光学基础知识

光学基础知识
光学基础知识

光学基础知识

可见光谱只是所有电磁波谱中的一小部分,人眼可感受到可见光的波长为400nm(紫色)~700nm(红色)。

红、绿、蓝被称为三原色(RGB)。红色、绿色、蓝色比例的变化可以产生出多种颜色,三者等量的混合可以再现白色。

补色的概念:从白色中减去颜色A所形成的颜色,称之为颜色A的补色(complementary color)。

白色-红色red=青色cyan

白色-绿色green=洋红magenta

白色-蓝色blue=黄色yellow

白色-红色-绿色-蓝色=黑色

补色的特点:当使用某个补色滤镜时,该补色对应的原色会被过滤掉。

原色以及所对应补色的名称:

颜色再现有两种方式:

原色加法:三原色全部参与叠加形成白色,任意其中两种原色相加形成不参与合成的颜色的补色。

原色减法:三补色全部参与叠加形成黑色,任意其中两种补色相加形成不参与合成的颜色的原色。

原色加法比较简单,由原色叠加而形成其他颜色,但是应用较少;而原色减法是从白色中减掉相应原色而形成其他颜色,就是用补色来叠加形成其他颜色,应用的场合比较多。

光的直线传播定律:光在均匀介质中沿直线传播。

费马定律:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。

反射定律:反射角等于入射角。i = i'

镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。

一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。

折射定律:n1 sin i = n2 sin r

任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。公式中n1和n2分别表示两种介质的折射率。

光的折射是由于光在不同介质的传播速度不同而引起的,取决于两种不同介质的性质和光的波长。

一种介质的绝对折射率为:n = c/v (c是真空中光的速度,v为该介质中光的速度)

可以看出:在折射率较大的介质中,光的速度比较低;在折射率较小的介质中,光的速度比较高。

光线的衍射:在光的传播过程中,当光线遇到障碍物时,它将偏离直线传播,这就是所谓光的衍射。由于光的波长很短,在日常生活中很难察觉出衍射现象。 衍射不仅使物体的几何阴影失去清晰的轮廓,在边缘还会出现一系列明暗

相间的亮纹。

焦点(focus)

与光轴平行的光线射入凸透镜时,理想的镜头应该是所有的光线聚集在一点后,再以锥状的扩散开来,这个聚集所有光线的一点,就叫做焦点。

弥散圆(circle of confusion)

在焦点前后,光线开始聚集和扩散,点的影象变成模糊的,形成一个扩大

的圆,这个圆就叫做弥散圆。

景深随镜头的焦距、光圈值、拍摄距离而变化。对于固定焦距和拍摄距离,使用光圈越小,景深越大。

以持照相机拍摄者为基准,从焦点到近处容许弥散圆的的距离叫前景深,

轴向色差(Axial chromatic aberration):指的是光轴上的位置,因波长不同产生不同颜色有不同焦点的现象。如上图,红色光线的焦点比蓝色光线的焦点更远离镜片。矫正一般是采用不同折射率/色散率的镜片来进行组合,使它们的色差相互抵消。典型的是采用一个正的冕牌透镜与一个负的火石透镜组合,会聚的冕牌透镜具有低折射率和小的色散,而发散的火石透镜具有高折射率和更大的色散。

倍率色差(Chromatic difference of magnification):指像的周围因光线波长的差异,所引起的映像倍率之改变。这是一种轴外像差,对像质的劣化随焦距(视场角)增大而加剧,并且不会随光圈缩小而减少。有效矫正办法是采用异常/超低色散的光学玻璃。

轴向色差涉及到成像的焦点距离,引起色彩松散或光斑(flare);而倍率色差别则涉及到成像的大小,在画面周围引起色彩错开,形成扩散的彩色条纹,如镶边(fringing)现象。色差不仅影响彩色胶片上成像的色彩再现,也会减低黑白胶片上成像的解像力。

消色差:利用不同折射率、不同色差的玻璃组合,可以消除色差。例如,利用低折射率、低色散玻璃做凸透镜,利用高折射率、高色散玻璃做凹透镜,前者(凸透镜)屈光度要大一些,后者(凹透镜)屈光度要小一些,然后将两者胶合在一起,仍然等效于一个凸透镜。对于较长波长的光线,由于凹透镜材料色散大,所以折射率比中间波长较小,凸透镜起的作用大,双胶合镜长波端焦距偏长。对于较长波短的光线,由于凹透镜材料色散大,所以折射率较大,凹透镜起的发散作用大,双胶合镜短波端焦距也偏长。最后的结论是,这样的双胶合镜中间波长焦距较短、长波和短波光线焦距较长。设计时合理的选择镜片球面曲率、双胶合镜的材料,可以使蓝光、红光焦距恰好相等,这就基本消除了色差。剩余色差对于广角到中焦镜头来说,已经很小了。

二级光谱:未消色差的镜头随着光线波长增加,焦距单调上升,色差很大。而消色差镜头焦距随波长先减小后增加,色差很小。消色差镜头的剩余色差就叫做二级光谱。镜头焦距越长,消色差越不能满足要求,二级光谱越不可忽视。“”

