卷膜的卷径与卷长的定量关系推导及应用

卷膜的卷径与卷长的定量关系推导及应用
卷膜的卷径与卷长的定量关系推导及应用

卷膜外径与卷长的定量关系推导及应用

周正中

我们在生产包装用卷膜时经常想知道:卷膜长度和厚度都已知时,卷膜外径大约是多少;或卷膜厚度和外径都知道了,长度大约是多少?现本人根据生产实践经验总结出一个简便的求解方法,陈述如下,以期与大家共同探讨。

一、公式简单推导

现利用一个简单模型来推导出卷外径与卷长的定量关系。

1、膜的模拟图:一卷膜展开后形成长度很长而宽度(膜厚度)很小的矩形

θ

L

L=长度,单位:m(米);θ=厚度,单位:μm(微米)

2、卷膜端面模拟图:一个圆环

D0 D

D=卷膜外径,单位:mm;D0=纸管外径,单位:mm

3、圆环面积=π [(D/2)2- (D0/2)2],单位:mm2

4、长方形面积=L*θ,单位:mm2

5、圆环可以看成是卷膜紧密绕成,因此圆环面积应该与长方形面积相等,即π [(D/2)2- (D0/2)2]= L*θ,整理一下,可以推导出D与L的关系式

204/D L D θπ=+ 注:π =3.14,D 单位:mm

有上面公式就可以在知道卷长度和厚度时定量计算卷外径了,也可以由外径和厚度推算出卷长度了。

二、应用举例

1、已知膜长1000m ,膜厚度65μm ,纸管内径76mm ,纸管壁厚度8mm ,求卷外径D

解:L=1000,θ=65,D 0 =76+2*8=92,代入上述公式可以计算出

24*65*1000/3.1492302D mm =+=

2、已知卷外径D=400mm ,膜厚度θ=140μm ,D 0=177mm (6英寸纸管,内径153,壁厚12),求膜长L

解:由上述公式可导出L= π(D 2- D 02)/4θ=3.14*(400*400-177*177)/(4*140)=721m 。

正渗透膜分离技术

正渗透膜分离技术 研究背景 随着世界人口数量的迅速增长和矿物燃料的急剧消耗,水资源和能源已成为地球上两种至关重要的资源。水资源匮乏和能源危机困扰着全球许多不同的团体。据报导,世界上至少十二亿的人缺乏洁净安全的饮用水,有二十六亿的人缺少足够多的环境卫生设备。 膜技术是近几十年迅速发展起来的高效分离技术,因其节能、高效、经济、简单方便、无二次污染等一系列优点,在水处理中已被广泛地用于苦咸水淡化、海水淡化、工业给水处理、纯水及超纯水制备、废水处理、污水回用等。作为一种低能耗、低污染的绿色技术,新型的膜分离技术,正渗透(Forward osmosis,FO),在供水和产能方面拥有着巨大的潜能,甚至在食品加工行业、医药行业也有很好的应用前景,正逐渐成为人们关注和研究的热点。 膜分离技术 作为一种广泛应用的分离技术,膜处理的分离原理主要是在常温下使溶质和溶剂通过半渗透膜,达到分离、浓缩和纯化的目的,在这个过程中,驱动力一般为压力驱动或电位驱动。该技术的特点有以下几个方面: (1)膜分离过程在常温下进行分离。 (2)膜分离过程无相变化。 (3)膜分离技术的适用范围较广。 (4)膜分离效率高,分离效果好。 (5)膜分离技术采用装置简单,操作方便。 通常来说,膜分离技术,能够对不同的微粒、分子、离子进行有效的分离,膜材料亦丰富为醋酸纤维素(CA)、聚丙烯腈(PAN)、聚酰胺(PA)、聚砜(PS)、聚丙烯(PP)、聚偏氟乙烯(PVDF)、陶瓷膜等。 常见水处理膜分离技术主要有以下几类: (1)微滤(MF):由0.01~0.2 MPa的外加压力作为驱动力。膜的微孔直径处于微米范围,可截留粒径为0.1~10μm的悬浮物颗粒、纤维等。 (2)超滤(UF):超滤以0.1~1.0 MPa左右的压力差为推动力。分离膜的孔径在 0.0015~0.02μm之间。 (3)反渗透(RO):以1~70MPa左右的压力差为推动力。 (4)纳滤(NF):由0.5~1.5MPa的外加压力作为驱动力。 正渗透 在正渗透中,用于分离的驱动力主要为FO膜两侧的汲取液和原料液之间的渗透压差,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)。不同于传统的靠压力驱动的膜分离技术,比如微滤、超滤、纳滤与反渗透等,正渗透由于运行的原理不同,因此有着独有的优势,例如施加较低或不施加压力,导致更低的能耗,降低运行成本;正渗透的分离能力强,对污染物有着较高的截留率;正渗透污染几乎为可逆污染,因而清洗效率高;正渗透的膜装置组成简单,操作容易等。在众多领域内,正渗透近几十年来均有着广泛的应用,特别的,在一些重要领域如海

