抵偿任意带高斯投影平面坐标系选择的研究

抵偿任意带高斯投影平面坐标系选择的研究
抵偿任意带高斯投影平面坐标系选择的研究

文章编号:049420911(2005)0720021203

中图分类号:P282.1 文献标识码:B

抵偿任意带高斯投影平面坐标系选择的研究

陈顺宝,任建春,亓 月,陈海刚

(山东省莱芜市国土资源局,山东莱芜271100)

A Study of Selection of Plane Coordinate System of Arbitrary Compensation Zone

CHEN Shun 2bao,REN Jian 2chun,QI Y ue,C HE N Hai 2gang

摘要:根据最小二乘法原理,在使长度综合变形V S 平方之和为最小的条件下直接求得长度变形抵偿值$S 1c 和相应的抵偿投影面

高程H m c ,抵偿零点Y 0以及用于测边控制网实量边直接进行抵偿投影改正V S c 的计算公式。另在每千米抵偿投影长度变形小于2.5c m 的条件下明确了抵偿任意带的分带宽度限值为110km 。

关键词:最小二乘法;长度变形抵偿值;抵偿任意带宽度

收稿日期:2004205221;修回日期:2004209203

作者简介:陈顺宝(19522),男,山东莱芜人,工程师,主要从事工程测量、地籍测量工作。

一、前 言

地图投影的方法有多种,各种方法都会因球面转换为平面产生系统性非线性变形。高斯投影是国际上普遍采用的投影方法,它具有保角映射之特点,长度变形随投影边地面高度和地理位置而异,在应用上则根据测量工程的需要和规范要求(每千米长度变形不应大于2.5c m),设法削弱和限制长度变形,如文献[1~3]分别对高程抵偿面的选择问题作了一些有益探索,并给出了计算公式。

经对文献的仔细分析,认为给出的两种方法没有遵循最小二乘法原理,即没有在[V S V S ]为最小的前提下选取抵偿面和抵偿点,致使抵偿后综合变形总量由本来的正变形改成了负变形,这对本属真误差的变形来说,显然是不合理的,也违背了条件平差原则,这将从本文表1、表2中看到。对此,笔者提出一种利用最小二乘法原理与求函数平均值的算法,直接求得长度变形的抵偿值$S 1c ,进而求出对应的抵偿投影面高程H m c 和抵偿零点Y 0以及抵偿后综合变形V S c 的计算公式,并对测区距中央子午线较远或测区东西范围较大(如东西向带状测区)时采用抵偿投影中央子午线的选择,任意带的分带宽度都作了较为详尽的分析,并推出了确切的计算公式。

二、长度变形抵偿值与抵偿后长度综合

变形计算

1.高斯投影长度变形计算公式

由高斯投影知,将地面实量边长归算到参考椭球面上的变形$S 1可按下式计算

$S 1=-S H m /R (1)

式中,S 为归算边的长度;H m 为归算边高出参考椭球面的平均高程;R 为归算边方向参考椭球面的曲率半径。可见,将地面实量长度归算到参考椭球面上,其长度总是缩短,且|$S 1|与H m 成正比。将参考椭球面上边长归算到高斯投影面上的变形$S 2可按下式计算

$S 2=S 0y 2m /2R 2

m

(2)

式中,S 0为投影归算边长(S 0=S +$S 1);y m 为归算边两端点横坐标自然值的平均值;R m 为参考椭球面平均曲率半径。

显然,将椭球面上长度投影到高斯投影面上,其长度总是伸长,且$S 2与y m 的平方成正比。由高斯投影知,长度综合变形V S 等于两次投

影变形之和,即V S =$S 1+$S 2

(3)

由此可见,高斯投影的本身其长度变形已有不同程度的抵消,现在的问题是如何才能使其达到最大限

度的抵偿。

2.长度变形抵偿值与抵偿后长度综合变形计算

分析上面3式,可见决定V S 大小的是$S 1和$S 2。容易看出,当测区内Y I (y min ,y m ax )确定后,其对应的$S 2便有相应定值,那么$S 1就是确定V S 的惟一因子。因以上公式中$S 1相对于S 很小,R 与R m 极为接近,对计算结果影响甚微,故下文中将S 0取为S,R m 取为R,取值为6371km 。现令S 1=S 2=,=S n ,则相应有$S 1,1=$S 1,2=,=$S 1,n 于是式(3)可改写为

212005年 第7期 测 绘 通 报

V S,i=$S1+$S2,i(4)很明显,上式中,$S2,i是V S,i的对应定量,满足[V S V S]为最小的$S1是一未知常量(设为$S1c)。根据最小二乘法原理

[V S V S]=V2S,1+V2S,2+,+V2S,n=($S1c+$S2,1)2+ ($S1c+$S2,2)2+,+($S1c+$S2,n)2=最小

应用函数求极值的方法,对上式$S1c取一阶导数等于零并整理后得

$S1c=-[$S2]/n=-$S2(5)根据定积分中值定理对式(2)求平均值

$S2=

1

y m ax-y min Q

y

max

y

min

S

Y2m

2R2

d y m= S

6R2

(y2max+y ma x y min+y2min)

