磁性材料的发展

磁性材料的发展
磁性材料的发展

磁性材料的发展

磁性材料主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质。磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。

磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。

在现代科技社会中,磁性材料已成为必不可少的功能性基础材料。其应用之广泛几乎无处不在,其涉及领域有航空、航天、核技术、汽车、电子、信息、通讯、动力、机械、照明、家用电器、矿山机械、工业技术等。其在国民经济中的地位不言而喻。

早在20世纪80年代就有以一个家庭拥有的电机数来衡量一个国家的技术发展程度的说法,据统计当时美国为26台,日本为14台,每台电机内都含有永磁体。近年又有以人均磁性材料消耗值来衡量一个国家人民生活水平的新说法,据统计2003年发达国家人均磁性材料消耗值约为USD4.772,我国则为USD1.023,约为发达国家的21.5%。

如今一个家庭所拥有的磁性材料可以在电视机、电脑、音响、DVD机、空调机、洗衣机、手机、汽车、玩具、灯具、家具等等上找到,粗略地估算一下,少则一二千克多则几公斤甚至十几千克。

据信息产业部统计,当前我国移动电话用户已经超过4.2亿户以上,而且还以每月新增548万个用户的速度在快速增长。到2010年中国达12,500万部。中国每年生产手机3.4亿部,占全球总数7.8亿的40%;另外中国是手机出口大国。现在手机的功能在不断扩大,集照相、MP3、MP4和电视功能一体的多媒体手机发展成为主流。今后数年内,中国3G制式手机发展成为重点,产量将超过GSM制式。由于功能的增加和技术的提高,这对磁性材料性能提出更高的要求。磁性材料必须满足高频率、小型化、贴片化、高磁性能、低损耗和抗电磁干扰的要求。

最新磁性材料产品有:德国EMG检测光头、EMG高频光源发射器、EMG伺服阀、美国进口铁硅铝磁环77051A7、永磁起重器、脉冲充磁机、铁镍钼磁环、磁力棒高性能磁铁等等。

国内比较著名的磁性材料企业有:

1.横店东磁:磁性材料行业龙头,业绩稳步提升;

2.中钢天源:募投项目助公司跨越式发展;

3.正海磁材:新能源与节能环保助飞高性能钕铁硼龙头;

4.中科三环:逐步缓解成本压力,稀土永磁潜力无穷;

5.宁波韵升:电机与磁性材料并驾齐驱;

6.北矿磁材:高性能永磁材料龙头;

7.天通股份:磁性材料前景看好;

8.太原刚玉:受益政策。

磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类

第一章磁学基础知识 答案: 1、磁矩 2、磁化强度

3、磁场强度H 4、磁感应强度 B 磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。其定义公式为 5、磁化曲线 6、磁滞回线 () (6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。) 7、磁化率

磁化率,表征磁介质属性的物理量。常用符号x表示,等于磁化强度M与磁场 强度H之比。对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是 一个二阶张量。 8、磁导率 磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的 一个物理量,可通过测取同一点的B、H值确定。 二 矫顽力----内禀矫顽力和磁感矫顽力的区别与联系 矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 (2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正? 产生: 能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

磁性材料的磁性能

磁性材料的磁性能 一、高导磁性 磁性材料的 μr >>1,可达数百、数千、乃至数万之值。能被强烈的磁化,具有很高的导磁性能。 磁性材料在外磁场作用下,磁畴转向与外磁场相同的方向,产生一个很强的与外磁场同方向的磁化磁场,磁性物质内的磁感应强度大大增加,即磁性物质被强烈的磁化。磁力线集中于磁性物质中通过。 磁性材料主要指铁、镍、钴及其合金等。在此主要介绍其磁性能。 磁性物质的高导磁性被广泛地应用于电工设备中,如电机、变压器及各种铁磁元件的线圈中都放有铁心。实现用小的励磁电流产生较大的磁通和磁感应强度。

磁性物质由于磁化所产生的磁化磁场不会随着外磁场的增强而无限的增强。当外磁场增大到一定程度时,磁性物质的全部磁畴的磁场方向都转向与外部磁场方向一致,磁化磁场的磁感应强度达到饱和值。如图。 二、磁饱和性 B J 磁场内磁性物质的磁化磁场 的磁感应强度曲线; B 0 磁场内不存在磁性物质时的 磁感应强度直线; B 为B J 曲线和B 0直线的纵坐标 相加即磁场的 B -H 磁化曲线。 O H B B 0 B J B ? a ? b