正渗透膜制备的研究进展

龙源期刊网 https://www.360docs.net/doc/392609487.html, 正渗透膜制备的研究进展 作者:张小月 来源:《中国科技博览》2017年第12期 [摘要]自二十世纪,正渗透便由于其节约能源的优势逐渐走进人们的视野,越来越多的人对正渗透技术进行研究,期望更完善正渗透技术,将其应用于水处理。正渗透处理技术具有节能高效、经济简单[1]、耐污染[2]、高回收率[3]等特点,然而汲取液的选择[4]、浓差极化现象[5]等都会对正渗透膜性能产生影响。基于此,本文综合了国内外的相关文献,总结了近年来 正渗透技术在膜制备方面的研究现状及发展,发现目前研究者们主要是通过改进制膜材料、共混改性、界面聚合、改善膜结构的方法对正渗透膜改性,且每种方法都各有优劣,希望通过本文能够给正渗透膜的发展提供理论依据。 [关键词]正渗透共混改性界面聚合 中图分类号:TM73 文献标识码:A 文章编号:1009-914X(2017)12-0249-02 1、引言 随着社会经济的不断发展,水资源问题也逐渐进入人们的视野;同时,为了实现能源与水资源的合理协调,正渗透技术凭借其节约能源的优势受到了学者的广泛关注。正渗透技术具有能耗低、水回收率高、膜污染小的特点,被广泛应用于海水脱盐[6]、废水再生[7]、纯水及超纯水制备、食品加工及医药行业等。同时,正渗透技术也可用于处理油砂尾矿水[8]、脱除水 中的重金属离子例如钴离子[9]等。在某些水资源短缺、水污染严重的地区,正渗透技术凭借 其低成本、低能耗、低化学药剂使用等特点被广泛使用。但是,正渗透膜本身也有很多限制因素:膜污染、内浓差极化、膜的孔隙率[10]以及机械强度等都会影响正渗透技术的性能。基于此,研究者们不断对正渗透技术改进,对正渗透膜进行改性或改变正渗透技术的使用时用到的汲取液,希望大幅度提高正渗透技术的可应用性。 本文综述了近些年正渗透技术发展过程中所应用到的正渗透膜改性方法,展望了正渗透膜的研究方向和前景,希望能够为以后的正渗透膜改性提供理论依据。 2、正渗透膜改性 正渗透技术比超滤、纳滤、反渗透等过滤方式有很多独有的特点,但是在正渗透膜的商业化应用中,正渗透技术仍然存在许多问题,在其不断发展的过程中,研究者们不断对正渗透技术进行改进。目前,主要的正渗透膜改性技术包括选择不同的铸膜材料、共混改性、界面聚合以及对基膜增加筛网或无纺布。 2.1、不同的铸膜材料

生物膜法在污水处理方面的研究进展

生物膜法在污水处理方面的研究进展 摘要:本文先简单的介绍了生物膜法概念及历史,然后简述了解了生物膜技术 和各自的应用,最后从生物膜法在具体事例中的应用及其前景。 关键词:生物膜法技术应用污水处理 引言:生物膜法是令微生物附着在惰性滤料上,形成膜状的生物污泥,从而对污水起到净化效果的生物处理方法。生物膜法的特点主要有对废水水质、水量变化适应性强,操作稳定性好不会发生污泥膨胀,运转管理较方便生物膜中的物相丰富,且沿水流方向膜中生物种群具有一定分布剩余污泥量较少采用自然通风供氧.在运行方面灵活性较差,设备容积负荷有限,空间效率较低。其作用机制是利用生物膜的强吸附性和吸水性,通过将微生物细胞固定于反应器内的载体上,实现了微生物停留时间和水力停留时间的分离,从而达到目的的一种手段。一般所用到的技术有:生物接触氧化法、生物流床技术、移动床生物膜反应器等。污水,通常指受一定污染的、来自生活和生产的排出水,污水的主要污染物有病原体污染物,耗氧污染物,植物营养物,有毒污染物等。生物膜法处理污水就是通过惰性材料的粘着性使微生物附着其上,以达到污水处理的目的。 20世纪50年代以前,生物膜法一直未被重视,其主要原因是它以碎石为原料,微生物附着困难,并且操作不方便,而50年代,塑料工业的发展及其向生物膜处理技术的引用克服了滤料堵塞等困难。生物膜技术的核心就是滤料【1】。滤料可以是天然的,也可以是经过加工的石英砂、无烟煤、大理石、白云石、磁铁矿石、石榴石、锰砂等颗粒物质,还可以是人造聚苯乙烯发泡塑料球、高效纤维束和陶瓷滤料。它的选择特点有:机械强度高,化学稳定性好,密度适宜,形状规则,易成膜,但无毒无味,无异物脱落,不会产生二次污染;取材方便,价格便宜。再生性强.Allant等【2】人研究结果表明:上浮式滤料比沉没式滤料对SS(悬浮颗粒物)、有机物的去除率高,更耐有机负荷和水力负荷冲击。由此可见,滤料的好坏关系着生物膜的脱落和附着情况,进而影响了曝气生物滤池运行的稳定和处理效果。下面,我们具体的了解生物膜法的应用。 1生物膜在污水处理中的具体应用 1.1生物膜法除无机元素 1.1.1生物膜法除磷 磷是生物生长必需的元素之一,但水体中磷含量过高可造成藻类的过度繁殖,引起严重的水质富营养化问题【3】。国内外对控制水体中的磷含量均十分重视,经济、高效地降低排放废水的磷含量已成为防治水体富营养化的重要途径之一。污水中磷的去除有化学和生物两种途径【4】:化学途径是指投加Ca2+、Al3+和Fe3+形成金属磷酸盐沉淀;生物途径是指微生物对磷的吸收,磷最终通过沉淀池排放剩余污泥得以去除。微生物对磷的吸收又分为两种【5】:①微生物生长的生理需要,对磷的正常吸收,普通活性污泥微生物细胞干重含磷2%~3%;②生物强