于是

$S1c=-$S2=-

S

6R2

(y2ma x+y ma x y min+y2min)(6)

式(6)就是长度变形抵偿值$S1c的计算公式。

将式(2)、式(6)代入式(3)中,便得抵偿后长度综合变形(设为V S c)

V S c=-

S

6R2

(y2ma x+y ma x y min+y2min)+S

y2m

2R2

= S

6R2

(3y2m-y2max-y max y mi n-y2min)(7)利用式(7)可直接对测边控制网进行抵偿投影计算。

将式(6)代入式(1)中,便得到抵偿高(设为H0)

H0=

1

6R

(y2max+y max y min+y2min)(8)

式(8)中,H0为归算边高出抵偿高程面的平均高程;抵偿高程面的高程H m c为(H m-H0)。将式(6)代入式(2)中,便得

y0=?

y2ma x+y m ax y min+y2min

3

(9)式(9)中,若y min=0,则可简化为

y0=

1

3

y max(10)若y max=0,则可简化为

y0=

1

3

y mi n(11)上面两种情况前者只有一个正抵偿点,后者只有一个负抵偿点,其长度变形的抵偿效果较差。当|y mi n|\ |y0|

三、算例比较与分析

1.测区位于中央子午线一侧

设某测区y I(20km,50km),平均海拔为H m= 2000m,S=1000m,R=6371km,试确定抵偿投影面并计算和分析相应投影变形数据。

按文献[1]计算公式

y0=

2

2

y2ma x+y2min=38.07km

相应算得:$S1=-0.018m,H m c=116m,抵偿高程面高程H=1886m。按本文方法分别用式(6)、式(8)、式(9)算得:$S1c=-0.016m,y0=36.06km,H0=102 m,抵偿投影面高程H m c=1898m(表1)。

表1y I(20km,50km)时测区内不同抵偿面的长度综合变形比较表

已知值y m/k m 文献[1]:H m c=116m,

y0=38.07km

本文:H0=102m,

y0=36.06km

$S1=-0.018m$S1c=-0.016m

$S2/m$S i/m$S i$S i$S2/m V S c/m V S c V S c

S=1000m R=6371k m 20.50.005-0.0130.00020.005-0.0110.0001

21.50.006-0.0120.00010.006-0.0100.0001 23.50.007-0.0110.00010.007-0.0090.0001 ,,,,,,,

47.50.0280.010.00010.0280.0120.0001

48.50.0290.0110.00010.0290.0130.0002

49.50.030.0120.00010.030.0140.0002

[$S i][$S i$S i][V S c][V S c V S c]

-0.0610.0015-0.0010.0014

m=?0.0071m=?0.0068

22测绘通报2005年第7期

2.测区位于中央子午线两侧

设某测区y I(-20km,40km),其余同上,试确定抵偿投影面并计算和分析相应投影变形数据。

按文献[1]计算公式

H m c=

1

2

@402

2@6371=63m

相应的抵偿投影面高程为H=1937m,y0=

28.28km,$S1=-0.010m。按本文方法分别用式

(6)、式(8)、式(9)算得:$S1c=-0.005m,y0=

20km,H0=31m,抵偿投影面高程H m c=1969m(表

2)。

表2y I(-20km,40km)时测区内不同抵偿面的长度综合变形比较表

已知值y m/k m 文献[1]:H m c=63m,

y0=28.28km

本文:H0=31m,

y0=?20k m

$S1=-0.010m$S1c=-0.005m

$S2/m$S i/m$S i$S i$S2/m V S c/m V S c V S c

S=1000m R=6371k m -19.50.005-0.00500.00500

-18.50.004-0.00600.004-0.0010

-17.50.004-0.00600.004-0.0010 ,,,,,,,

37.50.0170.00700.0170.0120.0001

38.50.0180.0080.00010.0180.0130.0002

39.50.0190.0090.00010.0190.0140.0002

[$S i][$S i$S i][V S c][V S c V S c]

-0.3050.003-0.0050.001

m=?0.0071m=?0.0041

表1、表2表明,文献[1]的方法使综合变形总量由正变形改成了负变形,且[$S i$S i]不为最小,这也说明了其方法的理论依据不正确,计算公式也不严密,如

y0=>23/2ma x{|y min|,y max}

的计算公式就不严密,事实上y0完全取决于y mi n和y ma x,这从本文给出的y0计算公式可以看出。文献[2]的方法也是思路性的错误,经计算分析证实测区位于中央子午线两侧时抵偿效果很差。

本文的方法依据正确,能合理地抵偿区内各长度变形,并使得[V S c V S c]最小,长度变形中误差m最小。达到了区内长度综合变形总量为零(见式(5)),即测区最远点y max与最近点相对横向位移为零,这也符合条件平差原则。