复消色差(APOchromatic) :可以想象,如果某种材料随波长变化折射率的数值可以任意控制,那么我们就能够设计出完全没有色差的镜头。可惜,材料的色散是不能任意控制的。我们退一步设想,如果能够将可见光波段分为蓝-绿、绿-红两个区间,而这两个区间能够分别施用消色差技术,二级光谱就能够基本

消除。但是,经过计算证明:如果对绿光与红光消色差,那么蓝光色差就会变得很大;如果对蓝光与绿光消色差,那么红光色差就会变得很大。理论计算为复消色差找到了途径,如果制造凸透镜的低折射率材料蓝光对绿光的部分相对色差

恰好与制造凹透镜的高折射率材料的部分相对色差相同,那么实现蓝光与红光

的消色差之后,绿光的色差恰好消除。这个理论指出了实现复消色差的正确途径,就是寻找一种特殊的光学材料,它的蓝光对红光的相对色散应当很低、而蓝光对绿光的部分相对色散应当很高且与某种高色散材料相同。萤石就是这样一种特殊材料,它的色散非常低(阿贝数高达95.3),而部分相对色散与许多光学玻璃

接近。荧石(即氟化钙,分子式CaF2)折射率比较低(ND=1.4339),微溶于水(0.0016g/100g水),可加工性与化学稳定性较差,但是由于它优异的

消色差性能,使它成为一种珍贵的光学材料。萤石最早仅用于显微镜中,自从萤石人工结晶工艺实现以后,高级超长焦镜头中萤石几乎是不可或缺的材料。由于萤石价格昂贵、加工困难,各光学公司一直不遗余力的寻找萤石的代用品,氟冕玻璃就是其中一种。各公司所谓AD玻璃、ED玻璃、UD玻璃,往往就是这一类代用品。

低色散玻璃:低色散玻璃产生的色差很小、因而消色差之后剩余色差也比较小,对镜头质量改善非常有益。近些年来,一系列高折射率低色散玻璃(主要是镧系稀土玻璃)的采用,镜头质量进一步提高。高折射率玻璃实现同样的屈光度镜片球面曲率较小,因而带来的各种像差尤其是球面像差减小,使得镜头体积减小、结构简化、质量提高。但是,它毕竟不能实现复消色差,无法消除二级光谱,不能与APO技术相提并论。

球面像差(spherical aberration):由于透镜表面是球面而引起,由光轴上同一物点发出的光线,通过镜头后,在像场空间上不同的点会聚,从而发生了

结像位置的移动。它的产生是由于离轴距离不同的光线在镜片表面形成的入射角不同而造成的,当平行的光线由镜面的边缘(远轴光线)通过时,它的焦点位置

比较靠近镜片;而由镜片的中央通过的光线(近轴光线),它的焦点位置则比较

远离镜片,这种沿着光轴的焦点错间开的量,称为纵向球面像差。

这种像差会在通过镜头中心部分的近轴光线所结成的影像周围,形成由通

过镜头边缘部分的光线所产生的光斑(光晕),使所形成的影象变成模糊不清,

画面整体好象蒙上一层纱似的,变成缺少鲜锐度的灰蒙蒙的影像。这个光斑的半径称为横向球面像差。

球面像差在镜头光圈全开或者接近全开的时候表现最为明显,口径愈大的

镜头,这种倾向愈明显。通过缩小光圈可适当消除球面像差,但如果像差过大,缩小光圈可能会引起聚焦平面(就是焦点)的移动。

非球面镜片(Aspherical Lens):修改镜片表面的曲率,让近轴光线与远轴

光线所形成的焦点位置重合。

研磨非球面镜片:在整块玻璃上直接研磨,制造工艺成本相对较高;

模压非球面镜片:采用金属铸模技术将融化的光学玻璃/光学树脂直接压制

而成,制造工艺成本相对较低;