? B -H 磁化曲线的特征 Oa 段:B 与H 几乎成正比地增加; ab 段: B 的增加缓慢下来; b 点以后:B 增加很少,达到饱和。 O H B B 0 B J B ? a ? b ? 有磁性物质存在时,B 与 H 不成 正比,磁性物质的磁导率μ不是常数, 随H 而变,如图。 ? 有磁性物质存在时,Φ 与I 不成 正比。 ? 磁性物质的磁化曲线在磁路计算 上极为重要,其为非线性曲线,实际 中通过实验得出。 O H B,μ B μ

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

磁的基本知识:磁场磁路磁性材料

磁的基本知识:磁场、磁路、磁性材料 线圈通入电流时,在其周围会产生磁场。把线圈套在铁心上,磁场会加强而且集中,并能吸引铁磁物质,使之运动。电磁吸盘、电磁阀、接触器、继电器等许多电气设备就是利用这种原理制成的。磁场被认为是一种能量,能吸引铁磁物质运动做功,把线圈通入的电能转化为铁质运动的机械能。借助于磁场,很容易实现电能和机械能的相互转换,导线切割磁场运动,导线会产生感应电动势,基于这种原理制成的发电机,就是把机械能转换为电能的一个实例。通电的导体在磁场中会受力运动,基于这种原理制成的电动机,就是借助于磁场实现电能转换成机械能的实例。变压器是借助磁场的变化,使一种电压等级的交流电能转化为另一种电压等级的电能。 以上事实说明了,一个电工仅掌握电路方面的知识,而不掌握磁路、磁场方面的知识,那么,他的知识是残缺不全的。从本节课开始将分四篇来学习有关知识,内容不是具体介绍每个电气设备的电磁原理,而是介绍它们共有的最基本的磁知识。这样,在学习各个电气设备时,才有扎实的基础。(有些部分在初级电工基础知识里面也是接触过的,这里再加深一次)。 磁场和磁路

如图下图a所示,线圈通入电流I时,在其周围产生磁场。在图中,磁场用虚线形象化地表示,称为磁力线。磁力线箭头方向表示磁场方向,磁力线是无始无终的闭合回线。产生磁场的电流称为励磁电流或激磁电流,电流值与线圈匝数N 的乘积IN称为磁动势F,记作F=IN,单位为安匝。所产生的磁场方向与励磁电流方向之间符合右螺旋定则。磁场方向常用南(S)、北(N )极来描述,图a中,线圈上方为S极,下方为N极,把线圈包含的一段磁路称为内磁路,未包含的磁路(即空气中的磁路)称为外磁路,外磁路的磁场方向由N极指向S极,内磁路磁场方向则由S极指向N极。 为使较小的励磁电流能产生较大的磁场,并把磁场集中在一定范围内加以利用,常把线圈套在由铁磁材料制成的一定形状的铁心中。图b是电磁铁未吸合时的磁路。由于铁磁材料容易导磁,故大部分磁力线在铁心中形成闭合回路,这部分磁通称为主磁通Φ,另外一小部分磁力线则不经过铁心而经过空气形成闭合回路,这部分磁通称为漏磁通,记作Φs。磁场的基本物理量 一、磁感应强度 磁感应强度(B)它是表示磁场中某一点磁场强弱和方向的物理量,是一个矢量。磁场中某一点的磁感应强度是用它对放在该点且垂直于磁场方向并通有1A电流、长度为1m的

磁性材料分类

磁性材料的分类 1、铁氧体磁性材料:一般是指氧化铁和其他金属氧化物的符合氧化物。他们大多具有亚铁磁性。特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。饱和磁化强度低,不适合高磁密度场合使用。居里温度比较低。 2 、铁磁性材料:指具有铁磁性的材料。例如铁镍钴及其合金,某些稀土元素的合金。在居里温度以下,加外磁时材料具有较大的磁化强度。 3 、亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。 4 、永磁材料:磁体被磁化后去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。可分为三类,金属永磁,例:铝镍钴,稀土钴,铷铁硼等;铁氧体永磁,例:钡铁氧体,锶铁氧体;其他永磁,如塑料等。 5、软磁材料:容易磁化和退磁的材料。锰锌铁氧体软磁材料,其工作频率在1K-10M之间。镍锌铁氧体软磁材料,工作频率一般在1-300MHZ 6、金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。 7 、损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交变磁场的每周期中,损耗能量与储存能量的2派之比。 8、比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。

9 、温度系数:在两个给定温度之间,被测的变化量除以温度变化量。 10、磁导率的比温度系数:磁导率的温度系数与磁导率的比值。 11 、居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度。 专业术语: 1 、饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。 2、剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。 3 、磁通密度矫顽力:他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度,使磁感应强度B减小到0时的磁感应强度。 4、内部矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度。 5、磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积。 6 、起始磁导率:磁性体在磁中性状态下磁导率的极限值。