四、任意带分带宽度的确定

测区平面控制网坐标系统最理想的是和国家坐标系统取得一致,使之成为国家网的组成部分。但是控制网要求根据平面控制点坐标反算的边长与实量边长尽可能相符(每千米的长度变形不应大于2.5cm),因此,当测区为东西跨度较大的线状工程(公路、铁路工程等)时,要使投影变形得以最大限度的削弱,使其满足工程测量精度的要求,就必须采用任意带抵偿投影的方法来实现。现依每千米长度变形不大于0.025m为前提,按式(7)反求任意带分带宽度(|y mi n|,y ma x),即

V S c=

1000(3y2m-y2max-y max y mi n-y2min)

6R2

<0.025

(12)由式(12)不难看出,当y m取最大值时V S c为最大,顾及y min和y m ax互为相反数,故上式经相互替换计算得

|y min|<55.174km

y max<55.174km

(13)

所以抵偿任意带的分带宽度应小于110km,基本等同于1b分带的最大宽度。

五、结论

1.长度变形的抵偿实质上是一种合理平差,其抵偿值$S1c的求定必须遵循最小二乘法原理。

2.抵偿值只与测区的地理位置和东西宽度(y min,y max)有关,与测区高度无关,与抵偿投影面有对应关系。

3.改变测区投影带中央子午线,使其为对称投影,是缩小投影变形的主要措施,采用抵偿任意带投

(下转第31页)

小,立镜人员不走冤枉路,并能很好地控制边界。分区的大小应适中,以编辑操作灵活为准。

碎部点采集过程中,仪器设备的安全是首要问题,应严格遵守规范的作业程序与要求。测站定向时应顺便检查一下两点的相互关系,不要因为人员、车辆太多而放弃用其他已知点作检核。碎部点测量时要做重合点检查,即归零检查。作业员在定向完成后,马上找一远处高大明显目标,照准并读取水平角数据,随时检查测站情况。

在充分利用已有控制的基础上,对一些测量死角应尽量用全站仪测量,这些地方的地物往往几何形状不规范,丈量起来既费时精度又没保障。一些规整又有明显分界的建筑物,采用两端实测,方向交汇法完成分界点采集,这样图形的表示即美观又准确,但要注意交角应在30b~150b之间。一个测站完成后,不要急于搬站,花几分钟时间检查一下测站及周边地形地物情况,发现异常,核对确认,保证无错漏。

作业中粗差产生的原因及其解决的办法。数字化测图中,误差不再是主要的因素,而粗差是我们面对的主要问题。如不同属性的点连在一起,相同属性点连错方向。为此,当完成一个区域后,成果回放到白纸上,实地100%检查是非常必要的。

作业组可由4个人组成。作业中显示,2个立镜人员比1个立镜人员一天下来要多出1/3工作量。如果你想节约费用,不妨找2个年轻工人,经过一段时间磨合会很快配合默契的。但是一定要经常提醒注意设备的安全。

既然是数字化成图,就要涉及图层、颜色、符号和注记等问题,这也是数字化测图和手工作业的主要区别。作业前根据要求,把什么样的地物用什么颜色放在那一层,一一对应好。对于符号的表达形式,应用软件是开放的,为此,作业中应设置好这些信息。对于注记管理文件,每种分类号对应一种注记控制信息,作业员注记时,根据注记属性的不同要求,在注记分类一栏输入正确的代码,就会得到标准尺寸的注记内容。

每个分区完成之后,接下来是数据的合并整理。接边时注意属性和弧段及其走向的匹配,不要有人为的痕迹。确认数据的完整性之后是数据交换和图幅输出。作业员熟悉几种应用软件是非常必要的,像清华山维、AutoC AD、瑞得、南方K ASS、Arc/Inf o等,可以方便与更多的用户进行交流。

四、前景与展望

1.电子技术飞速发展,面向对象的技术开发和仪器设备的不断更新换代必将为测绘市场的发展带来生机。内外业一体化成图的最重要的特点是可以重复使用已有的数字化的地图数据成果,可以对数字地图进行任意比例尺、任意范围的绘图输出。可以方便地与卫星影像、航空照片等其他信息源结合,生成新的图种。利用一体化形成的等高线和高程点可以生成数字高程模型,将地表起伏以数字形式表现出来,可以直观立体地表现地貌形态。其高精度的作业方法,适合于房产地籍法定边界所用的数据以及某些高精度工程测量。总之,数字城市的建设,房产和地籍测量市场的不断开发,工程测量应用范围拓展,内外业一体化成图需求会更广泛。

2.微电子技术的不断发展,测量应用软件开发不断完善,一体化成图设备会越来越方便生产需求。目前,市场上生产的掌上电脑完全可以胜任测量外业数据的采集和编辑工作。1台全站仪、1个掌上电脑的配置简单适用。软件开发厂商也已经生产出在掌上电脑运行的测量应用软件。测量员只需忠实记录下碎部点坐标和点间的相互关系,回家后传输给微机,按其记载内容编辑成图。为此,内外业一体化成图设备会大大简化,应用的市场会更广阔。

参考文献:

[1]陈述彭,等.数字地球百问[M].北京:科学出版社,

2001.

