基于CFD技术的迷宫式油气分离器优化设计

基于CFD技术的迷宫式油气分离器优化设计
基于CFD技术的迷宫式油气分离器优化设计

液气分离器设备技术要求

第四章货物需求一览表及商务技术要求 一、货物需求一览表 标包1: 注:1. 本次招标为定商定价,采购数量以实际需求为准。 2. 技术要求详见技术规格书。 3. 整机产品质量保证期为安装验收合格后使用12个月或出厂18个月。质保期内, 因供方原因造成的质量问题,由供方负责“三包”。 二、商务要求 (一)质量保证措施和履约保证措施条款: (1)中标厂商的供货物资必须满足产品质量标准(标书中明确的标准要求),组织单位对中标物资进行不定期抽检,由有资质第三方检测单位进行检测,如发现一次不合格或质量管理部门抽检出现不合格产品的,取消该中标厂商在渤钻中标的同类产品的中标资格,启动排名第二为中标单位,执行自身投标价格。 (2)中标通知书下发以后,在中标有效期内,如供应商违反供货承诺,无故延期供货、拖延供货或无正当理由不供货,同一项目在收到渤海钻探工程公司各分公司投诉共计2次及以上,取消该供应商在公司范围内的交易资格,启动排名第二为中标单位,执行自身投标价格。 (3)供应商放弃中标或未能完全履行合同等相关违约事项,按照CT.7.1《物资供应商管理办法》中4.11.3、4.11.4、4.11.5、4.11.6、4.11.7和4.11.8中条例进行处罚,具体

内容如下: 4.11.3供应商出现下列情形之一的,临时暂停供应商交易资格,供应商管理部门进一步核实情况,确定处罚和恢复条件: a)公司及所属单位提出重大问题或质疑,需进一步调查核实; b)在质量、验收、事故处理方面存在问题有待核实; c)生产经营资质或体系保证文件逾期; d)在石油石化行业出现影响商业信誉的严重事故、法律纠纷等。 4.11.4供应商出现下列情形之一的,视情节严重程度中止其相应准入产品的交易资格3至12个月,并限期整改: a)某项产品质量经检验,不符合合同规定的质量要求; b)某项产品生产经营资质逾期超过规定时间更新; c)现场考察中发现产品生产存在某些质量隐患,需进行整改。 4.11.5供应商出现下列情形之一的,视情节严重程度中止供应商交易资格3至12个月,并限期整改: a)中标后无正当理由不与采购单位签订合同或延迟交货影响生产; b)非不可抗力原因,擅自变更、解除或终止合同或拒绝供货; c)供应商现场考察发现可能影响生产的问题; d)售后服务环节出现问题,影响企业运营。 e)在办理准入、年审工作中不按期履行相应义务,或信息变更不及时登记。 f)不符合公司QHSE管理体系要求,存在安全隐患的。 4.11.6供应商出现下列情形之一的,视情节严重程度中止供应商交易资格一至三年,并限期整改: a)恶意串通,影响采购,使采购部门提出有利于特定供应商中标的要求; b)供应商与采购部门、招标机构或其他供应商串通陪标的,或以不正当的手段排挤其

气液分离

第四章气液分离知识点 概述: 本章主要讲述油气分离方式和操作条件的选择、油气两相分离器、油气水三相分离器等方面的知识。通过本章的学习,使学员能了解分离方式的选择对油田生产的影响,掌握分离器的结构、原理和设计方法,并且也应该对特殊场合应用的分离器有一个粗略的了解,了解其应用特点。本章的重点为多级分离与一级分离的比较、两相分离器的工艺计算(包括油滴的沉降速度计算、气体的允许流速和液体停留时间确定等)以及油气水三相分离器中液相停留时间的确定和其界面控制方法等部分的知识。 知识点1: 烟的粒径小于1μm,雾的粒径1~100μm,雨的粒径100~4 000μm。不同粒径的油滴,应有不同的有效分离方法,重力沉降:分离50μm以上的油滴;离心分离:2~1000 μm;碰撞分离:5μm以上油滴;布织物:0.5~50μm;空气过滤器:2~50μm的尘埃。 知识2:综合型卧式三相分离器的结构 下图为综合型卧式三相分离器。下表是综合型卧式三相分离器主要内部构件及其作用特点。综合型卧式三相分离器主要特点是增加内部构件并将其有效组合,提高分离器对油气水的综合处理能力。