生物膜法的基本原理

第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力;主要的生物膜法有:① 生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等;② 生物转盘;③ 生物接触氧化法;④ 好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:① 起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;② 供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③ 作为接种的微生物。 (1) 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2) 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20°C) 2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图 (1) 生物膜的性质:

① 高度亲水,存在着附着水层; ② 微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。 (2) 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1) 厌氧膜的出现: ① 生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;② 成熟的生物膜一般都由厌氧膜和好氧膜组成;③ 好氧膜是有机物降解的主要场所,一般厚度为2mm。 (2) 厌氧膜的加厚: ① 厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;② 气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③ 成为老化生物膜,其净化功能较差,且易于脱落。 (3) 生物膜的更新: ① 老化膜脱落,新生生物膜又会生长起来;② 新生生物膜的净化功能较强。 (4) 生物膜法的运行原则: ① 减缓生物膜的老化进程;② 控制厌氧膜的厚度;③ 加快好氧膜的更新; ④ 尽量控制使生物膜不集中脱落。 二、生物膜处理工艺的特点 1、微生物方面的特征 (1) 微生物种类多样化: ① 相对安静稳定环境;② SRT相对较长;③ 丝状菌也可以大量生长,无污泥膨胀之虞;④ 线虫类、轮虫类等微型动物出现的频率较高;⑤ 藻类、甚至昆虫类也会出现;⑥ 生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 表1 生物膜和活性污泥中出现的微生物在类型、种属和数量的比较 微生物种类活性污泥生物膜法微生物种类活性污泥法生物膜法 细菌 ++++ ++++ 轮虫 + +++ 真菌 ++ +++ 线虫 + ++ 藻类 - ++ 寡毛虫 - ++ 鞭毛虫 ++ +++ 其它后生动物 - + 肉足虫 ++ +++ 昆虫类 - ++ 纤毛虫 ++++ ++++ (2) 生物膜上微生物的食物链较长: ① 动物性营养者所占比例较大,微型动物的存活率较高;② 食物链长;③

正渗透技术处理水和废水

正渗透技术处理水和废水 1 引言 膜分离技术由于出水水质高、设备简单易操作、能耗相对较低、适应性强等特点,在水处理领域获得越来越多的关注.目前应用于水处理领域的几种膜分离技术.其中微滤(microfiltration,MF)、超滤(ultrafiltration,UF)、纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)由机械压力驱动传质过程,是水和废水处理的常规技术.其他膜技术,如温度差驱动的膜蒸馏技术(membrane distillation,MD),电场驱动的电渗析技术(electro-dialysis,ED),一些由化学反应驱动的膜吸收技术(membrane absorption,MA)等也成为水处理领域的新型技术.正渗透(forward osmosis,FO)是一种由渗透压(浓度差)驱动的新型膜技术.可用于海水脱盐、废水处理等方面. FO膜是一种渗透膜.名义孔径在1 nm以下,用于截留溶解性离子和盐类等物质,与RO 相当.但与RO相比,FO无需外加机械压力,具有低压操作、低膜污染、高截留的优点,近年来在水处理领域受到较多关注. 2 FO原理(Basic principle of FO) FO膜是一种选择性渗透膜,膜的一侧是低渗透压的待处理水,另一侧是高渗透压的汲取液,水分子透过FO膜从低渗透压侧扩散到高渗透压侧,从而实现水与杂质的分离(图 1).该过程的驱动力是膜两侧溶液的渗透压差,不需外界提供压力. 图 1 FO工艺的原理示意图 2.1 FO应用与运行效果 2.1.1 海水(浓盐水)脱盐 FO已被用于含盐废水、含盐地下水、盐湖水和海水的脱盐.大多数为实验室规模的小试研究,汲取液采用难挥发性(NaCl,Na2SO4,MgSO4等)或挥发性(NH3/CO2和NH4HCO3)盐溶液.其中Zhao等进行的盐湖水脱盐,回收率达到70%.McGinnis等采用中试规模的FO处理高盐水(TDS>70,000 ppm),回收率达到60%,与蒸发浓缩技术相当,出水水质达标(美国宾州