[2]李志林,朱庆.数字高程模型[M].武汉:武汉大学出

版社,2001.

[3]CJJ821999,城市测量规范[S].

(上接第23页)

影是解决大测区长度变形的最佳方案。

4.采用抵偿任意带高斯投影,应对起算点作相应的换带计算和投影面改算。

5.本方法理论依据正确,计算公式的推导严密完整,均可用于三、四等控制网的抵偿投影计算。

参考文献:

[1]范一中,等.抵偿投影面的最佳选取问题[J].测绘通

报,2000,(2):20221.

[2]秦菊芳,等.高等级公路测设综合变形问题的研究

[J].测绘通报,2002,(9):28230.

[3]范一中.再谈工程投影面的最佳选取问题[J].测绘通

报,2003,(8):46247.

初三中考数学 平面直角坐标系与函数的概念

第四章 函数 课时14. 平面直角坐标系与函数的概念 【课前热身】 1.函数3-=x y 的自变量x 的取值范围是 . 2.若点P(2,k-1)在第一象限,则k 的取值范围是 . 3.点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________. 4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落过程中的速度v 随时间变化情况是( ) 5.在平面直角坐标系中,平行四边形ABCD 顶点 A 、 B 、D 的坐标分别是(0,0),(5,0)(2,3),则 C 点 的坐标是( ) A .(3,7) B.(5,3) C.(7,3) D.(8,2) 【考点链接】 1. 坐标平面内的点与______________一一对应. 2. 点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限 第四象限 3. x 轴上的点______坐标为0, y 轴上的点______坐标为0. 4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________. 5. 描点法画函数图象的一般步骤是__________、__________、__________. 6. 函数的三种表示方法分别是__________、__________、__________. 7. x y =有意义,则自变量x 的取值范围是 . x y 1=有意义,则自变量x 的取值范围是 . 【典例精析】 例1 ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-?2,1),B (-3, -1),

高斯投影坐标正反算VB程序

高斯投影坐标正反算 V B程序 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。 (4)计算公式 ??? ? ???''+-''+''+-''+''''=''+-''+''''+ =54255 32234 22342 2)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至时,用下式计算: ?????? ???????''-++-' '+''+-' '+''''=''+-''+''++-''+''''+ =52224255 32233 64256 44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大

平面直角坐标系与函数的概念

专题四 函数 第一节 平面直角坐标系与函数的概念 一【知识梳理】 1.平面直角坐标系如图所示: 注意:坐标原点、x 轴、y 轴不属于任何象限。 2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成, 如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的 左右位置,纵坐标表示点的上下位置。 3.各个象限内和坐标轴的点的坐标的符号规律 ①各个象限内的点的符号规律如下表。 说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。 5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。 6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。 7.函数基础知识 (1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有

与之对应,此时称y 是x 的 ,其中x 是自变量,y 是 . (2) 自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有 意义。 (3)常量:在某变化过程中 的量。变量:在某变化过程中 的量。 (4) 函数的表示方法:① ;② ;③ 。 能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。 二【巩固练习】 1. 点P(3,-4)关于y 轴的对称点坐标为_______,它关于x 轴的对称点坐标为_______. 它关于原点的对称点坐标为_____. 2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S 随时间t 变化情况的是 ( ). 3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点 (3,-2)上,则○炮位于点( ) A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) 4. 如果点M(a+b,ab)在第二象限,那么点N(a ,b)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.图中的三角形是有规律地从里到外逐层排列的.设y 为第n 层(n 为 正整数)三角形的个数,则下列函数关系式中正确的是( ). A 、y =4n -4 B 、y =4n C 、y =4n +4 D 、y =n 2 6. 函数y =中自变量x 的取值范围是( ) A . x ≥1- B . x ≠3 C . x ≥1-且x ≠3 D . 1x <- 7. 如图 ,方格纸上一圆经过(2,5),(-2,l ),(2,-3), ( 6,1)四点,则该圆的圆心的坐标为( ) A .(2,-1) B .(2,2) C .(2,1) D .(3,l ) 8. 右图是韩老师早晨出门散步时,离家的距离y 与时间x 的函数 图象.若用黑点表示韩老师家的位置,则韩老师散步行 走的路线可能是( ) 相帅炮