复合非球面镜片:在研磨成球面的玻璃镜片表面上覆盖一层特殊的光学树脂,然后将光学树脂部分研磨成非球面。制造工艺的成本界于上述两种工艺之间。

由于光线进入广角镜头的入射角比较大,所以球面像差的表现在广角镜头尤为明显。所以在广角镜头上采用非球面镜片来消除像差的有效方法。

近年来出现了双面非球面镜片,这样可以使镜头的镜片数减少许多,也可

以得到更大倍率的变焦镜头。

光学设计岗位规范

光学设计岗位规范 1 范围 本规范规定了光学设计岗位职责和岗位标准。。 本规范适用于光学设计岗位的初级、中级、高级职务人员。 2 引用标准 Q/AG L07 1.1-2003职工政治思想和职业道德通用标准 3 岗位职责(概括和列举该岗位的工作职责) 3.1 负责光学系统研究、设计的全部技术工作,试验、试制的配合工作。 3.2 严格贯彻执行国标、部标、企标及有关科研技术、质量管理和安全技术的法规。 3.3 负责项目预研、技术论证、可行性研究论证、技术经济分析和项目的申报工作。 3.4 根据研制合同,制定阶段和年度工作计划,并组织实施。 3.5 参加本专业及有关专业的技术会议,评审本专业范围内的科研成果。 3.6 贯彻全面质量管理,负责对试验中出现的各种技术问题进行分析、论证,改进设计。 3.7 根据使用部门的要求和市场需求,采用适合的光学系统的结构,满足性能指标。研究新技术,加速光电系统的更新换代。 3.8 根据项目进展情况,适时编写专题技术总结、专题研究报告、鉴定申请报告等。 3.9 负责技术转让、技术咨询、技术服务以及完成技术资料的归档工作。 4 岗位标准 4.1 政治思想与职业道德 执行Q/AG L07 1.1-2003职工政治思想与职业道德通用规范 4.2 文化程度

执行Q/AYGF 1.1 4.3 专业理论知识 4.3.1 初级职务 4.3.1.1 具有高等数学、普通物理等基础理论知识。 4.3.1.2 具有应用光学、光学仪器制图等专业理论知识。 4.3.1.3 了解光学系统性能和集成、试验、应用、储存中的有关安全规程。 4.3.1.4 了解光学系统设计和研制过程,及有关技术标准。 4.3.1.5 初步掌握一门外语,并能查阅本专业书刊、资料。 4.3.2 中级职务 4.3.2.1 具有光学、计算机CAD设计、光学仪器制图原理等基础理论知识。了解红外、激光、电视、可见光系统等有关知识。 4.3.2.2 熟悉光学系统性能和集成、试验、应用、储存中的有关安全规程。 4.3.2.3 熟悉光学系统国内外研制状况和发展趋势。 4.3.2.4 熟悉国内外光电系统光学设计研制技术及技术标准。 4.3.2.5 掌握一门外语,并能较熟练地查阅本专业书刊、资料。 4.3.3 高级职务 4.3.3.1 熟练掌握光学系统涉及的红外、激光、电视、微光、可见光学等专业理论知识。 4.3.3.2 精通光学系统研究的技术理论、熟悉典型的、同类型光学系统的性能指标及研究的技术难点。 4.3.3.3 精通光电系统集成与实验理论。 4.3.3.4 熟悉光电系统研制程序、典型技术和有关标准。 4.3.3.5 掌握国内外光电系统发展状况和发展趋势。 4.3.3.6 掌握光电系统应用的有关技术和知识。 4.3.3.7 掌握一门外语,并能熟练地查阅和笔译本专业的书刊、资料。 4.4 实际工作能力 4.4.1 初级职务 4.4.1.1 能完成光电系统的一般实验,参与试验方案的讨论与制定。

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

硬件电路设计基础知识

硬件电路设计基础知识 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识一、什么是半导体

半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 掺杂──管子 温度──热敏元件 光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 自由电子──受束缚的电子(-) 空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显着地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷 P──+5价使自由电子大大增加 原理: Si──+4价 P与Si形成共价键后多余了一个电子。 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理: Si──+4价 B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

光学设计教程小知识点

1.2光学系统有哪些特性参数和结构参数? 特性参数:(1)物距L(2)物高y或视场角ω(3)物方孔径角正弦sinU或光速孔径角h(4)孔径光阑或入瞳位置(5)渐晕系数或系统中每一个的通光半径 结构参数:每个曲面的面行参数(r,K,a4,a6,a8,a10)、各面顶点间距(d)、每种介质对指定波长的折射率(n)、入射光线的位置和方向 1.3轴上像点有哪几种几何像差? 轴向色差和球差 1.4列举几种主要的轴外子午单色像差。 子午场曲、子午慧差、轴外子午球差 1.5什么是波像差?什么是点列图?它们分别适用于评价何种光学系统的成像质量? 波像差:实际波面和理想波面之间的光程差作为衡量该像点质量的指标。适用单色像点的成像。 点列图:对于实际的光学系统,由于存在像差,一个物点发出的所有光线通过这个光学系统以后,其像面交点是一弥散的散斑。适用大像差系统 2.1叙述光学自动设计的数学模型。 把函数表示成自变量的幂级数,根据需要和可能,选到一定的幂次,然后通过实验或数值计算的方法,求出若干抽样点的函数值,列出足够数量的方程式,求解出幂级数的系数,这样,函数的幂级数形式即可确定。像差自动校正过程,给出一个原始系统,线性近似,逐次渐进。 2.2适应法和阻尼最小二乘法光学自动设计方法各有什么特点,它们之间有什么区别? 适应法:参加校正的像差个数m必须小于或等于自变量个数n,参加校正的像差不能相关,可以控制单个独立的几何像差,对设计者要求较高,需要掌握像差理论阻尼最小二乘法:不直接求解像差线性方程组,把各种像差残量的平方和构成一个评价函数Φ。通过求评价函数的极小值解,使像差残量逐步减小,达到校正像差的目的。它对参加校正的像差数m没有限制。 区别:适应法求出的解严格满足像差线性方程组的每个方程式;如果m>n或者两者像差相关,像差线性方程组就无法求解,校正就要中断。 3.1序列和非序列光线追迹各有什么特点? 序列光线追迹主要用于传统的成像系统设计。以面作为对象,光线从物平面开始,按照表面的先后顺序进行追迹,对每个面只计算一次。光线追迹速度很快。 非序列光线追迹主要用于需考虑散射和杂散光情况下,非成像系统或复杂形状的物体。以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹。计算时每一物体的位置由全局坐标确定。非序列光线追迹对光线传播进行更为细节的分析,计算速度较慢。3.2叙述采用光学自动设计软件进行光学系统设计的基本流程。 (1)建立光学系统模型: 系统特性参输入:孔径、视场的设定、波长的设定 初始结构输入:表面数量及序号、面行、表面结构参数输入 (2)像质评价 (3)优化:设置评价函数和优化操作数、设置优化变量、进行优化 (4)公差分析:公差数据设置、执行公差分析 3.3Zemax软件采用了什么优化算法? 构造评价函数:最小二乘法、正交下降法(非序列光学系统)

