观点,认为电磁作用的媒介物—电磁场是客观存在的特殊形态的物质。洛伦兹集场、源两派理论之长,把气体分子动理论的成果引入电磁学,将经典电磁理论推向了高峰。 洛伦兹继承了“场论派”近距作用的场观点和源派电的带电粒子的观点并予以结合,洛伦兹认为,一切电作用力归根到底是电场对带电粒子的作用力,表示为 F E (F E =qE ),一切磁作用力归根到底是磁场对运动带电粒子的作用力,所以安培关于两电流元作用力的公式应理 解为一电流元受另一电流元产生的磁场的作用力,因电流是带电粒子的运动,故安培力的本质是磁场对运动带电粒子的作用力,以qv 取代安培力公式F =BIL 中的IL 即可得出F =qvB 。这是洛伦兹在1982年电子尚未发现、且并无任何实验证据时得出的洛伦兹力公式,简言之,洛伦兹力公式是电磁场和带电粒子两大正确观点相结合的产物和必然结果[3]。 二、洛伦兹力的实验教学现状 中学物理关于洛伦兹力的教学在高中的必修3-1部分,在学习安培力之后,作为对安培力的微观解释理论推出洛伦兹力的教学。目前我国中学阶段的洛伦兹力学习主要以理论教学的方式。教师利用辅助教具直观、形象地演示某种科学现象,提高学生的学习兴趣并充分调动积极性,是一种非常有效的教学手段。 洛伦兹力的实验主要以阴极射线在磁场中偏转的形式为主,但是这样的设备对于中学生而言比较昂贵,也比较危险。由于我国目前的教学仪器设计比较落后,能够在中学课堂普遍推广地、科学有效地演示洛伦兹力的实验仪器还处在待研发状态。 本设计给出一种演示洛伦兹力的设计方案,其设计简单、制作成本低廉、演示效果明显,对学生的启发作用突出。该装置可以显示出带电小球在磁场中的受力作用,通过改变磁场方向和带电小球的运动方向可以看出

科里奥利质量流量计

科里奥利质量流量计 科里奥利质量流量计(简称科氏力流量计)是一种利用流体在振动管中流动而产生与质量流量成正比的科里奥利力的原理来直接测量质量流量的仪表。 科氏力流量计结构有多种形式,一般由振动管与转换器组成。振动管(测量管道)是敏感器件,有U 形、Ω形、环形、直管形及螺旋形等几种形状,也有用双管等方式,但基本原理相同。下面以U 形管式的质量流量计为例介绍。 图8 科氏力流量计测量原理 图8所示为U 形管式科氏力流量计的测量原理示意图。U 形管的两个开口端固定,流体由此流入和流出。U 形管顶端装有电磁激振装置,用于驱动U 形管,使其铅垂直于U 形管所在平面的方向以O-O 为轴按固有频率振动。U 形管的振动迫使管中流体在沿管道流动的同时又随管道作垂直运动,此时流体将受到科氏力的作用,同时流体以反作用力作用于U 形管。由于流体在U 形管两侧的流动方向相反,所以作用于U 形管两侧的科氏力大小相等方向相反,从而使U 形管受到一个力矩的作用,管端绕R —R 轴扭转而产生扭转变形,该变形量的大小与通过流量计的质量流量具有确定的关系。因此,测得这个变形量,即可测得管内流体的质量流量。 设U 形管内流体流速为u ,U 形管的振动可视为绕O-O 为轴的瞬时转动,转动角速度为ω若流体质量为m ,则其上所作用的科氏力为 2F m u ω=? (1-11) 式中,F 、ω、u 均为矢量,ω是按正弦规律变化的。 U 形管所受扭力矩为 112224M Fr F r Fr m ur ω=+== (1-12) 式中12F F F F ===,12r r r ==为U 形管跨度半径。

因为质量流量和流速可分别写为:/m q m t =,/u L t =,式中t 为时间,则上式可写为 4m M rLq ω= (1-13) 设U 型管的扭转弹性模量为s K ,在扭力矩M 作用下,U 型管产生的扭转角为θ。故有 (1-14) 因此,由上两式得 4s m K q rL θω= (1-15) U 型管在振动过程中,θ角是不断变化的,并在管端越过振动中心位置Z-Z 时达到最大。若流量稳定,则此最大θ角是不变的。由于θ角的存在,两直管端1P 、2P 将不能同时越过中心位置Z-Z ,而存在时间差t ?。由于θ角很小,设管端在振动中心位置时的振动速度为p u ,(p u L ω=),则 2sin 2p r r t u L θθω?== (1-16) 从而 (1-17) 将上式代入式(1-15),得 (1-18) 对于确定的流量计,式中的s K 和r 是已知的,故质量流量m q 与时间差t ?成正比。如图8所示,只要在振动中心位置Z-Z 处安装两个光电或磁电位移传感器,测出时间差t ?,即可由式(1-18)求得质量流量。 科氏力流量计能直接测得气体、液体和浆液的质量流量,也可以用于多相流测量,且不受被测介质物理参数的影响。测量精度较高,量程比可达l00:1。

科氏加速度和科氏惯性力演示实验平台说明书

2014 年湖北省大学生机械创新设计大赛
科氏加速度和科氏惯性力演示实验平台
设计说明书、图纸
华中科技大学武昌分校 2014 年 3 月

科氏加速度和科氏惯性力演示实验平台 设计说明书、图纸
作品名称:科氏加速度和科氏惯性力演示实验平台
设 计 者:吴志华 梅园 赵克恒 王高峰 王晔
指导教师:
吴修玉
刘海
单 位:
华中科技大学武昌分校
II

华中科技大学武昌分校
科氏加速度和科氏惯性力演示实验平台设计说明书
目录
1 绪论 ................................................................................................................... 1
1.1 作品背景及意义 ............................................................................................................... 1 1.1.1 科氏现象的产生 ............................................................................................................ 1 1.1.2 科氏现象的解释 ............................................................................................................ 2 1.1.3 问题的提出及研究意义 ................................................................................................ 3 1.2 研究目标 ........................................................................................................................... 3 1.3 研究内容 ........................................................................................................................... 3
2 科氏加速度和科氏惯性力演示实验平台的设计方案................................. 4
2.1 设计目标分析 ................................................................................................................... 4 2.1.1 科氏现象运动模型分析 ................................................................................................ 4 2.1.2 机械系统设计分析 ........................................................................................................ 4 2.1.3 控制系统设计分析 ........................................................................................................ 5 2.2 总体设计方案的提出 ....................................................................................................... 5 2.3 科氏现象运动模型的参数建立 ....................................................................................... 5 2.4 机械系统设计方案 ............................................................................................................. 6 2.4.1 机械系统设计方案 .......................................................................................................... 6 2.3.1 实验平台基本原理 ........................................................................................................... 7 2.5 控制系统设计方案 ............................................................................................................. 7
3 机械设计 ......................................................................................................... 9
3.1 机械结构设计 ................................................................................................................... 9 3.2 机身设计 ......................................................................................................................... 10 3.2.1 机身机械结构设计 ...................................................................................................... 10 3.2.2 机身计算与校核 .......................................................................................................... 10 3.3 主回转传动装置设计 ..................................................................................................... 11 3.3.1 机械结构设计 ................................................................................................................ 11
I

相关文档
最新文档