1-入口;2-水平分流器;3-稳流装置;4-加热器;5-防涡罩;6-污水出口;7-平行 捕雾板; 8-安全阀接口;9-气液隔板;10-溢流板;11-天然气出口;12-出油阀;13-挡沫板 知识3:几种高效三相分离器 高效型三相分离器是将机械、热、电和化学等各种油气水分离工艺技术融合应用在一个容器,通过精选和合理布设分离器内部分离元件,达到油气水高效分离的目的。其优点是成撬组装,极大地减少现场安装的工作量和所需的安装空间,具有较大的机动性以适应油田生产情况变化的需要,使流程简化,方便操作管理,这些对海上油田显得尤为重要。 1、HNS三相分离器 图2-2-12为HNS型高效三相分离器简图。其内部结构进行了优化设计,有优良的分离元件,为油气水分离提供良好的内部环境,避免存在明显的短路流和返混现象,保证介质流动特性接近塞状流。表2-2-10是HNS型高效三相分离器的结构特点及其说明,主要技术特点是:

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

油气分离器的结构工作原理

油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2)碰撞聚结型:丝网聚结、波纹板聚结分离器; 3)旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器;4)旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构: 如图所示 1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有 小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒: 储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管: 通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:

给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀: 保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管: 油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板: 在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。 11)排油管:是分离器中的油排出通道,其焊在分离器隔板中心处,并与分离器隔板以上相通。 12)支架: 用来支撑分离器。 2、工作原理 油气混合物经进油管线进入分离器后,喷洒在挡油帽上(散油帽),扩散后的 油靠重力沿管壁下滑到分离器的下部,经排油管排出。同时,气体因密度小而上升,经分离伞集中向上改变流动方向,将气体中的小油滴粘附在伞壁上,聚集后附壁而下,脱油后的气体经分离器顶部出气管进入管线进行测气。

油水分离器

船用油水分离器原理及操作步骤 油水分离设备主要组成部分,包括控制箱,分离器(内有滤板、滤心等),管路,专用配套泵,自动排油监控系统(排油电磁阀、加热器、压力表、温度表及探头等附属设备),等。 检验依据是MARPOL73/78公约和2004国内航行海船法定检验技术规则。 任何部分的缺陷都会影响设备分离效果,所以总的要求是整体处于良好状态。 1检验控制箱 控制箱有泵浦电控箱、自动排油电控箱及排油监控系统电控箱等,有的是结合在一起,有的是分开的。 检查时,主要查看各电控箱能否对相关的用电设备正常供电及控制,有关指示灯能否亮。若电源指示灯不亮,则可能是总配电板或分配电板上油水分离设备电源开关未合闸,或电控箱内保险丝断了。 2检验分离器和管路 (1)检查分离器 查看分离器简体,确认: ·无严重锈蚀,无锈穿现象。 ·铭牌明显,标明的处理能力与证书相符。 ·查看筒体上取样口的龙头,畅通,开关自如。 (2)检查分离器的安装 安装要求是,任何情况下,都不会因虹吸作用而使分离器内水位下降,更不允许存在排空的可能。 具体衡量标准是: ·如果分离器安装在轻载水线以下,分离器的顶部要低于船舶轻载水线lm以上,或分离器排水管的舷外排出口高于分离器顶部1m以上: ·如果分离器安装在轻载水线以上,则排水管必须高于分离器顶部lm以上,并在排水管的最高点上设有透气管和透气阀。 (3)检查管路