高斯平面直角坐标系与大地坐标系相互转化

高斯平面直角坐标系与大地坐标系相互转化 高斯平面直角坐标系与大地坐标系转换 1. 高斯投影坐标正算公式(1) 高斯投影正算:已知椭球面上某点的大地坐标(L,B),求该点在高斯投影平面上的直角坐标(x,y),即(L,B)->(x,y)的坐标变换。(2) 投影变换必须满足的条件中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。(3) 投影过程在椭球面上有对称于中央子午线的两点P 1 和P 2 ,它们的大地坐标分别为(L,B)及(l,B),式中l 为椭球面上P 点的经度与中央子午线(L 0 )的经度差:l=L-L 0 ,P 点在中央子午线之东,l 为正,在西则为负,则投影后的平面坐标一定为P 1 ’(x,y)和P 2 ’(x,-y)。(4) 计算公式 4 ' ' 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 9 5 ( cos sin 2 sin 2 l t B B N Bl N X x 5 ' ' 4 2 5 5 ' ' 3 ' ' 2 2 3 ' ' ' ' ' ' ) 18 5 ( cos 120 ) 1 ( 6 cos l t t B N l t B N Bl N y 当要求转换精度精确至0.001m时,用下式计算: 6 ' ' 4 2 5 6 ' ' 4 ' ' 4 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 58 61 ( cos sin 720 ) 4 9 5 ( cos sin 24 sin 2 l t t B B N l t B B N Bl N X x 5 ' ' 2 2 2 4 2 5 5 ' ' 3 ' ' 2 2 3 3 ' ' ' ' ' ' ) 58 14 18 5 ( cos 720 ) 1

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

坐标系转换与高斯投影

坐标系转换与高斯投影(1) 坐标转化并不是一个新的课题,随着测绘事业的发展,全球一体化的形成,越来越要求全球测绘资料的统一。由于地球曲率客观存在,传统测绘作业通视受到很大限制,测绘资料的统一存在巨大的约束。另外由于每一个国家的大地坐标系的建立和发展具有一定的历史特性,仅常用的大地坐标系就有150余个。在同一个国家,在不同的历史时期由于习惯的改变或经济的发展变化也会采用不同的坐标系统。例如:在我国建国之后,为了尽快搞好基础建设,我国采用了克氏椭球与我国实际相结合的北京54坐标系;随着经济的发展北京54坐标系的缺陷也随之被表露的越来越明显,特别是对我国经济较发达的东南沿海地区的影响表现得更为明显,进而我国开始研究并使用国家80坐标系。 GPS卫星导航系统满足了全球范围、全天候、连续实时以及三维导航和定位的要求。正是由于GPS卫星的这些特性,这种技术就很快被广大测绘工作者接受,但是由于坐标系统的不同,对GPS技术的推广使用造成了一定的障碍。 为了描述卫星运动,处理观测数据和表示测站位置,需要建立与之相应的坐标系统。在GPS 测量中,通常采用两种坐标系统,即协议天球坐标系和协议地球坐标系。 其中协议地球坐标系采用的是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)。WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP 赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 而我国采用的坐标系并不是WGS-84坐标系而是BJ-54坐标系,这个坐标系与前苏联的1942年普耳科沃坐标系有关, 属于参心大地坐标系(大地原点、高程基准和高程异常见后文),参考椭球为克拉索夫斯基椭球,其主要参数为: 长半轴 a=6378245,扁率 f=1/298.3。 这就使得同一点在不同的坐标系下有不同的坐标值,使测绘资料的应用受到很大的限制,并且对GPS系统的广泛使用造成了一定的约束性,对我们国家测绘事业的发展不利。

初二数学期末复习专题《平面直角坐标系与函数的图像》

初二数学期末复习专题《平面直角坐标系与函数的图像》 (时间:90分钟满分:100分) 一、选择题(每小题3分,共30分) 1.在平面直角坐标系中,和有序实数对一一对应的是( ) A.x轴上的所有点B.y轴上的所有点 C.平面直角坐标系内的所有点D.x轴和y轴上的所有点 2.如图,小手盖住的点的坐标可能为( ) A.(-4,-6) B.(-6,3) C.(5,2) D.(3,-4) 3.点A(0,-5)在( ) A.x轴上B.y轴上C.第三象限 D.第四象限 4.在平面直角坐标系中,点A(1,2)的横坐标乘-1,纵坐标不变,得到点A',则A与A'的关系是( ) A.关于x轴对称B.关于y轴对称 C.关于原点对称D.不确定 5.已知点P(x,y),Q(m,n),如果x+m=0,y+n=0,那么点P与Q ( ) A.关于原点对称B.关于戈轴对称 C.关于y轴对称D.关于直线y=x对称 6.将某图形各顶点的横坐标都减去2,纵坐标不变,则该图形( ) A.向右平移2个单位B.向左平移2个单位 C.向上平移2个单位D.向下平移2个单位 7.点A(1,2)向右平移2个单位得到对应点A',则点A'的坐标是( ) A.(1,4) B.(1,0) C.(-1,2) D.(3,2) 8.线段MN在平面直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为( ) A.(4,2) B.(4,-2)C.(-4,2)D.(-4,-2)9.(2013.成宁)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x