磁学与磁性材料导论

3.15 磁学基础 C.A.Ross, 材料科学与工程学系, 麻省理工学院 参考数据: Jiles ,磁学与磁性材料导论 磁性数值与单位 H=磁场强度,A/m – 表示能量梯度或偶极的力矩 B=磁通量密度,T 或 Wb/m 2 – 每单位面积通过的磁力线数 M=磁化强度, A/m – 磁矩,材料对场的反应 磁场强度由电流产生: 电流 i 在半径r 产生切线场 H = i/2 πr 或由磁性材料而来。 B = μo H μo = 4π*10-7 Henry/m 在自由空间中磁通量密度由磁场强度决定 B = μo (H + M) 但在材料中 或 B = μo μr H μr =相对磁导率 或 M = H(μr - 1) 或 M = χH χ = (μr - 1) =磁化率 磁化强度与磁通量密度表示材料对于磁场场度H 的反应。磁通量密度的场线是连续的。 注,相同的表示式以cgs 单位表示: B (Oersted) = H (Gauss) + 4πM (emu/cc) 在此 1 Oe = (1000/4π) A/m = 79.6 A/m 1 G = 10-4 T 1 emu/cc = 1 kA/m 不同种类的材料 反磁:原子没有净磁矩,但磁场会产生与外加场相反的小磁矩,磁化率为负的(μr <1)。

顺磁:原子有净磁矩但自旋方向是任意排列。外加磁场会使其有弱的排列方向,因此小的磁化率随温度的倒数而变(μ r >1)。 铁磁有自发的磁化强度,及大的磁导率,其与样品的经历有关,具有非线性的磁滞现象。 磁性行为的源由 电荷的移动使得电子的角动量产生磁化。 磁化由1)电子自旋,2)电子轨道运动而来。 成对电子的贡献会互相抵销,所以强磁效应发生在材料具有未成对的电子。 一个电子具有1 μ B (波耳磁子) = 9.27*10 -24 Am 2 的动量 Stern-Gerlach与Zeeman的实验指出了原子有磁化的量子现象。 我们预期在过渡金属(未填满3d轨域)及稀土元素(未填满4f轨域)有大的磁性现象,因为它们有大的净自旋。 例如:Fe 3+ 有 3d 5 :预期每个原子有5μ B (忽略轨道的贡献) Fe 有 3d 8 :预期每个原子有2μ B 铁磁物质之邻近原子因为交换耦合,会有自旋的自发排序。假若自旋有一角度θ,交换能= A (1 – cosθ) 在此A式交换常数,如对铁而言是1.4*10-20 J 负A表示反向平行排列:材料是反铁磁性或陶铁磁性。 在居礼温度之上,自旋是随机排列,所以kT ~ A(对铁而言是770°C) 排列整齐的自旋形成扇区,每个扇区通常都指向不同的方向,就样品而言平均起来就没有净磁矩。但是,扇区可由相对较小的磁场磁化而排列在同一方向(注:此时磁壁就不存在了),以产生较大的净磁矩,所以其磁导率非常高。M-H曲线的形状是迟滞的,重要的磁滞回线参数包含: 曲线内的面积(外加磁场作一个循环的能量消耗) 饱和磁化(在大磁场中的磁化) 残磁(磁场为零时仍存在磁化强度) 顽磁(要将磁化强度去除所需的磁场强度) 异向性与扇区

高分子有机磁性材料

高分子有机磁性材料 1 引言 磁性材料是一簇新兴的基础功能材料。虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下: 上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。 近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。过去

一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。有可能在磁性材料领域产生一系列新技术。 2高分子有机磁性材料的主要性能特点 由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点: (1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。该类材料和元件制备的主要工艺流程如图1。 有机物的主要构成元素是碳、氢、氮,结构和化学性能十分稳定。将磁粉加工

磁性材料分类

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质. 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。 抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