查看有无不经油水分离器而直接排往舷外的旁通管路。若有,必须割除。若暂时不具备割除的条件,允许临时用盲板封死。 查看管路是否锈蚀严重,有无漏水现象。 3专用配套泵 (1)查看确认设有专用配套分离泵 泵的种类对油水分离器性能有显著影响。因为油水分离器的速率取决于油滴的直径,油滴直径的大小关系到分离效果,因此含油污水在进入油水分离器前就应尽可能防止其中的油滴破裂。这显然与供液泵的形式和排量密切相关。 船上的专用配套分离泵,一般为转速慢、行程小、口径大、能减小油水乳化的往复泵。 (2)查看泵的排量 泵的排量,根据IMO大会决议A.393(X)规定,必须小于或等于分离器额定处理能力的1.5倍。如果超过,应要求船方更换。 4检验排油监控系统 (1)检查报警功能 可通过试验,检查排油监控系统的报警功能,如:按动试验按钮;或无试验按钮而有试验孔时,打开试验孔盖,插入如毛刷之类的物体试验。 在船检做产品性能试验时(船上检查时一般不用),可在油水分离器简体内充满水后,再泵入纯油,泵油时间为5分钟,看能否在超过15ppm时发出声光报警。 (2)检查自动停止排放功能 具有自动停止排放功能的排油监控系统,还需检查其在超过15ppm时能否使分离器专用配套泵停止运转,或能否使排水管路上的气动、电磁、气动/电磁组合式等的三通阀动作。若不能,则说明该排油监控系统本身的故障或三通阀故障。 三通阀故障,可能有: ·电磁阀故障; ·气动三通阀驱动气体未达到设定气压; ·三通阀本身漏气。 (3)检查排油电磁阀

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

流体力学分析油水分离器 天津大学 徐世民

CFD优化精馏塔板液流状况的研究 刘德新1,李鑫钢1,2,徐世民1,2 (1 天津大学化工学院,天津300072;2 精馏技术国家工程研究中心,天津300072) 摘要:应用计算机对过程的模拟(仿真)研究是过程系统工程(Process Systems Engineering,简称PSE)的重要组成部分,本文应用计算流体力学(Computational Fluid Dynamics,简称CFD)模拟研究了液流强度和堰径比对精馏塔板液流状况的影响,并且提出了改进塔板液流状况的两种方案:设置不等高入口堰和设置圆弧型的导流板,从模拟结果可以看出,以上两种方案都能够很好的达到优化塔板液流状况的目的。 关键词:精馏塔板液流状况回流区堰径比不等高入口堰导流板 CFD Used in Improving Liquid Flow on Distillation Tray Liu Dexin1,Li Xingang1,2,Xu Shimin1,2 1.Department of Chemical Engineering, Tianjin University, Tianjin 300072 2.National Engineering Research Center for Distillation of Tianjin University Tianjin 300072) Abstract: CFD was applied to improve flow of liquid on distillation tray in this paper, and the factors effected liquid flow were analyzed such as liquid flow and the ration of weir to diameter. Based on these results, some methods are suggested and simulation results show that placement of suitable inlet weir with unequal height or guide plates can effectively reduce restrain retrograde flow to achieve uniform liquid flow on the whole tray. Key words: Distillation trays, flow situation of liquid, restrain retrograde flow, ration of weir to diameter, guide plates, inlet weir with unequal height. 过程系统工程(Process Systems Engineering,简称PSE)是在系统工程、化学工程、过程控制、计算数学、信息技术等学科的边缘上产生的一门综合性学科,它以处理物料—能量—信息流的过程系统为研究对象,过程的模型化和模拟式过程系统工程的重要组成部分[1]。在集成化过程系统中,根据某种目标要求,将过程最优化,产生最佳的效果,就必须对涉及到的各种因素进行定量的数学描述,以将过程最优化,并预测未来的效果。随着计算机技术的不断发展,诸如计算流体力学等计算机对过程的模拟(仿真)研究,因为其重复性好、效率高、节省大量的人力和物力,在现代化的过程系统工程中占有重要的地位。 计算流体力学(Computational Fluid Dynamics,简称CFD)是流体力学理论研究的一个分支,它是涉及流体力学、偏微分方程的数学理论、计算几何、数值分析、计算机科学等的交叉学科[2]。20世纪70年代以来,随着计算机的普及以及计算能力的不断提高,加上近似计算方法如有限体积法、有限元法、边界元法等的发展,CFD已经被广泛的应用于过程工业的模拟(仿真)研究。 精馏操作广泛存在于化工、石油、制药及冶金等各行业,是一种重要的化工单元操作[3],