轴于点M,交y轴于点N,再分别以点M,N为圆心,大于1 2 MN的长为半径画弧,两弧 在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( ) A.a=b B.2a+b=-1 C.2a-b=1 D.2a+b=1 10.如图所示,将边长为1的正方形OAPB沿x轴正方向连续翻转2014次,点P依次落在点P1,P2,P3,P4,…,P2014的位置,则P2014的横坐标x2014=( ) A.2012 B.2013 C.2014 D.无法确定 二、填空题(每小题3分,共24分) 11.小明坐在教室的位置是进门的第三排,第四列,记作(3,4),小芳的座位记为(4,3),那么小芳在第_______排,第_______列. 12.点A(-3,5)在第_______象限,到x轴的距离为_______,点A关于x轴的对称点坐标为_______. 13.已知x轴上点P到y轴的距离是3,则点P的坐标是_______;若点Q到x轴的距离为1,到y轴的距离为3,且在第三象限,则点Q的坐标是_______. 14.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_______. 15.已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为_______. 16.如图,已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:_______. 17.△ABC中BC边上的中点为M,把△ABC向左平移2个单位,再向上平移3个单位后,得到△A1B1C1的B1C1边上的中点M1的坐标为(-1,0),则M点坐标为_______.18.如图,围棋棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,横线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为_______.

高斯坐标系

大地坐标系是大地测量的基本坐标系。常用于大地问题的细算,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。 椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。测量上常以投影变形不影响工程要求为条件选择投影方法。地图投影有等角投影、等面积投影和任意投影三种。 其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。这是地形图的基本要求。正形投影有两个基本条件: ①保角条件,即投影后角度大小不变。 ②长度变形固定性,即长度投影后会变形,但是在一点上各个方向的微分线段变形比m是个常数k: 式中:ds—投影后的长度,dS—球面上的长度。 1.高斯投影的概念 高斯是德国杰出的数学家、测量学家。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示: 椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S 点母线割开,并展成平面,即成为高斯投影平面。在此平面上: ①中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大。 ②投影后赤道是一条直线,赤道与中央子午线保持正交。

③离开赤道的纬线是弧线,凸向赤道。 高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。这种方法称为分带投影。投影带宽度是以相邻两个子午线的经差来划分。有6°带、3°带等不同投影方法。 6°带投影是从英国格林尼治子午线开始,自西向东,每隔6°投影一次。这样将椭球分成60个带,编号为1~60带,如下图所示: 各带中央子午线经度(L)可用下式计算: 式中n为6°带的带号。 已知某点大地经度L,可按下式计算该点所属的带号: 有余数时,为n的整数商+1。 3°带是在6°带基础上划分的,其中央子午线在奇数带时与6°带中央子午线重合,每隔3°为一带,共120带,各带中央子午线经度(L)为: 式中n′为3°带的带号。 我国幅员辽阔,含有11个6°带,即从13~23带(中央子午线从75°~135°),21个3°带,从25~45带。北京位于6°带的第20带,中央子午线经度为117°。 2.高斯平面直角坐标系 根据高斯投影的特点,以赤道和中央子午线的交点为坐标原点。,中央子午线方向为x轴,北方向为正。赤道投影线为y轴,东方向为正。象限按顺时针Ⅰ、Ⅱ、Ⅲ、Ⅳ排列,如下图所示:

中考数学专题复习平面直角坐标系与函数含详细参考答案

把握命题趋势,提高复习效率,提升解题能力,打造中考高分! 2016年中考数学专题复习 第十一讲平面直角坐标系与函数 【基础知识回顾】 一、平面直角坐标系: 1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个 2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。 3、平面内点的坐标特征: ① P(a .b):第一象限第二象限 第三象限第四象限 X轴上 Y轴上 ②对称点:

(,) (,) (,)x P a b P a b P a b ?????→?????→?????→关于轴对称 关于y轴对称 关于原点对称 ③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则 若在二、四象限角的平分线上,则 ④到坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离 ⑤坐标平面内点的平移:将点P(a .b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或)。 名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。 二、确定位置常用的方法: 一般由两种:1、 2、。 三、函数的有关概念: 1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。 名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同

情况下可以是常量,也可能是变量,要根据问题的条件来确定。 2、函数: ⑴函数的概念:一般的,在某个过程中如果有两个变量x、y,如果对于x的每一个确定的值,y都有的值与之对应,我们就成x是,y是x的。 ⑵自变量的取值范围: 主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况 ②、实际问题有意义的条件:必须符合实际问题的背景 ⑶函数的表示方法: 通常有三种表示函数的方法:①、法②、法③、法 ⑷函数的同象: 对于一个函数,把自变量x和函数y的每对对应值作为点的与 在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象