(整理)光学与光学设计讲义

-與光學設計基本概念 1. 一般稱為可見光是位於光波帶中400~770 nm (0.1~0.77μ ),而波長較短為藍光,波長較長的為紅光。波長比可見光短的紫外光(UV),而波長比可見光長的稱為紅外光(IR),一般的光學玻璃或塑膠材料可應用之400~1500nm,而波長更長的IR區域(1.5~15μ )使用的光學材料為鍺或矽。 2. 光學鏡片置於空氣界面中,當光線經過透鏡時,光線會產生穿透與反射現像,而其中一部份會被光學材料吸收。所以折射率n之材料於空氣中的反射率計算式如下: R(反射率)={(n-1) / (n+1)}2 T(穿透率)=(1-R)X X為透鏡的面數,而此計算值時是忽略材料的吸收率。 3. 當鏡片產生反射現像,而此時反射光被別的面再反射或鏡筒內面產生反射而到達成像面時,這會造成降低像質之有害光,而有害光擴大至像面整體時,則會產生某種像,我們稱為鬼影(像)。而防止鬼影的產生與界面反射的方法:(1)鏡片鍍膜(Coating)( 2)鏡片塗墨。 光線射入n和n’的交界處的情形,有些光線被反射,有些被折射,而產生反射線和折射線,而反射線在同介質中依據光程的極值行進方向,這就是反射現象。另外折射線在折射率為n的介質裡斜射入折射率為n’的介質時,由於光在不同介質裡的速率不相同,因此就改變了進行方向,這就是折射現象。如下圖: 這些光線都遵守下面這些光學基本原則: ?入射線、反射線、折射線和法線在同一平面上。 ?入射角i等於反射角r(反射律)。 ?入射角i至折射角t的關係必遵循Snell's law 由於折射率是波長的函數n(λ),因各單色光的折射率各不相同,所以造成折射方向有所差異,或是說不同波長的光在介質內行進的速度不同所造成,這個現象,稱之為色散(dispersion)。

硬件基础知识

第三章硬件基础知识学习 通过上一课的学习,我们貌似成功的点亮了一个LED小灯,但是还有一些知识大家还没有 彻底明白。单片机是根据硬件电路图的设计来写代码的,所以我们不仅仅要学习编程知识,还有硬件知识,也要进一步的学习,这节课我们就要来穿插介绍电路硬件知识。 3.1 电磁干扰EMI 第一个知识点,去耦电容的应用,那首先要介绍一下去耦电容的应用背景,这个背景就是电磁干扰,也就是传说中的EMI。 1、冬天的时候,尤其是空气比较干燥的内陆城市,很多朋友都有这样的经历,手触碰到电脑外壳、铁柜子等物品的时候会被电击,实际上这就是“静电放电”现象,也称之为ESD。 2、不知道有没有同学有这样的经历,早期我们使用电钻这种电机设备,并且同时在听收音机或者看电视的时候,收音机或者电视会出现杂音,这就是“快速瞬间群脉冲”的效果,也称之为EFT。 3、以前的老电脑,有的性能不是很好,带电热插拔优盘、移动硬盘等外围设备的时候,内部会产生一个百万分之一秒的电源切换,直接导致电脑出现蓝屏或者重启现象,就是热插拔的“浪涌”效果,称之为Surge... ... 电磁干扰的内容有很多,我们这里不能一一列举,但是有些内容非常重要,后边我们要一点点的了解。这些问题大家不要认为是小问题,比如一个简单的静电放电,我们用手能感觉到的静电,可能已经达到3KV以上,如果用眼睛能看得到的,至少是5KV了,只是因为 这个电压虽然很高,电量却很小,因此不会对人体造成伤害。但是我们应用的这些半导体元器件就不一样了,一旦瞬间电压过高,就有可能造成器件的损坏。而且,即使不损坏,在2、3里边介绍的两种现象,也严重干扰到我们正常使用电子设备了。 基于以上的这些问题,就诞生了电磁兼容(EMC)这个名词。这节课我们仅仅讲一下去耦