对影响环境保护的主要施工因素的控制措施

对影响环境保护的主要施工因素的控制措施 1、施工噪音控制 ⑴施工场界噪声符合《建筑施工场界噪声限制》(GB12523-2011)的要求。主要噪声源和钻机、卷扬机、搅拌机、空压机等噪音比较大的机械均设置消音装置,采用有效的吸声、隔音材料施做封闭隔声屏,控制施工噪音,确保离开施工作业区边界30m处噪音小于70dB,撞击噪音最大不超过90dB。同时尽可能避免夜间施工。 ⑵采取措施,保证在各施工阶段尽量选用低噪声的机械设备和工法;每日22时至次日6时禁止强噪声施工。 ⑶在本标段场地四周设围挡,以便和外界较繁华的交通要道隔离。 ⑷夜间施工经批准领取“夜间施工许可证”或“昼夜施工认可证”,并严格按照海南省夜间施工有关规定执行。 ⑸噪声超标时一定采取措施,对超标造成的危害,向受此影响的组织和个人给予赔偿。 ⑹确定施工场地布局合理,优化作业方案和运输方案,尽量减少施工对周围的影响,减少噪声的强度和敏感点受噪声干扰的时间。 ⑺在有电力供应时,不使用自备发电机,以减少噪音。 ⑻集中居民点噪声防护应设置隔声门窗,优化施工组织设计和加强施工管理;将施工营地、施工便道等易产生噪声的区域均设置在远离噪声敏感点的地方,且周围60m范围内有敏感点的渠线段夜间禁止施工。此外,对混凝土搅拌机等高噪声机械现场作业人员,应配备必要的噪声防护物品,操作人员的每天工作时间不得超过6h。

⑼施工运输车辆在通过居民点时,应减缓车速,控制车流量,禁止鸣放高音喇叭,并设置限速牌;加强机械设备的维修和保养,减少运行噪声 2、施工与生活污水处理 ⑴废水排入城市下水道,悬浮物执行《污水综合排放标准》(GB8978-2002)中的三级标准(400mg/L)。 ⑵要在工程开工前完成工地排水和废水处理设施的建设,并保证工程的排水和废水处理设施在整个施工过程的有效性,做到现场无积水,排水不外溢、不堵塞,水质达标。 ⑶现场污水排放设沉淀池,对施工废水进行沉淀净化,并用于场地内运输道路的洒水降尘,沉淀池的大小根据排水量和所需沉淀时间确定。生活区设置化粪池。 ⑷油料的储存、使用、保管由专人负责,防止油料跑、滴、漏污染土壤及水体。 ⑸施工期间在施工主营地分别修建化粪池1座,定期对化粪池进行灭菌、消毒、经处理后的生活污水用于绿化灌溉,实现零排放,污泥可作为农用肥料外运;在人口较集中的生活区和主要施工场地修建环保厕所,粪便可作为农用肥料外运;同时对生活杂用水统一收集,用于洒水和绿化。 ⑹砂砾石产生废水:砂石料产生废水采用沉淀法处理后回用于砂石料冲洗用水,沉淀污泥经脱水后送至弃渣场自然干化。 ⑺混凝土养护废水:现浇混凝土养护废水自然蒸发不需单独处理;混凝土构件养护废水采用沉砂池+絮凝剂处理后回用为养护水,污泥在两池间歇期自然干化后利用挖掘机外运至就近弃渣场;施工场地内混凝土养护水经自然蒸发不需要