高斯投影坐标正算公式

高斯投影坐标正算公式 高斯投影坐标正反算公式 2.2.2. 1高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ⑴中央子午线投影后为直线;⑵中央子午线投影后长度不变;⑶投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 式中,x为的偶函数,y为的奇函数;,即, 如展开为的级数,收敛。 (2-10) 式中是待定系数,它们都是纬度B的函数。 由第三个条件知: 分别对和q求偏导数并代入上式 (2-11) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即

(2-12) (2-12)是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x应等于投影前从赤道量至该点的子午线弧长X,即(2-10)式第一式中,当时有: (2-13) 顾及(对于中央子午线) 得: (2-14,15) (2-16) 依次求得并代入(2-10)式,得到高斯投影正算公式

(2-17) 2.2.2. 2高斯投影坐标反算公式 x,y B, 投影方程: (2-18) 高斯投影坐标反算公式推导要复杂些。 ⑴由x求底点纬度(垂足纬度),对应的有底点处的等量纬度,求x,y与 的关系式,仿照式有, 由于y和椭球半径相比较小(1/16.37),可将展开为y的幂级数;又由于是对称投影,q必是y的偶函数,必是y的奇函数。 (2-19) 是待定系数,它们都是x的函数. 由第三条件知: ,

, (2-20) (2-19)式分别对x和y求偏导数并代入上式 上式相等必要充分条件,是同次幂y前的系数相等, 第二条件,当y=0时,点在中央子午线上,即x=X,对应的点称为底点,其纬度为底点纬度,也就是x=X时的子午线弧长所对应的纬度,设所对应的等量纬度为。也就是在底点展开为y的幂级数。 由(2-19)1式 依次求得其它各系数 (2-21) (2-21)1 ………… 将代入(2-19)1式得

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 ● 中央子午线投影后为直线; ● 中央子午线投影后长度不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。 (4)计算公式 ??? ? ???''+-''+''+-''+''''=''+-''+''''+ =54255 32234 223422)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至0.OOlm 时,用下式计算: ?????? ???????''-++-' '+''+-''+''''= ''+-' '+''++-''+''''+ =52224255 3223364256 4 422342 2)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大地坐标()B L ,,即()),(,B L y x ?的坐标变换。 (2)投影变换必须满足的条件 ● x 坐标轴投影成中央子午线,是投影的对称轴; ● x 轴上的长度投影保持不变; ● 投影具有正形性质,即正形投影条件。

(完整word版)高斯投影正反算公式_新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为: 1.WGS84基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴 b=6356752.3142451m; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=6356755.2881575m; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=6356863.018773m; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线

经度为均为3度,即:6度带1带位置0-6度,3度带1带位置1.5-4.5 度),即所谓的高斯-克吕格投影。 图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。

高斯投影及其中央子午线的判断

一、高斯-克吕格投影 1、高斯-克吕格简介 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x 轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。 2、高斯-克吕格特性 (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 3、投影的基本概念 它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。

坐标系投影方式的选择及坐标转换

坐标系投影方式的选择及坐标转换 [摘要]通过对几种常用投影方式的分析对比,详细剖述了海外项目投影方式的选择及应用,并配以实例阐述了坐标系之间的相互转换及注意事项。 [关键字]海外项目投影方式坐标转换 响应国家”走出去”的资源战略方针,国内很多公司都有项目在国外;每一个项目在进场前,要充分收集项目的相关资料,对测量技术人员来说,尤其要清楚项目区域已有测量资料的坐标系,高程系及投影方式,任何一种坐标系在建立前都要确定其投影方式。所以我们应该对常用的一些投影方式有基本的认识。 1坐标系投影方式的选择 1.1高斯-克吕格投影 高斯-克吕格(Gauss-Kruger)投影,简称高斯投影,是一种”等角横切圆柱投影”,具体的投影特征在这里不作说明,但是应该对下面几点应该有清醒的认识。 1)在国内大部份地区使用高斯投影。 2)高斯投影有两种分带方式,3度分带和6度分带。3度分带大多用于大比例尺测图,主要指比例尺大于1:10000以上的地形测图。 3)3度带是把全球分为120个带,起始带的经度是1.5~4.5度,中央经线为3度,带号为1,4.5~7.0度为第2带,中央经线为6度,以此类推。 4)6度带是把全球分为60个带,起始带的经度是0~6度,中央经线为3度,带号为1,6~12度为第2带,中央经线为9度,以此类推。 5)高斯投影为保证东向坐标值(测量指的是Y值)不小于0,所以将纵坐标轴西移了500公里。 1.2UTM投影 UTM投影全称Universal Transverse Mercator,译成中文是:通用横轴墨卡托投影。使用UTM投影时需要注意以下几点: 1)UTM投影是世界上最常用的一种投影方式,特别是不发达国家。 2)UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经线为-177°,包含的范围是-180°~-174°。第2带的中央经线为-171度,所含的范

测量坐标、高斯投影、全站仪(附图)