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

生物膜法的主要形式

一.曝气生物滤池 曝气生物滤池,简称BAF,就是80年代末在欧美发展起来的一种新型生物膜法污水处理工艺,于90年代初得到较大发展,最大规模达几十万吨每天,并发展为可以脱氮除磷。 该工艺具有去除SS、COD、BOD、硝化、脱氮、除磷、去除AOX(有害物质)的作用。曝气生物滤池就是集生物氧化与截留悬浮固体一体的新工艺。 曝气生物滤池 工艺特点 ①一次性投资比传统方法低1/4;②占用面积为常规工艺的1/10~1/5,运行费低1/5;③进水要求悬浮物50~60mg/L,最好与一级强化处理相结合,如采用水解酸化池;④填料多为页岩陶粒,直径5mm,层高1、5~2m;⑤水往下、气往上的逆向流可不设二沉池。 曝气生物滤池与普通活性污泥法相比,具有有机负荷高、占地面

积小(就是普通活性污泥法的1/3)、投资少(节约30%)、不会产生污泥膨胀、氧传输效率高、出水水质好等优点,但它对进水SS要求较严(一般要求SS≤100mg/L,最好SS≤60mg/L),因此对进水需要进行预处理。同时,它的反冲洗水量、水头损失都较大。 曝气生物滤池作为集生物氧化与截留悬浮固体于一体,节省了后续沉淀池(二沉池),具有容积负荷、水力负荷大,水力停留时间短,所需基建投资少,出水水质好:运行能耗低,运行费用少的特点。 应用范围 曝气生物滤池的应用范围较为广泛,其在水深度处理、微污染源水处理、难降解有机物处理、低温污水的硝化、低温微污染水处理中都有很好的、甚至不可替代的功能。 运行要求 预处理 为了使曝气生物滤池能有较长的运行周期,减少反冲次数降低能耗,运用BAF 的工艺都需对进水进行预处理,否则原水中的大量杂质与SS 将进入曝气滤池,将会堵塞曝气、布水系统,给系统的运行带来严重的后果。尤其就是滤池用于二级处理时,往往需投加药剂才能达到这一要求,药剂的使用不仅增加了运行费用,部分药剂还将降低碱度,进而影响硝化,这就是运用BAF 工艺时需要考虑的问题。