硬件电路设计基础知识.docx

硬件电子电路基础关于本课程 § 4—2乙类功率放大电路 § 4—3丙类功率放大电路 § 4—4丙类谐振倍频电路 第五章正弦波振荡器 § 5—1反馈型正弦波振荡器的工作原理 § 5— 2 LC正弦波振荡电路 § 5— 3 LC振荡器的频率稳定度 § 5—4石英晶体振荡器 § 5— 5 RC正弦波振荡器

第一章半导体器件 §1半导体基础知识 §1PN 结 §-1二极管 §1晶体三极管 §1场效应管 §1半导体基础知识 、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si锗Ge等+ 4价元素以及化合物) 、半导体的导电特性本征半导体一一纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略)

1、半导体的导电率会在外界因素作用下发生变化 ?掺杂一一管子 *温度--- 热敏元件 ?光照——光敏元件等 2、半导体中的两种载流子一一自由电子和空穴 ?自由电子——受束缚的电子(一) ?空穴——电子跳走以后留下的坑(+ ) 三、杂质半导体——N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 *N型半导体(自由电子多) 掺杂为+ 5价元素。女口:磷;砷P—+ 5价使自由电子大大增加原理:Si—+ 4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子——数量少。 o掺杂后由P提供的自由电子——数量多。 o 空穴——少子 o 自由电子------ 多子 ?P型半导体(空穴多) 掺杂为+ 3价元素。女口:硼;铝使空穴大大增加 原理:Si—+ 4价B与Si形成共价键后多余了一个空穴。 B——+ 3价 载流子组成: o本征激发的空穴和自由电子数量少。 o掺杂后由B提供的空穴——数量多。 o 空穴——多子 o 自由电子——少子

光学镜头基本知识

光学镜头基本知识 第一章光线的传播 一﹑光在真空中是沿直线传播的 光在真空中(均匀介质中)是沿直线传播的﹐但是由於在我们的真实空间中﹐光并不能做到这一点﹐这是因为空气。在我们的空气中﹐有存在着各式各样的杂物﹐粉尘﹐水雾等。由於这些东西的存在﹐光在直线传播的过程中﹐碰到这些东西﹐就会产生反射﹐折射。而﹐粉尘表面并不光滑﹐光照射到这粉尘面上的时候便会往各个方向反射﹐这边形成了漫反射。正是由於漫反射的存在﹐这便能使我们能感觉到光﹐能看到东西。 二﹑光的反射﹑透射﹑折射 光在大气中传输总不能按着直线传输﹐光在碰到不透光的物质时会发生反射﹐光碰到透光的物质时会发生透射﹐折射。入射光线﹐反射光线﹐折射光线﹐在同一个平面上﹐即三线共面。 光的反射 光在传输过程中是遵守反射定理的。 反射定理﹕ 入射角等於反射角。 入射角定义为﹕入射光线和法线组成的夹角 反射角定义为﹕反射光线和法线组成的夹角 法线﹕法线就是垂直於入射面的线。法线是一条虚构的线﹐并不是事实存在的。光的透射和折射 有些物质是透光的﹐光可以穿透这些物质﹐这便是光的透射。 每种不同材质的东西都有着不同的透过率﹐光在这些物质中穿透的时候总会有着能量的损失。入射光线的强度与出射光线的强度的比值为这一材质的透过率。 所谓光线的折射就是指光线在进行传输的过程中从一种介质进入另一种介质的时候﹐不会沿直线传播﹐而是有了一定角度的弯折。这便是光线的折射。 通常在大气中我们认定其折射率为1。 折射定律被描述为﹕入射角的正弦与折射角的正弦之比为常数﹐它等于折射线所处介质的折射率n`与入射线所处介质的折射率n之比。 通常折射率较大的介质称为光密介质﹐折射率较小的介质称为光疏介质。若入射光在光密介质﹐这时折射角总大于入射角﹐折射角随着入射角增大而增大﹐最大使折射角为90度﹐这时sini`=1﹐若入射角再增大﹐将发生全反射。 自然界有很多全反射现象﹕海市蜃楼﹑沙漠幻影﹑等。

光学设计软件介绍

光学设计 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面 CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。光学设计的第一步是要为系统确定合理的初始结构。为此CODE V提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。 CODE V软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis)。这种被该公司