一、三北关系 真子午线北方向是沿地面某点真子午线的切线方向(通常用天文大地测量或陀螺经纬仪直接测定); 坐标纵线北方向是高斯投影时投影带的中央子午线的方向,也是高斯平面直角坐标系的坐标纵轴线方向。也叫图北、方格北,是指在某张地图上纵向方格线指示的"上"方。也就是所谓的上北下南。(可以根据测量仪器测出的坐标数据确定)磁子午线北方向是磁针在地面某点自由静止后磁针所指的方向(罗盘指向)。磁偏角,是磁子午线与真子午线间的夹角,通常以δ表示,并规定以真子午线北方向为准,磁子午线位于以东时称为东偏、其角值为正,位于以西时称西偏、其角值为负(大同磁偏角4度,偏西,06年测的,20年内可以用); 磁坐偏角,是磁子午线与坐标纵线问的夹角,常以δm表示,并规定以坐标纵线北方向为准,磁子午线位于以东时称东偏、其角值为正,位于以西时称西偏、其角值为负; 坐标纵线偏角,参见“子午线收敛角”。 二、地形图的应用

三、参考椭球体与高斯投影(坐标和高程表述地表形态的参数) 1)参考椭球体的表面是一个可以用数学公式表达的规则曲面,它是测量计算和投影制图的基准面。建立大地原点,就是为了确定中国基础测绘的统一坐标系,作为一切定位、定向等基础地理信息数据的基础。测量是研究地球表面的科学,人们都知道地球大体是一个椭圆形,但它的表面(包括大地水准面)很不规则,不便进行测量计算。而测量成果需借助一个与地球形状大小相似的、表面光滑的参考椭球面向外推算,原点的建立,就是解决了参考椭球的定位、定向问题,即在中国领土范围内,使地球大地水准面与参考椭球体面基本吻合,并在这一点将二者关系固定下来,从而使全国的测量有一个统一的、标准的、切合中国实际的计算投影面。

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数 很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。 有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 ● 中央子午线投影后为直线; ● 中央子午线投影后长度不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 与2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '与),(2y x P -'。 (4)计算公式 ??? ? ??? ''+-''+''+-''+''''=''+-''+''''+ =54255 32234223422)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至0、OOlm 时,用下式计算: ?????? ???????''-++-' '+''+-''+''''= ''+-' '+''++-''+''''+ =52224255 3223364256 44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大地坐标()B L ,,即()),(,B L y x ?的坐标变换。 (2)投影变换必须满足的条件 ● x 坐标轴投影成中央子午线,就是投影的对称轴; ● x 轴上的长度投影保持不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 根据x 计算纵坐标在椭球面上的投影的底点纬度f B ,接着按f B 计算(B B f -)及经差l ,最后得到)(B B B B f f --=、l L L +=0。

平面直角坐标系与函数知识要点归纳

平面直角坐标系与函数知识要点归纳 怎样确定自变量的取值范围

函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素。求函数自变量的取值范围通常有以下七种方法: 一、整式型:当函数解析是用自变量的整式表示时,自变量的取值范围是一切实数。 例1. 求下列函数中自变量x 的取值范围:(1);(2) 5 3213-=x y )( 二、分式型:当函数解析式是用自变量的分式表示时,自变量的取值范围应使分母不为零。 例2. 函数中,自变量x 的取值范围是________。 三、偶次根式型(主要是二次根式): 当函数解析式是用自变量的二次根式表示时,自变量的取值应使被开方数非负。 例3. 函数中,自变量x 的取值范围是________。 四、零指数或负指数: 当函数解析式是用自变量的零指数或负指数表示时,自变量的取值应使零指数或负指数的底数不为零。 例4、函数y=3x +(2x-1)0+(-x +3)-2 五、综合型:当函数解析式中含有整式、分式、二次根式、零指数或负指数时,要综合考虑,取它们的公共部分。 的取值范围是中,自变量、函数例x x x x x y 20 )3(1)2(5-++---= 。 六、实际问题型:当函数解析式与实际问题挂钩时,自变量的取值范围应使解析式具有实际意义。 例6. 拖拉机的油箱里有油54升,使用时平均每小时耗油6升,求油箱中剩下的油y (升)与使用时间t (小时)之间的函数关系式及自变量t 的取值范围。 七、几何问题型:当函数解析式与几何问题挂钩时,自变量的取值范围应使解析式具有几何意义。 例7. 等腰三角形的周长为20,腰长为x ,底边长为y 。求y 与x 之间的函数关系式及自变量x 的取值范围。

电子表格进行高斯投影换算GPS坐标的方法

利用EXCEL电子表格进行高斯投影换算GPS坐标的方法 2009-06-13 10:05 [摘要] 对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。 [关键字] 电子表格;GPS;坐标转换 作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS坐标转换方法。 一、用EXCEL进行高斯投影换算 从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。 完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下: 单元格 单元格内容 说明 A2 输入中央子午线,以度.分秒形式输入,如115度30分则输入115.30 起算数据L0 B2 =INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2*100)*100)/3600 把L0化成度 C2

相关文档
最新文档