磁铁在强磁场及高温环境下磁力的变化情况的研究

磁铁在强磁场及高温环境下磁力的变化情况的研究 【目的】 为了发现磁铁磁性受高温与强磁场环境的影响,并且为了找到我们在学习中常见的V形磁铁的居里温度,我们进行了实验。 【思路】 为发现磁铁磁力减弱或消失的变化情况,我们准备采用模拟这两种环境的方法。强磁场的环境采用直流电磁铁来模拟;高温环境采用高温电炉进行模拟。 【工具材料】 永磁铁:两块,分别为U形和条形。 高斯计:LakeShore制造的410型,最小分辨率为0.1GS,量程为2000GS。 电源:直流稳流电源,最大输出电流为400A,最大输出电压为50V。 两极直流电磁铁。 天津电炉厂制造的RJX25—13型箱式高温电炉,最高加热温度为1350℃。 【制作过程】 用高斯计测量一块V形磁铁和一块长条形磁铁,分别放入强磁场及高温环境中,不断改变输入电磁铁的电流和电炉温度,同时记录数据最后进行分析。 【科学性】 本次实验得到了准确的数据,并进而得到一些简单的物理结论。 【先进性】 本次实验完全由学生设计,亲自动手操作,不拘泥于资料中的数据,通过自己设计的实验方法,找到了问题的答案。 【创新点】 根据设计实验思路,提出具体的操作方法,并亲手操作,得到了最后的结论。 作品简介 在日常生活中原本磁力很强的磁铁由于在强磁场的环境下磁力的方向以及大小会发生变化,例如小磁铁在两块大磁铁的干扰下磁力会有所减弱;磁铁放在炉子旁,在高温情况下,磁力也会有所减弱;铁钉吸附在磁铁上,经过一段时间后会有磁性,我们查阅了许多资料,知道每一块磁铁都有不同的居里温度(Curie Temperature),即磁铁在该温度下会失去磁性,而我们在学习中常见到的磁铁的

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

金属磁性材料的划分

金属磁性材料的划分 发布日期:2013-06-20 浏览次数:485 核心提示:金属磁性材料分为永磁材料、软磁材料二大类。通常将内禀矫顽力大于0.8kA/ m的材料称为永磁材料,将内禀矫顽力小于0.8kA/m的材料称 金属磁性材料分为永磁材料、软磁材料二大类。通常将内禀矫顽力大于0.8kA/m的材料称为永磁材料,将内禀矫顽力小于0.8kA/m的材料称为软磁材料。11、什么叫Nd-F e-B永磁体,它分几大类?Nd-Fe-B永磁体是1982年发现的迄今为止磁性能最强的永磁材料。其主要化学成分为Nd(钕)、Fe(铁)、B(硼),其主相晶胞在晶体学上为四方结构,分子式为Nd2Fe14B(简称2:14:1相)。除主相Nd2Fe14B外,Nd-Fe-B永磁体中还含有少量的富Nd相、富B相等其它相。其中主相和富Nd相是决定Nd-Fe-B磁体永磁特性的最重要的二个相。今天,Nd-Fe-B永磁体已广泛应用于计算机、医疗器械、通讯器件、电子器件、磁力机械等领域。 Nd-Fe-B磁体分为烧结和粘结二大类。通常的Nd-Fe-B烧结磁体是用粉末冶金方法制造的各向异性致密磁体;而通常的Nd-Fe-B粘结磁体是用激冷的方法获得微晶粉末,每个粉末内含有多个Nd-Fe-B微晶晶粒,再用聚合物或其它粘结剂将粉末粘结成大块磁体,因而通常的Nd-Fe-B粘结磁体是非致密的各向同性磁体。因此,通常的Nd-Fe-B烧结磁体的磁性能远高于Nd-Fe-B粘结磁体,但Nd-Fe-B粘结磁体有着许多Nd-Fe-B烧结磁体不可替代的优点:可以用压结、注射等成型方法制作尺寸小、形状复杂、几何精度高的永磁体,并容易实现大规模自动化生产;另外,Nd-Fe-B粘结磁体还便于任意方向充磁,能方便制作多极乃至无数极的整体磁体,而这对于Nd-Fe-B烧结磁体来说通常很难实现;由于Nd-Fe-B粘结磁体中主相Nd2Fe14B呈微晶状态,因此它还具有比烧结磁体耐蚀性好等优点。

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

磁性材料的基本特性及分类参数

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁

性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。 到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类:

人教版物理高二选修2-1 2.1磁场 磁性材料同步练习

人教版物理高二选修2-1 2.1磁场磁性材料同步练习 姓名:________ 班级:________ 成绩:________ 一、选择题 (共15题;共30分) 1. (2分) (2017高一下·河北期末) 通电螺线管内有一在磁场力作用下处于静止的小磁针,磁针指向如图所示,则() A . 螺线管的 P 端为 N 极,a 接电源的正极 B . 螺线管的 P 端为 N 极,a 接电源的负极 C . 螺线管的 P 端为 S 极,a 接电源的正极 D . 螺线管的 P 端为 S 极,a 接电源的负极 2. (2分) (2017高二下·九江期末) 以下说法符合物理学史的是() A . 爱因斯坦引入能量子的概念,得出黑体辐射的强度按波长分布的公式,与实验符合得非常好,并由此开创了物理学的新纪元 B . 康普顿效应表明光子只具有能量 C . 德布罗意把光的波粒二象性推广到实物粒子,认为实物粒子也具有波动性 D . 为了解释黑体辐射规律,波尔提出电磁辐射的能量是量子化的 3. (2分) (2017高二上·汕头期中) 小磁针放置在匀强磁场中,小磁针静止时的指向正确的是() A .