正渗透技术

正渗透技术:海水淡化的新发展 日期:2010-11-2 联合国日前一份报告预测,到2025年,全球三分之二的人口都将面临饮水危机。人口增长以及降雨模式的变化将使许多国家把海洋作为饮用水的潜在来源。但由于海水淡化过程中能源需求庞大,目前的技术尚无法解决人们迫在眉睫的问题。而据《新科学家》报道,相对于传统的反渗透技术,研究人员找到了 能效相对较高的替代性选择——正渗透技术。 现代反渗透海水淡化工厂的能耗效虽然比几十年前有所提高,但一座年生产1.5亿立方米淡水的海水淡化厂也会消耗90兆瓦电力,相当于20台海上风力涡轮机的峰值输出。反渗透是一个内在的能源密集型过程,自然过程中水流由淡变咸,而反渗透过程正好相反。如果在海水中注入高浓度的“汲取液”,淡水就可以轻而易举地被提取出来,这就是一些已经开始出现的试验性“正渗透”工厂背后的原理。 美国水化技术创新公司(Hydration Technology Innovations)2004年就推出了一种基于正渗透原理的便携式水过滤器。正渗透膜被封入小型密封塑料包,包中还含有糖和香料充当汲取液来源。但是该过滤器生产清洁饮用水的成本较高,只能用于紧急情况,因此无法应对世界性水源危机。 同样是2004年,美国耶鲁大学由梅纳赫姆·伊利米勒(Menachem Elimelech)、杰弗里·麦卡琴(Jeffrey McCutcheon)、罗伯特·麦金尼斯(Robert McGinnis)组成的研究小组将正渗透理念进一步推进。该小组使用了一种基于碳酸氢铵的汲取液,铵离子和碳酸氢盐离子可以吸引水分子通过薄膜,然后加热溶液至40摄氏度,氨气和二氧化碳便会排出,留下纯净的淡水,而排出的气体可捕获后重新使用。研究小组称,如果能利用发电厂的余热蒸发气体,该方法的能耗仅是目前海水淡化工厂的20%,但这种技术对工 厂的选址要求较高。 正渗透技术面临的另一个挑战是找到合适的薄膜,只让水分通过,排除盐分在外。《海水淡化报导》的编辑汤姆·潘克拉茨(Tom Pankratz)表示:“这是正渗透产业面临的主要障碍。”正渗透膜不仅需要厚度尽量薄,以便让海水接近吸引溶液,保持高渗透压;同时也需要足够强韧,可抵抗渗透产生的水流。 水化技术创新公司开发了一种纤维素薄膜,但该膜却无法抵抗碳酸氢铵溶液的碱性。为了抵挡反渗透过程的高压,反渗透膜需要“支撑层”来强化其韧性,但如果用于正渗透,这层膜就显得过厚了。 耶鲁大学研究小组认识到,如果将支撑层出去,就可以获得合适的正渗透膜。通过试验不同的聚合物溶液,该小组找到了一种利用替代支撑层制造薄膜的方法。新薄膜除了又薄又韧外,渗透性也很好。试验中,新正渗透膜的膜通量是传统反渗透膜的9倍,能够过滤97%的盐分。伊利米勒表示,试验采用的是“手工实验室版”新薄膜,如果新膜能以工业规模生产,其性能会更好。 南洋理工大学的新加坡膜技术中心副主任王蓉(Wang Rong)最近研发出一种由微管状纤维构成的薄膜,可以使用碳酸氢铵作为汲取液。王蓉表示,这种薄膜有望使海水淡化工厂的能耗降低至少30%。中心主任托尼·费恩(Tony Fane)说,该膜的生产过程非常简单,大型海水淡化设施可按需进行组装。 英国现代之水公司(Modern Water)称已经解决了正渗透膜问题,并成功部署了正渗透装置来淡化海水,工厂能耗比传统海水淡化低30%。公司没有使用碳酸氢铵,而是利用了一种专用盐类。该公司称,新技术已经用于一座示范工厂和另一座完整规模的工厂。 尽管正渗透技术潜力巨大,但它仍存在许多障碍需要克服。美国科罗拉多矿业大学水净化专家泰西·卡斯(Tzahi Cath)认为,耶鲁大学研究小组的想法很完善,但他不认为蒸发碳酸氢铵气体的废热能够便宜到让该过程具有经济性。伊利诺斯大学海水淡化材料专家马克·香农(Mark Shannon)表示, 正渗透膜的成本过高,需求量也很大。 而两位专家都认为,正渗透技术在回收废水方面潜力巨大。香农说,由于咸度比海水低,渗透压较高,废水的膜通量更高。正渗透技术同理还可用于处理深层地下水、河口水等苦咸水。深层地下水的储量非常丰富。香农表示,几乎每个大陆下面都存在大量的苦咸水,正渗透技术有望取得了不起的成就。正渗透技术面临的另一个挑战是找到合适的薄膜,只让水分通过,排除盐分在外。《海水淡化报导》的编辑汤姆·潘克拉茨(TomPankratz)表示:“这是正渗透产业面临的主要障碍。”正渗透膜不仅需要厚

正渗透的应用和技术优势---窦蒙蒙.

正渗透的应用和技术优势 姓名:班级:学号: 16121229 指导教师:于海琴 正渗透的应用和技术优势 摘要:作为一种新型膜处理技术,正渗透技术自20世纪50年代建立以来,在环保、能源、海水淡化等领域受到越来越广泛的关注;其经历了从实验室研究,中试实验,到少量的商业化应用,技术日臻完善。正渗透技术是利用自然渗透压差为驱动力的一种净水技术,为水资源和环境问题提供了低能耗、高效率的解决方法。该文介绍了正渗透的技术优势,以及正渗透在海水淡化、废水处理、污水回用、能源开发以及食品加工等领域的应用。 关键词:正渗透、技术优势、海水淡化、废水处理 I 1.引言

正渗透(Forward osmosis, FO)是近年来发展起来的一种浓度驱动的新型膜分离技术,它是依靠选择性渗透膜两侧的渗透压差为驱动力自发实现水传递的膜分离过程,是目前世界膜分离领域研究的热点之一。 1.1正渗透技术的原理和技术特点 1.1.1正渗透技术的原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高的水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)一侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(feed solution,FS),另一种为具有较高渗透压的汲取液(draw solution,DS)。正渗透正是依靠正渗透膜两侧的汲取液(draw solution,DS)和原料液(feed solution,FS)间的自然渗透压差,使水分子自发地从低渗透压侧(FS侧)传输到高渗透压侧(DS侧)而污染物被截留的膜分离过程,具体如图1所示。 图1.正渗透过程示意图 不同于传统膜分离过程,正渗透利用低水化学势的DS从高水化学势的FS吸取纯水,无需投入额外的驱动压力,因而其能耗低[1]。 1.1.2正渗透技术的技术特点 正渗透不同于压力驱动膜分离过程,它不需要额外的水力压力作为驱动力,而依靠汲取液与原料液的渗透压差自发实现膜分离。这一过程的实现需要几个必要条件:(1)可允许水通过而截留其他溶质分子或离子的选择性渗透膜及膜组件;(2)提供驱动力的汲取液;(3)对稀释后的汲取液再浓缩途径[2]。 早期关于正渗透过程研究均采用反渗透复合膜,发现膜通量普遍较低,主要原因是复合膜材料的多孔支撑层产生了内浓差极化现象,大大降低了渗透过程的效率。20 世纪90 年代,Osmotek 公司(Hydration Technologies Inc.(HTI)公司前身)开发了一种支撑型高强度正渗透膜,已被应用于多种领域,是目前最好的商