甘油分析方法

甘油分析方法 甘油的化学分析方法 过碘酸钠法( GB/T 13216.6—91) 原理:在强酸性介质中,过碘酸钠将三个相连羟基的甘油氧化分解成甲酸和甲醛,用NaOH中和生成的甲酸,用pH值计指示终点。从NaOH标准溶液的消耗量计算甘油的含量。 CH20H-CHOH-CHOH+2NalC4—2HCHO+HCOOH+2NaI3+H2O 试剂蒸馏水:不含二氧化碳。 乙二醇稀释溶液: 1 体积不含甘油的乙二醇,用酚酞作指示剂中和后,再用 1 体积水稀释。 硫酸溶液:约0.1mol/L 。 甲酸钠溶液:约0.1mol/L 。 过碘酸钠酸性溶液的制备:称取60(精确至0.1g)过碘酸钠,溶于已加入120mL 硫酸溶液的约500mL的水中,边加入边冷却,转移到1000mL容量瓶中,用水稀释到刻度并摇匀。必要时用玻璃过滤器过滤。 溶液的酸度校核:空白试验所用NaOH溶液的体积应不少于4.5mL,这与基本反应产生的酸度相当。 NaOH溶液:约0.05mol/L。 NaOH标准溶液:约0.125 mol/L。 酚酞指示剂:溶解0.5g酚酞于95% (体积比)乙醇中,稀释至100mL o 仪器 滴定管:50mL。 pH 值计:pH 值计应用两种缓冲溶液校准。 a:邻苯二甲酸氢钾溶液:0.05mol/L (10.12g/L),20C 时pH 值为4.00; b:10 水四硼酸二钠(Na z B4O7T0H2O)溶液:0.01mol/L (3.81g/L), 20C时pH 值为9.22。 测定步骤 (1)试验份:称取含甘油不大于0.5g的样品(精确至0.0002g)。如果不知甘油的大 致含量,应称取0.5g样品进行预测(如果甘油含量大于75%,最好称取 0.5g+0.1g样品,精确至0.0002g),置于500mL容量瓶中,用水稀释至刻 度,摇匀后取50mL此溶液用于测定。 ( 2) 试验溶液的制备:对碱性样品或样品酸化时出现焦油沉淀,可将试验份放入配有回流冷凝器的烧瓶中,需要时稀释到50mL,加2滴酚酞指示 剂,用硫酸溶液中和到刚好褪色。再加入5mL硫酸溶液,煮沸5min, 冷 却,必要时过滤,并用水洗涤过滤器。滤液转入600mL烧杯中。无上述情 况时则可将样品直接放入烧杯进行测定。 (3)滴定:用水稀释试样至体积约250mL,在不断搅拌下,加入NaOH溶液,调 节pH值至7.9± 0.1 o加入50mL过碘酸钠溶液,混合搅匀,盖上表面皿, 在温度不超过35E的暗处放置30min。然后加入10mL乙二醇稀释溶液,混 合,在相同条件下放置20min。加5.0mL甲酸钠溶液,用NaOH 标准溶液滴

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

制冷用气液分离器设计

制冷用气液分离器设计 1、气液分离器的作用 ●把从蒸发器返回到压缩机的冷媒分离成气体和液体,使气体回到压缩机,从而避免液态制冷剂进入压缩机破坏润滑或损坏涡旋盘。(单冷机在低温工况下验证,热泵以融霜时验证(相当于人低温工况)) ●使气液分离器中的润滑油回到压缩机。 2、有效容积计算 ●理论计算法 气液分离器出口管入口到底部的容积,见图3,气液分离器简图。 V =【(最大制冷剂注入量÷ρ】×0.8以上 注:最大制冷剂注入量(单位:kg): 压缩机和气液分离器置于室外分体机:室外机制冷剂注入量+最长配管时的追加制冷剂注入量。 压缩机和气液分离器置于室内分体机:整机注入量+最长配管时的追加制冷剂注入量。最大制冷剂注入量要考虑到系统允许的油重比,在不符合压缩机规格书的情况下,必须与压机厂家做沟通并书面确认。 ρ:密度(单位:kg/L):制冷剂在0℃饱和液态情况下的比重,R22:1.28;R410A 为1.18;R134a:1.3;R407C:1.27。 0.8为安全系数。由于高压腔压缩机抗液击能力差,所以当选用高压腔压缩机时需要与压机厂家进行充分的沟通。 ●估算法 按照系统总体制冷剂充注量的50%确定气液分离器的容积,以保证冬季运行工况切换时系统运行的安全性。(指有效容积,压缩机厂家建议有效容积占比不大于总容积的70%) 3、直径设计