B . C . D . 4. (2分)将一小段通电直导线垂直于磁场方向放入某磁场中,导线会受到一定大小的安培力作用;若保持直导线长度和其中的电流不变,将它垂直于磁场方向放入另一较强的磁场中,发现导线所受的安培力会变大。下列说法中正确的是() A . 磁场的磁感应强度由导线所受的安培力决定 B . 磁场的磁感应强度随导线所受的安培力的增大而增大 C . 磁场的磁感应强度由磁场本身决定 D . 在任何情况下,通电导线所受安培力的大小都能反映磁场的强弱 5. (2分)下列说法中正确的是() A . 通电导线在磁场中某处不受安培力作用,则该处磁感应强度一定为零 B . 带电粒子只受洛仑兹力作用运动时,速度和动能均不变 C . 磁感线可以形象地描述磁场的强弱和方向,磁感线上每一点的切线方向就表示该点的磁场方向 D . 穿过线圈的磁通量变化越大,线圈产生的感应电动势越大 6. (2分)如图所示,小磁针的正上方平行放置一根直导线,当导线中通过图示方向的电流时,小磁针将()

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数 https://www.360docs.net/doc/321687220.html,/来源:日期:2006年04月25日 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类

磁学名词解释及各种磁性材料讲结

关于钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs)1T=100Gs 剩磁将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。 磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m)1A/m=79.6Oe 磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是100Oe以上。 内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m) 使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 磁能积((BH)max )单位为兆高·奥(MGOe)或焦/米3(J/m3) 退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。 各向同性磁体: 任何方向磁性能都相同的磁体。各向同性磁体可以任意方向多极充磁。 粘结钕铁硼是各向同性磁体。 各向异性磁体:

不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。 烧结钕铁硼永磁体是各向异性磁体。烧结钕铁硼只能平面轴向多极充磁,粘结钕铁硼可以任意方向多极充磁。 在回转体物体中存在两种方向;轴向和径向。轴向移动就是沿着回转体长度方向的运动(轴向位移、轴向串动)。径向位移是指物体向半径方向的位移。 取向方向: 各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作"取向轴","易磁化轴"。·磁滞回线: 铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,退磁曲线(即B-H曲线): 磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。也即我们所说的B-H的曲线。如图所示: ·退磁曲线的膝点: 磁体退磁曲线上发生突变、明显发生弯曲的点。室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。 负载线: 连接工作点和退磁曲线坐标原点的一条直线(见上图)。·磁化强度: 指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。 磁感应强度: 磁感应强度B的定义是:

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展 【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。 【关键词】铁氧体磁性材料;研究进展;制备 铁氧体是一种非金属磁性材料,又称磁性瓷。人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系,应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。因此,有必要对铁氧体磁性瓷材料的研究动态进行总结以及对其发展进行展望。 1.铁氧体磁性材料的研究进展 近年来,国外学者在研究和改进磁性材料的同时,进行了卓有成效的新探索,其重点的研究和应用主要集中在以下几个方面。 1.1 铁氧体吸波材料 由于科学技术的迅猛发展,在武器的隐身技术和电子计算机防信息泄露技术中,以及在生物学中的热效应方面,铁氧体作为吸波材料方面的应用尤为重要。铁氧体吸波材料通常分为尖晶石型铁氧体与六角晶系铁氧体两种类型,其中尖晶石型铁氧体应用历史最长,但尖晶石型铁氧体的电磁参数(介电常数和磁导率)都比较小,而且难以满足相对介单一铁氧体难以满足吸收频带宽、厚度薄和面密度小的要求,所以近年来研究者主要集中研究复合铁氧体材料以及纳米尺寸的铁氧体来控制其电磁参数[1]。铁氧体纳米磁性材料作为微波的吸收体,纳米级的微粒材料的比表面积比常规粗粉大3~4个数量级,吸收率高,一方面,它能吸收空气中的游离的分子或介质中其他分子通过成键方式连接在一起,造成各向异性的改变。另一方面,在微波场中,活性原子及电子运动加剧,促使磁化,最终将电磁能转化为热能,从而增加吸收体的吸波能力。在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁

相关文档
最新文档