I-DEAS TMG热辐射分析教程

I-DEAS TMG热辐射分析教程
I-DEAS TMG热辐射分析教程

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

热传导与热辐射大作业报告..(精编文档).doc

【最新整理,下载后即可编辑】 热传导与热辐射大作业报告

目录 一、作业题目............................................................................................ - 1 - 二、作业解答............................................................................................ - 2 - 个人感想 ................................................................................................... - 17 - 附件.计算中所用程序........................................................................... - 18 -

一、作业题目 一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,3 01m W g =,K 600=,K T 200=,热传导系数 K m W k ?=0.1,热扩散系数20.8m α=。请根据1中所求温度分布用MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位:m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩散系数分别为s m 24.0、s m 28.0和m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

热辐射的基本概念_黑体、白体、镜体、透明体

热辐射的基本概念·黑体、白体、镜体、透明体 凤谷工业炉 吸收率α=1 的物体叫做绝对黑体,简称黑体 ; 反射率ρ=1 的漫反射的物体叫做绝对白体,简称白体;反射率ρ=1 的镜面反射的物体叫做镜体; 透过率τ-1 的物体叫做绝对透明体,简称透明体。这些都是假想的物体。对于红外辐射,绝 大多数固体和液体实际上都是不透明体,但玻璃和石英等对可见光则是透明体。 注意,所谓黑体或白体,是指物体表面能全部吸收或全部反射所投射的辐射能而言,所以黑体并不一定是黑色,白体并不一定是白色。看起来是白色的表面,也可能具有黑体的性质,这是因为 : 大部分热辐射的波长在 0.1~100μ m之间,而可见光辐射能的波长约有 0.38~0.76 μm之间。 这样,如果一个表面除可见光辐射范围外对其余所有的热辐射具有很高的吸收率,则它将几乎吸收全部的投射辐射,而反射的部分只有很小的份额,从这个意 义上说,该表面近似黑体,可是,它所反射的那很小的份额都处在可见光的波长范围内,因而该表面呈现白色。例如,冰雪对人眼来说是白色的,它对可见光 是极好的反射体,但它却能几乎全部吸收红外长波辐射( α=0.96) ,接近于黑体。 对红外辐射的吸收和反射具有重要影响的,不是物体表面的颜色,而是表面的粗糙度。不管什么颜色,平整磨光面的反射率要比粗糙面高很多倍,即其吸收率要比粗糙面小得很多。 气体无反射性,ρ=0;单原子气体,对称性双原子气体等不吸收热辐射线,透过率τ=1,可称为“透明体”,或“透明介质”。空气中有蒸汽、 CO2时,就变成有吸收性的介质。 实际固体的吸收率除了与表面性质有关外,还与投人辐射的波长有关,即物体的 . 单色吸收率αλ、随投射辐射的彼长而变。

传热学试题库含参考答案

《传热学》试题库 第一章概论 一、名词解释 1.热流量:单位时间所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。7.对流传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间的传热量。 二、填空题 1.热量传递的三种基本方式为、、。 (热传导、热对流、热辐射) 2.热流量是指,单位是。热流密度是指,单位是。 (单位时间所传递的热量,W,单位传热面上的热流量,W/m2) 3.总传热过程是指,它的强烈程度用来衡量。 (热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数) 4.总传热系数是指,单位是。 (传热温差为1K时,单位传热面积在单位时间的传热量,W/(m2·K)) 5.导热系数的单位是;对流传热系数的单位是;传热系数的单位是。 (W/(m·K),W/(m2·K),W/(m2·K)) 6.复合传热是指,复合传热系数等于之和,单位是。 (对流传热与辐射传热之和,对流传热系数与辐射传热系数之和,W/(m2·K)) 7.单位面积热阻r t的单位是;总面积热阻R t的单位是。 (m2·K/W,K/W) 8.单位面积导热热阻的表达式为。 (δ/λ) 9.单位面积对流传热热阻的表达式为。 (1/h) 10.总传热系数K与单位面积传热热阻r t的关系为。 (r t=1/K) 11.总传热系数K与总面积A的传热热阻R t的关系为。 (R t=1/KA) 12.稳态传热过程是指。 (物体中各点温度不随时间而改变的热量传递过程。) 13.非稳态传热过程是指。