水处理中正渗透膜分离技术的应用

水处理中正渗透膜分离技术的应用 摘要:渗透(osmosis)是一种仅依靠渗透压驱动的分离过程,基于渗透现象发展起来的正渗透膜分离技术,目前该技术在国际都得到了广泛的应用。本文章综述了水处理中正渗透膜分离技术应用过程的基本原理、应用现状以及水处理正渗透膜分离技术的应用领域,并对未来水处理中正渗透膜分离技术的应用方向提出了展望。希望在未来其技术能得到更加广泛的应用与发展。 关键词:正渗透应用水处理膜分离技术 一、前言 20世纪60年代起,对膜分离技术从实验室研究已经进入到了工业行业的实际应用,直至现在,它已应用到水处理,食品加工,制药工程,医学以及能源等不同的领域。正渗透(Forward osmosis,FO)是一种不需外加压力做驱动力,而仅依靠渗透压驱动的膜分离过程。正渗透膜分离技术与外加压力驱动的膜分离技术最大的区别就是正渗透膜分离技术不需要外加压力或在较低的外加压力下运行,并且膜污染情况相对较轻,在持续长时间运行后无需清洗。水处理中正渗透膜分离技术目前在国际上诸如美国、新加坡、欧洲等国家和地区已得到大量研究和应用。 二、水处理中正渗透膜分离技术的基本原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)—侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(Feed solution),另一种为具有较高渗透压的驱动液(Draw solution),正渗透正是应用了膜两侧溶液的渗透压差作为驱动力,才使得水能自发地从原料液一侧透过选择透过性膜到达驱动液—侧。当对渗透压高的一侧溶液施加一个小于渗透压差的外加压力的时候,水仍然会从原料液压一侧流向驱动液—侧,这种过程叫做压力阻尼渗透(Pressure-retarded osmosis,PRO)。压力阻尼渗透的驱动力仍然是渗透压,因此它也是一种正渗透过程。水处理中正渗透膜分离技术应用正是基于这种原理。 三、水处理正渗透膜分离技术应用现状 正渗透膜过程,具有三低优势,即低压操作,低能耗和低污染,在水处理领域已得到了一定的应用。但是国内并不多见其应用报道,所以说应用不是很多,尽管如此,这一技术仍然具有很大的应用价值和光明的应用前景。如果要大范围普及正渗透膜分离技术,仍需做很多努力。包括了我国对正渗透膜分离技术研究不多,特别是在水处理应用上缺乏经验参数,这需要进行大量的实验,从而积累经验;目前所拥有的正渗透膜性能太低,品种不全、不优;缺少既经济又高效的汲取液体系和汲取液再浓缩途径。 鉴于水处理正渗透膜分离技术仍存在比较多的问题,在今后的研究和应用方面应该从这些方面的着手突破,极大推动正渗透技术在水处理中的广泛应用,以促进新一代水处理工艺的高效发展。总之,对水处理正渗透膜分离技术的研究,都应该围绕如何提高正渗透过程的水回收率、如何提高正渗透过程中的分离效率、以及如何降低正渗透过程的运行成本等方面进行。 四、水处理中正渗透膜分离技术应用领域

生物膜法在污水处理中的研究进展

泉州师范学院 学年论文 论文题目:生物膜法在污水处理中的研究进展指导老师:黄初龙 学院:资源与环境科学学院 专业班级:09级环境工程与管理 学号:090905001 姓名:刘姣