光学设计基本知识

一、关于光线: 光源发出之光,通过均匀的介质时,恒依直线进行,叫做光的直进。此依直线前进之光,代表其前进方向的直线,称之为“光线”。光线在几何光学作图中起着重要作用。在光的直线传播,反射与折射以及研究透镜成像中,都是必不可少且要反复用到的基本手段。应注意的是,光线不是实际存在的实物,而是在研究光的行进过程中细窄光束的抽象。正像我们在研究物体运动时,用质点作为物体的抽像类似。 二、光的反射 光在传播到不同物质时,在分界面上改变传播 方向又返回原来物质中的现象。 反射定律: 1.入射光线、反射光线与法线(即通过入射点 且垂直于入射面的线)同在一平面内,且入射 光线和反射光线在法线的两侧; 2.反射角等于入射角(其中反射角是法线与反 射线的夹角。入射角是入射线与法线的夹角)。在同一条件下,如果光沿原来的反射线的逆方向射到界面上,这时的反射线一定沿原来的入射线的反方向射出。这一点谓之为“光的可逆性”。 三、光的折射 光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。 折射定律 1、折射光线和入射光线分居法线两侧 (法线居中,与界面垂直) 2、折射光线、入射光线、法线在同一平面内。 (三线两点一面) 3、当光线从空气斜射入其它介质时,角的性 质:折射角(密度大的一方)小于入射角(密度 小的一方);(在真空中的角总是大的,其次是 空气) 4、当光线从其他介质射入空气时,折射角大于 入射角。 5、在相同的条件下,折射角随入射角的增大 (减小)而增大(减小)。 6、折射光线与法线的夹角,叫折射角。 7、光从空气斜射入水中或其他介质时,折射光 线向法线方向偏折,折射角小于入射角。 8、光从空气垂直射入水中或其他介质时,传播方向不变。

最新光学基础知识

光学基础知识 物理学的一个部门。光学的任务是研究光的本性,光的辐射、 传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的 机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。 17世纪末,牛顿倡立“光的微粒说”。当时,他用微粒说解释观察到的许多光学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。1678 年惠更斯创建了“光的波动说”。波动说历时一世纪以上,都不被人们所重视, 完全是人们受了牛顿在学术上威望的影响所致。当时的波动说,只知道光线会在 遇到棱角之处发生弯曲,衍射作用的发现尚在其后。1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。他让光源S的光照亮一个狭长的缝隙S,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通1 过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说 光线通过双缝以后,在每个缝上形成一新的光源。由这两个新光源发出的光波在 抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带, 若位相相反,则相互抵消表现为暗带。杨格的实验说明了惠更斯的波动说,也确 定了惠更斯的波动说。同样地,19世纪有关光线绕射现象之发现,又支持了波

动说的真实性。绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。 20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种现象称为“光电效应”。并发现光电子的发射率,与照射到金属表面的光线强度 成正比。但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限 度时,既使照射光的强度再强也无法从金属表面释放出电子。这是无法用波动说 解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电 子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振 幅成正比。光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到 足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。 但实验结果却违反这种波动说的解释。爱因斯坦通过光电效应建立了他的光子学 说,他认为光波的能量应该是“量子化”的。辐射能量是由许许多多分立能量元 组成,这种能量元称之为“光子”。光子的能量决定于方程 E=hν 式中E=光子的能量,单位焦耳

光学设计常用术语解释及英汉对照翻译汇总

第一部分最基本的术语及英汉对照翻译 1、时谱:time-spectrum In this paper, the time-spectrum characteristics of temporal coherence on the double-modes He-Ne laser have been analyzed and studied mainly from the theory, and relative time-spectrum formulas and experimental results have been given. Finally, this article still discusses the possible application of TC time-spectrum on the double-mode He-Ne Iaser. 本文重点从理论上分析研究了双纵模He-Ne激光时间相干度的时谱特性(以下简称TC 时谱特性),给出了相应的时谱公式与实验结果,并就双纵模He-Ne激光TC时谱特性的可能应用进行了初步的理论探讨。 2、光谱:Spectra Study on the Applications of Resonance Rayleigh Scattering Spectra in Natural Medicine Analysis 共振瑞利散射光谱在天然药物分析中的应用研究 3、光谱仪:spectrometer Study on Signal Processing and Analysing System of Micro Spectrometer 微型光谱仪信号处理与分析系统的研究 4、单帧:single frame Composition method of color stereo image based on single fram e image 基于单帧图像的彩色立体图像的生成 5、探测系统:Detection System Research on Image Restoration Algorithms in Imaging Detection System 成像探测系统图像复原算法研究 6、超光谱:Hyper-Spectral Research on Key Technology of Hyper-Spectral Remote Sensing Image Processing 超光谱遥感图像处理关键技术研究 7、多光谱:multispectral multi-spectral multi-spectrum Simple Method to Compose Multi spectral Remote Sensing Data Using BMP Image File 用BMP 图像文件合成多光谱遥感图像的简单方法 8、色散:dispersion

光圈基础知识培训

光圈基础知识培训 一、 光学零件的面精度三项内容: 1)被检光学表面的曲率半径相对参考光学表面曲率半径的偏差,称为曲率半径偏差。以Ν表示:即光圈。 曲率半径偏差的方向不同 2) 被检光学表面在相互垂直方向上的曲率半径,相对参考光学 表面曲率半径的偏差不相等,称为象散偏差.以ΔΝ表示。 这种偏差在相互垂直方向上的干涉条纹数量不相等。 3 )被检光学表面的局部区域相对参考光学表面的偏差。称为局部 偏差,以ΔΝ表示。 这种偏差在任一方向上产生局部不规则的干涉条纹。 二、光圈定义和计量: 当光线投射到两个曲率半径相差不多的球 面。其空气楔对称时,就会出现同心环的干涉条纹,即牛顿圈,通称光圈。 1) 光圈示意图: 低光圈 高光圈