在设计气液分离器时,要求气液分离器的直径D应能满足制冷剂从蒸发器返回至分离器时,通过扩容减速使最大的稳定流速ω不超过0.75m/s,即ω≤ 0.75m/s,以保证气液充分分离。气液分离器直径D可通过如下公式来计算: 式中D —气液分离器直径,m; Vi—吸气比容,m3/kg; Gm—制热运行时最高蒸发温度下的质量流量,kg/s; ω—最大稳定流速,m/s; 4、气液分离器均压孔的设计 均压孔的作用是当压缩机停止时,如果没有均压孔,气液分离器中的液态冷媒向压缩机移动,当压缩机再次起动时将进行液压缩,导致压缩机损坏。 当压缩机运转时,大量的气体冷媒通过吸气管回到压缩机,只有少量的液体冷媒和油通过回油孔,均压孔不起作用。当压缩机停止瞬间,由于吸入管内外压力差的原因,气液分离器内部的液态冷媒将会通过回油孔回到压缩机,在压缩机下次启动时,造成压缩机液击。因此,必须设置均压孔,当压缩机停止时,根据连通器原理吸气管内外压力一致,冷媒液面保持水平,不发生冷媒液体返回压缩机。 气液分离器出口管的均压孔径是按以下计算的。 均压管孔径面积(mm2) = 出口管外径横截面积(mm2) × (0.03~0.033) 注:最终的均压孔径的计算,还是根据实验来决定的。 气液分离器的液态制冷剂在积存量固定的状态下停压缩机时,液态制冷剂是不会流入压缩机内的。在气液分离器回到压缩机之间安装视液镜进行确认。 案例: 设计条件:出口管外径:φ22.3 均压管孔径面积(mm2) = {1/4×3.14×(22.32)2}×0.03= 11.71 均压孔径φ(mm) =( 11.71÷(1/4×3.14))0.5= 3.9 初步采用φ4.0的均压孔,后用试验进行确认。

油气分离器的工作原理

压机A+_+hH5Y 0V%空压机油气分离器的工作原理 产品关键字: 油气分离器 油气分离元件是决定空压机压缩空气品质的关键部件,高质量的油气分离元件不仅可保证压缩机的高效率工作,且滤芯寿命可达数千小时。从压缩机头出来的压缩空气夹带大大小0o7~3hQo 2^6D 小的油滴。大油滴通过油气分离罐时易分离,而小油滴(直径1um以下悬浮油微粒)则必须通过油气分离滤芯的微米及玻纤滤料层过滤。油微粒经过滤材的扩散作用,直接被滤材拦截以及惯性碰撞凝聚等机理,使压缩空气中的悬浮油微粒很快凝聚成大油滴,在重力作用下油集聚在油分芯底部,通过底部凹处回油管进口返回机头润滑油系统,从而使压缩机排出更加纯净无油的压缩空气。压缩空气中的固体粒子经过油分芯时滞留在过滤层中,这就导致了油分芯压差(阻力)不断增加。随着油分芯使用时间增长,当油分芯压差达到0.08到0.1Mpa时,滤芯必须更换,否则增加压缩机运行成本(耗电)。上海信然公司以使用世界一流滤材为基础,测试油分芯排气含油量,压差为依据,愿为您提供低残油量、低压差、长寿命的油分芯。 高效滤芯超期使用的危害: (1)过滤效率差,压缩机空气品质无法满足使用要求,导致用气设备不能正常工作或产品合格率大大降低; (2)堵塞后压阻增大,导致机组实际排气压力增大,机组能耗增加,生产成本增高; 2、油滤芯的作用: 油滤芯的作用是滤除空压机专用油中的金属颗粒、杂质等,使进入主机的油是非常干净p

65p 01kCR 的,以保护主机安全运行。 油滤芯的材料: 高精度滤纸 油滤芯的更换标准: (1)实际使用时间达到设计寿命时间后更换。油滤芯设计使用寿命通常为2000小时。到Z 8OVz0A 4P1o 4_$ m#LQ WQ+U 期后必须予以更换。空压机环境状况较差的应缩短使用时间。 (2)设计使用寿命期限内堵塞报警后立即予以更换,油滤芯堵塞报警设定值通常为 1.0-1.4bar。 油滤芯超期使用的危害: (3)堵塞后回油量不足导致排气温度过高,缩短油和油分芯使用寿命;6Y56 W+K@*(4)堵塞后回油量不足主机润滑不足,导致主机寿命严重缩短;滤芯破损后未经过滤的含大量金属颗粒杂质的油进入主机,导致主机损坏。 3、空滤芯的作用:

合成油工艺说明

一、费托合成工艺说明 煤间接液化工艺是煤经气化生产合成气(H2+CO),合成气净化后经过费托合成反应生成烃类产品的过程。浆态床费托合成反应是煤间接液化工艺核心技术,合成装置的工艺过程是合成原料气在一定的压力和温度下进入浆态床反应器,在催化剂的作用下发生费托合成反应,生成轻质馏分油、重质馏分油、重质蜡、水及含氧化合物等一系列的产物。费托反应后的合成产品、尾气经过换热、分离和收集后大部分气体直接经过加压循环及循环使用。另一部分尾气和释放气送脱碳和油洗装置中脱除CO2并回收低碳烃。 浆态床煤基合成油工艺可以实现催化剂的在线补充和卸出,实现生产过程的连续操作。费托(F-T)合成反应的化学方程式如下: nCO+(2n+1)H2 (-CH2-)n+nH2O+Q 同时发生水煤气变换反应: CO+H2O CO2+H2+Q 二、工艺流程简述 本装置由合成及分离部分、重质蜡精制部分、还原部分三部分组成。中国石油工程设计抚顺分公司负责合成及分离部分的设计,中科合成油技术有限公司负责重质蜡精制部分、还原部分的设计;本工艺流程叙述仅对合成及分离部分。 合成及分离部分的工艺流程由反应系统、重质蜡分离系统、过滤反吹及反洗系统、浆态床反应器的取热系统等四部分组成。 1.反应系统 来自低温甲醇洗装置2.5MPa(A)、40℃、总硫量<0.05PPPm的新鲜原料气,经原料气4压缩机(780-K-1101)升压到3.4MPa(A)、79℃。与来自循环气压缩机(780-K-1102)的循环气3.4MPa(A)、64℃混合后分为两部分。一部分送到反吹气压缩机(780-K-1103),另一部分进入二次换热器(780-E-1102)壳程与合成气换热到138℃,再与来自PSA装置的一氧化碳气 3.4MPa(A)、130℃和油品加工装置的氢气 3.4MPa(A)、130℃混和进入一次换热器(780-E-1101)壳程与合成气换热到216℃后分为两路。一路经合成气蒸汽加热器(780-E-1106)加热到230℃进入浆态床反应器(780-R-1101),另一路至重质蜡稳压罐(780-D-1112)补充重质蜡分离系统的压力。 进入浆态床反应器(780-R-1101)的循环气以鼓泡的形式通过含有催化剂的浆态床层,进行费托合成反应。反应生成的轻质烃类化合物、合成水和未反应的合成气以气相形式从反应器的顶部导出,反映产生的重质烃类经重质蜡分离装置从反应器中部抽出。 从反应器顶部导出的反应产物2.96MPa(A)、240℃进入一次换热器(780-E-1101)管程与循环气换热到2.91MPa(A)、160℃,并冷凝出重质油,进入重质油分离器(780-D-1103)进行气液分离。 分离出的重质油减压到0.16MPa(A)后与来自重质蜡稳压罐(780-D-1112)的重质蜡释放气一起进入重质油减压罐(780-D-1108)。重质油减压罐的气相经释放气一次水冷器(780-E-1103)冷却到100℃,进入释放气二次水冷器(780-E-1105)冷却到40℃。然后送入油水分离器(780-D-1106)。 重质油减压罐(780-D-1108)的液相进入重质油泵(780-P-1102),升压到0.65MPa(A)后送到油品加工装置,在非正常工况下,也可以经过重质油冷却器(780-E-1108)冷却到90℃后送到中间罐区。 重质油分离器(780-D-1103)的气相经过二次换热器(780-E-1102)管程与循环气换热到109℃,进入合成气空冷器(780-A-1101)冷却到50℃,再经过合成气水冷器(780-E-1104)冷却到2.73MPa(A)、40℃进入轻质油分离器1、2(780-D-1104、1105)进行气液分离。气

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

相关文档
最新文档