生物膜法在污水处理中的研究进展 摘要:生物膜法在污水处理工艺中是与活性污泥法并行的一种好氧型生物污水处理方法,广泛的应用于工业废水和城市污水处理的二级处理中,也是污水处理的关键环节。与活性污泥法相比,生物膜法具有一些特有优势,比如无需污泥回流,运行管理容易,无污泥膨胀问题,易于微生物生存,运行稳定等。文中简单介绍了生物膜法对磷、氮及一些重金属去除的研究进展。 关键词:生物膜法;污水处理;活性污泥法 Abstract:Biofilm and activated sludge is a parallel-ty pe aerobic biological treatment methods,in the sewage treatment process.They widely used in the secondary treatment of industrial wastewater and urban sewage treatment,and these methods are the key link in sewage treatment.Compared with the activated sludge process,biofilm has some unique advantages.For example,no sludge return,easy operation and management,no sludge expansion,ease of microbial survival,run stable,etc.The paper describes simply biofilm research on the removal of phosphorus,nitrogen and some heavy metals. Key words:B iofilm treatment;sewage treatment;activated sludge 引言 近年来,伴随着经济的快速发展,我国在追求GDP增长的同时也带来一系列的环境问题,其中淡水资源紧缺迫使城镇生活污水处理技术显得尤其重要。然而随着人们生活水平的提高,城镇生活污水中的氮、磷含量增加,有机成分复杂,传统的生物污水处理技术已无法紧随步伐,处理效果不佳,为此,在新型填料的不断开发和完善基础上,生物膜法处理工艺借其处理效率高、剩余污泥产泥量少、运行管理方便等特点得到快速发,在污水处理中有广阔的应用前景。生物膜可认为是由一种或是多种微生物群体组成的,并附着在一种载体表面上进行生长发育[1—2]。 1 生物膜法概述 1.1生物膜法的净水机理 生物膜法和活性污泥法一样都是利用微生物来去除废水中各种有机物的处

生物膜法处理污水

生物膜法处理工业废水 摘要:目前化工产业的发展十分迅速,但随之而来的化工污染状况也十分严重,化工废水成分复杂、水质水量变化大,随着国家对其处理达标要求越来越严格,其处理技术也在不断发展。生物膜法是与活性污泥法平行发展的一种污水处理技术方法,实质是使细菌类微生物和原生动物、后生动物类的微型动物附着在滤料或某些载体上,并在其上形成膜状生物污泥,即生物膜。生物膜法是土壤自净过程的人工强化,主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力。生物膜法在处理工业废水中有着广泛应用。 关键词:生物膜,废水,净化 生物膜法是属于好养生物处理的方法,它是将废水通过好氧微生物和原生动物,后生动物等在载体填料上生长繁殖形成的生物膜,吸附和降解有机物,使废水得到净化的方法。根据装置的不同,生物膜法可分为生物滤池、生物转盘、接触氧化法和生物流化床等四类。在石油和化学工业的废水处理中,其中应用最多的是接触氧化法。 一、生物膜法的机理 1、生物膜法的发展 在20世纪50年代以前,生物膜法却一直未被人们重视,其原因主要是因为生产中最早采用的生物膜法构筑物是以碎石为填料的滴滤池。碎石的比表面积小,能够为微生物附着生长的表面积小,因而滴滤池的负荷不可能很大,使其占地面积较大,卫生状况也不好。 50年代,由于塑料工业的发展以及塑料填料引入生物膜处理系统,使生物膜法出现了许多具有重要意义的发展。因此,出现了许多新型的生物膜法设备。 20世纪70年代末,为强化生物膜法反应器中的传质,流化床系统被引人生物膜处理中,称为生物流化床。生物流化床兼有活性污泥法和生物膜法的待点,又称为半生物膜和半悬浮生长系统。 2、生物膜法的基本流程 下图为生物膜法处理系统的基本流程:废水经初次沉淀池后进入生物膜反应器,废水在生物膜反应器中经需氧生物氧化去除有机物后,再通过二次沉淀池出水。

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

生物膜法的介绍及应用

生物膜法的介绍及应用 生物膜法60年代末期开始出现,在工业废水处理方面曾研究了高负荷生物滤池、塔式生物滤池等,后来则主要研究了接触氧化法,并在纺织、印染、化纤等行业废水中广泛应用。接触氧化工艺由于缺乏经久耐用和价格低廉的填料、大型池的均匀布水布气尚有困难等原因,在市政污水处理上特别是在大中型污水处理厂中没有得到应用。80年代中期在研究A/O、AA/O、AB法、SBR工艺、新型氧化沟等悬浮生长工艺技术的同时,也开展了高负荷生物滤池/固体接触(TF/SC)和生物曝气滤池(BAF)等附着生长技术方面的试验研究。研究结果表明生物膜法在市政污水处理方面前景良好。 1高负荷生物滤池/固体接触(TF/SC)工艺 高负荷生物滤池/固体接触(TF/SC)是美国在80年代初根据其城市污水处理厂70%为高负荷生物滤池,其出水达不到提高后的出水水质标准而开发出来的新工艺。我国于1990年由中国市政工程西北设计研究院和兰州铁道学院合作进行试验室、中间试验和工程生产试验,获得了完整的设计参数。国内设计公司据此成果进行了两座污水量为10×104m3/d规模处理厂设计建设。TF/SC的典型工艺流程如图1。