2)光圈数的计量: ①Ν>1:以有效检验范围内直径方向最多条纹数的一半量。 如图1 Ν=6/2=3 ②Ν<1:通过直径方向上干涉条纹的弯曲量h相对条纹的间 距H的比值。如图2 Ν=h/H 图1 3)象散偏差的计量:象散偏差光圈数ΔΝ是以两个相互垂直方向上光圈数的最大代数差的绝对值来度量(光圈数以有效范围 内最多的一半来度量)。ΔΝ= ΝX-ΝY

4)局部偏差的计量:局部不规则干涉条纹对理想平滑干涉条纹的偏离量h 与相邻条纹间距H 的比值来度量。 三、光圈的判定方法: 椭圆形ΔΝ=(6-8)/2=1 马鞍形ΔΝ=(2+6)/2=4 (0-1)=1 不对称形X-X Y-Y 方向倾向450状况 ΔΝ= /4(1/a-1/b ) =h/H

※样板:白光灯以一个红色为一个光圈,依次娄推。 ※干涉仪:以黑白相间为一个光圈,依次娄推。 ① 样板检光圈方法1:在白光下,以红色为基准,视黄色与绿色的位置来判定高低,若黄色在红色之内,绿色在红色之外,即高光圈。若绿色在红色内,黄色在红色之外则是低光圈。 ② 样板检光圈方法2:微压法,当从样板的两边或对称的三个点同时向下加压时,若光圈由中心向外扩散,则是高光圈。如果是由边缘向里收宿,则表示光圈低。 ③ 干涉仪检光圈方法1:在零件与标准块中间加压,若光圈由中心向外扩散,则低光圈,反之为高光圈。 ④ 干涉仪检光圈方法2:用手向前推动螺钉,使零件与标准块距离缩短,若光圈中心向外扩散,则是高光圈。反之为低光圈。 高和低光圈塌边:剖面图 高和低光圈勾边:剖面

光学基础学习知识原理及其应用资料

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.

光学基础知识

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS)的光学传感器元件。 光学特性参数: 1、焦距EFL(学名f’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

硬件电路设计基础知识

硬件电子电路基础 1

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率) (如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 2

1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加 原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; 3

P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏) 漂移运动: 由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。 结论:在没有外加电压的情况下,扩散电流和漂移电流的大小相等,方向相反。总电流为零。 4

光学摄影基础知识

超长焦镜头中,APO镜头几乎是高档镜头的代名词。APO,是英文Apochromatic的缩写,意为“复消色差的”。所谓萤石镜片、AD玻璃、UD玻璃、ED玻璃,说到底,都是为了实现APO技术所用的特殊光学材料。复消色差镜头,是指能对多种色光(超过两种)消除色差的镜头。消色差镜头(Chromatic)只能对两种色光消色差。 色差:从几何光学原理讲,镜头等效于一个单片凸透镜。凸透镜的焦距,与镜面两边曲率和玻璃的折射率有关。如果镜片形状固定,那就只与制造镜片材料的折射率有关了!由于光学材料都有色散,因此,同一个镜片,对于红光来说,焦距略微长一点;对于蓝光来说,焦距略为短一点。这就叫做“色差”。 有了色差的镜头,具体讲有这么几个缺点: 1.由于不同色光焦距不同,物点不能很好的聚焦成一个完美的像点,所以成像模糊; 2.同样,由于不同色光焦距不同,所以放大率不同,画面边缘部分明暗交界处会有彩虹的边缘。 色散:光学材料的折射率不但与材料本身的物理性质有关,还与光线的波长有关。同一种光学材料,波长越短、折射率越高。具体讲,同一种光学玻璃,绿光比红光折射率高,而蓝光比绿光折射率高。不同光学材料往往有不同的色散。如果一种材料随着波长变化引起折射率变化很大,我们就说这种材料是“高色散”的。反之,则称为“低色散”。一般用ne(材料对绿色的e光的折射率)表示材料的折射率,用阿贝数ve=(ne-1)/(nF-nc)表示材料的相对色散。阿贝数越高,色散越小。式中,第二个字母是下标,表示夫朗和费对应谱线的波长。F是红光,e是绿光,c是蓝光。每一条夫朗和费谱线都有固定不变的波长,因而成了光学设计中的标准波长。 消色差:利用不同折射率、不同色差的玻璃组合,可以消除色差。例如,利用低折射率、低色散玻璃做凸透镜,利用高折射率、高色散玻璃做凹透镜,然后将两者胶合在一起。为了使两者胶合后仍然等效于一个凸透镜,前者(凸透镜)屈光度要大一些,后者(凹透镜)屈光度要小一些。我们分析这样的双胶合镜对不同波长光线的作用:对于较长波长的光线,由于凹透镜材料色散大、也就是折射率随着波长变化大,所以折射率比中间波长较小,凸透镜起的作用大,双胶合镜长波端焦距偏长。对于较长波短的光线,由于凹透镜色散大、也就是折射率随着波长变化大,所以折射率较大,凹透镜起的发散作用大,双胶合镜短波端焦距也偏长。最后的结论是:这样的双胶合镜中间波长焦距较短、长波和短波光线焦距较长。很明显,中间波长是一个谷,它的周围焦距变化小多了!设计时合理的选择镜片球面曲率、双胶合镜的材料,可以使蓝光、红光焦距恰好相等,这就基本消除了色差。剩余色差对于广角到中焦镜头来说,已经很小了,因此,也就满足了镜头消色差的要求。 复消色差:可以想象,如果某种材料随波长变化折射率的数值可以任意控制,那么我们一定能够设计出色差处处完全补偿、因而完全没有色差的镜头!可惜,材料的色散是不能任意控制的,而且可用的光学材料也就那么有限的若干种!我们退一步设想,如果能够将可见光波段分为蓝-绿、绿-红两个区间,而这两个区间能够分别施用消色差技术,二级光谱就能够基本消除!但是,不幸的是,经过计算证明:如果对绿光与红光消色差,那么蓝光色差就会变得很大;如果对蓝光与绿光消色差,那么红光色差就会变得很大!看起来似乎走进了一个死胡同,顽固的二级光谱好像没有办法消除! 二级光谱:未消色差的镜头随着光线波长增加,焦距单调上升,色差很大。而消色差镜头焦距随波长先减小后增加,色差很小。消色差镜头的剩余色差就叫做“二级光谱”!二级光谱引起的不同色光焦距变化不可能小于焦距的千分之二,也就是说,镜头焦距越长,消色差越不能满足要求。对镜头质量要求较高时,超长焦消色差镜头的二级光谱已经不可忽视!为了进一步消除二级光谱对镜头质量的影响,引进了复消色差技术。