图1:F/SC的典型工艺流程 生物滤池可以是卵石填料高负荷生物滤池,也可以是塑料填料的深式或塔式滤池。TF/SC工艺中生物滤池系按不完全处理设计,采用了较一般高负荷生物滤池还要高的负荷,美国采用的负荷为0.4~1.4kgBOD5/(m3·d)(填料体积),最终出水BOD5可达10mg/L以下。我国的研究结果是卵石填料的负荷在3.5kgBOD5/(m3·d)时最终出水BOD5可在30mg/L以下。生物滤池设计的BOD5去除率以50%左右较为经济,其主要功能是去除溶解性BOD5和将大分子等难降解的物质降解为易降解物质。在我国采用卵石填料比较经济,因塑料填料的价格要高20倍以上。 固体接触池是TF/SC工艺高效的关键之一,它是将回流污泥与生物滤池出水混合曝气,进行生物絮凝和生物吸附,将废水中细小颗粒和凝聚性差的生物膜絮凝成易于沉淀的絮体,同时吸附和降解污水中的有机污染物,因而污水在固体接触池中的停留时间一般都较短(美国典型TF/SC处理厂最短的仅2.0min,一般为30min左右),我国设计的停留时间较长,多在45min左右,因滤池负荷较美国高。固体接触池的污泥负荷比一般活性污泥法高1倍,若出水BOD5要求低于30mg/L,污泥负荷为0.4~0.8kgBOD5/(kgMLSS·d)。 絮凝沉淀池与一般二沉池最大的不同之处是设有进水絮凝区,借助于外力进行再絮凝。它是根据生物可以再絮凝原理设计的,从而较大幅度提高了表面负荷并使细小不易絮凝沉淀的生物膜得以去除,出水悬浮物可达10mg/L。 从以上TF/SC工艺的单元特性讨论中说明了TF/SC工艺具有以下优点:①出水水质好。美国的数处工程实例和我国示范工程都说明出水悬浮物和BOD 5均可达到10mg/L以下。一般活性污泥法出水悬浮物和BOD5达到20mg/L已是高水准,尤其是悬浮物达到20mg/L以下是很困难的。所以,有人称之为“二级处理工艺,三级出水标准”。 ②TF/SC的工艺单元--生物滤池、固体接触池和絮凝沉淀池均是高效设施,负荷高、停留时间短,因而工程造价低,运行能耗少。研究结果说明TF/SC工艺污水处理厂工程总投资和运行费用均较传统活性污泥法低约20%(未包括污泥处 欢迎访问,水/业/导/航/www//h2o123//com

正渗透水处理技术概要

正渗透水处理关键技术研究进展 [摘要]正渗透是一种新型的膜分离技术,其分离的驱动力来源于原料液和汲取液之间自然存在的渗透压差,近年来正渗透技术已在国际上得到广泛关注。简述了基于此技术的正渗透水处理过程的基本原理,指出了这种新型水处理过程的关键技术——正渗透膜和汲取液,根据各自的技术特点对其进行分类概述,并从实验室基础研究和技术的商业化进程两方面介绍了这两项关键技术取得的最新研究进展。从水通量角度对不同体系进行了简单比较,分析了各材料和方法的优缺点,并对它们的应用前景进行了展望。 [关键词]正渗透;水处理;汲取液;海水淡化 [中图分类号] TQ028.8 [文献标识码] A [文章编号] 1005-829X(2012)05-0005-05 Advance in the key techniques of forward osmosis water treatment Zhang Qian1,Shi Qiang2,Ruan Guoling1,Chu Xizhang1 Abstract: Forward osmosis(FO) is a kind of new membrane separation technique. Its driving force comes from the naturally existing osmotic pressure difference between feed solution and draw solution. Forward osmosis (FO) technology has become increasingly attractive internationally,in recent years. The basic principles of the FO water treatment are introduced and the key techniques of the new type of water treatment process-FO membrane and draw solution -are pointed out. According to their own technical characteristics,the key techniques are classified and summarized. The newest research progress in the key techniques is introduced from the aspects of fundamental research in labs and the schedule of technique commercialization. Different systems are compared simply from the angle of water flux. The advantages

膜分离技术及其应用领域分析

膜分离技术及其应用领域分析 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。 一、膜分离技术原理及特点 膜分离技术以选择性透过膜为分离介质,如图1所示,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。膜分离技术以其低能耗、高效率被认为是理想的分离技术之一。 图1膜分离技术原理 利用膜分离技术进行分离所具有的特点包括:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。 基于膜分离技术所具有上述特点,是现代生物化工分离技术中一种效率较高的分离手段,完全可以取代传统的过滤、吸附、蒸发、冷凝等分离技术,所以膜分离技术在生物化工分离工程中起着很大的作用。 二、膜分离技术种类分析 按照膜孔径和成膜材料分类,常用的膜分离技术主要有微滤、超滤、纳滤、反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。按分离原理和按被分离物质的大小区分的分离膜种类,从下表可以看出,几乎所有的分离膜技术均可应用于任何分离、提纯和浓缩领域。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。

相关文档
最新文档