硬件设计基础

经典硬件设计经验【收藏】 一:成本节约 现象一:这些拉高/拉低的电阻用多大的阻值关系不大,就选个整数5K吧 点评:市场上不存在5K的阻值,最接近的是4.99K(精度1%),其次是5.1K(精度5%),其成本分别比精度为20%的4.7K高4倍和2倍。20%精度的电阻阻值只有1、1.5、2.2、3.3、4.7、6.8几个类别(含10的整数倍);类似地,20%精度的电容也只有以上几种值,如果选了其它的值就必须使用更高的精度,成本就翻了几倍,却不能带来任何好处。 现象二:面板上的指示灯选什么颜色呢?我觉得蓝色比较特别,就选它吧 点评:其它红绿黄橙等颜色的不管大小(5MM以下)封装如何,都已成熟了几十年,价格一般都在5毛钱以下,而蓝色却是近三四年才发明的东西,技术成熟度和供货稳定度都较差,价格却要贵四五倍。目前蓝色指示灯只用在不能用其它颜色替代的场合,如显示视频信号等。 现象三:这点逻辑用74XX的门电路搭也行,但太土,还是用CPLD吧,显得高档多了点评:74XX的门电路只几毛钱,而CPLD至少也得几十块,(GAL/PAL虽然只几块钱,但公司不推荐使用)。成本提高了N倍不说,还给生产、文档等工作增添数倍的工作。 现象四:我们的系统要求这么高,包括MEM、CPU、FPGA等所有的芯片都要选最快的点评:在一个高速系统中并不是每一部分都工作在高速状态,而器件速度每提高一个等级,价格差不多要翻倍,另外还给信号完整性问题带来极大的负面影响。 现象五:这板子的PCB设计要求不高,就用细一点的线,自动布吧 点评:自动布线必然要占用更大的PCB面积,同时产生比手动布线多好多倍的过孔,在批量很大的产品中,PCB厂家降价所考虑的因素除了商务因素外,就是线宽和过孔数量,它们分别影响到PCB的成品率和钻头的消耗数量,节约了供应商的成本,也就给降价找到了理由。 现象六:程序只要稳定就可以了,代码长一点,效率低一点不是关键 点评:CPU的速度和存储器的空间都是用钱买来的,如果写代码时多花几天时间提高一下程序效率,那么从降低CPU主频和减少存储器容量所节约的成本绝对是划算的。CPLD/FPGA设计也类似。 二:低功耗设计 现象一:我们这系统是220V供电,就不用在乎功耗问题了 点评:低功耗设计并不仅仅是为了省电,更多的好处在于降低了电源模块及散热系统的成本、由于电流的减小也减少了电磁辐射和热噪声的干扰。随着设备温度的降低,器件寿命则相应延长(半导体器件的工作温度每提高10度,寿命则缩短一半) 现象二:这些总线信号都用电阻拉一下,感觉放心些 点评:信号需要上下拉的原因很多,但也不是个个都要拉。上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下,但拉一个被驱动了的信号,其电流将达毫安级,现在的系统常常是地址数据各32位,可能还有244/245隔离后的总线及其它信号,都上拉的话,几瓦的功耗就耗在这些电阻上了(不要用8毛钱一度电的观念来对待这几瓦的功耗)。

相关文档
最新文档