热辐射基本定律

热辐射的基本定律 ? ?smyt_1983 ?2位粉丝 ? 1楼 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受…太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0. 76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点

第8章 热辐射基本定律和辐射特性(杨世铭,陶文栓,传热学,第四版,答案)

第8章 热辐射基本定律和辐射特性 课堂讲解 课后作业 【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。其上有一个面积为0.022 m 的小孔,小孔面积相对于空腔内表面积可以忽略。今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响? 【解】小孔可以当做黑体来处理,4T A Φσ= 498.4496K 02 .01067.570 484 b =??==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。 【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。 【解】 ()()()()()()()() [] 12212 1 2 1 2 1 2 2 1 1 ~0b ~0b ~b b b b b b b b b b b b b b 0 b 9.09.0d 9 .0d 9.0d d d d d λλλλλλ λλλλλλ λλ λλλλλλλλ λ λλτλ λτλ λτλλτλλττF F F E E E E E E E E E E E E E E -==== = + + ==???????∞ ∞ T 1=5800K ,K m 174058003.011?=?=μλT ,K m 1450058005.212?=?=μλT ()0.032854 1~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854 .0966065.09.09.01 2 ~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011?=?=μλT ,K m 0573005.212?=?=μλT ()0.0000288 1~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.0000288 0.000249.09.01 2 ~0b ~0b =-=-=λλτF F 【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波 长的变化如附图所示。试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么? 【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰色处理。

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

关于热传导问题

本科毕业论文 论文题目:关于热传导问题 学生姓名:姜丽丽 学号:200600910058 专业:物理学 指导教师:李健 学院:物理与电子科学学院 2010年5月20日

毕业论文(设计)内容介绍 论文(设计) 题目 关于热传导问题 选题时间2010.1.10 完成时间2010.05.20 论文(设计) 字数 8000 关键词热传导,热量,温度 论文(设计)题目的来源、理论和实践意义: 题目来源:基础研究。 理论和实践意义:在了解热传导的概念基础之上,通过系统地分析热传导的过程,得出热传导的微分方程,从量上对热传导过程有了一个深刻的认识;并且将热传导微分方程应用于解决各种几何形状的固体材料,得出温度分布的情况,以及简单的应用于气体、液体。热传导是深入学习和研究各种传热现象乃至工程热物理各学科的重要基础之一。 论文(设计)的主要内容及创新点: 主要内容:本文主要通过对热传导过程的理论分析,总结出热量与温度的关系,然后分析各种热传导现象温度的变化规律。 创新点:1、总结了不同传热条件下热传导过程中热量与温度的关系; 2、分析了不同条件下热传导温度的变化规律。 附:论文(设计)本人签名:2010年5月20日

目录 摘要 (1) ABSTRACT (1) 一、引言 (2) 二、热传导理论基础 (2) (一)热传导的概念 (2) (二)温度场与温度梯度 (3) (三)热传导方程 (4) 三、固体、液体、气体热传导及热源的影响 (7) (一)无源热传导温度的变化规律 (8) (二)有源热传导温度的变化规律 (10) 四、影响热传导的因素 (11) 五、热传导的应用 (12) 六、总结 (12) 参考文献 (12)

热传导与热辐射大作业报告..

热传导与热辐射大作业报告

目录 一、作业题目.............................................................................................................................. - 1 - 二、作业解答.............................................................................................................................. - 2 - 个人感想.................................................................................................................................... - 17 - 附件.计算中所用程序.............................................................................................................. - 18 -

一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,301m W g =,6T 1=0K m W k ?=0.1,热扩散系数20.8m s α=。请根据1中所求温度分布用 MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位: m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于 31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导 率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩 散系数分别为m 24.0、s m 28.0和s m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需 将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

《热传导和热辐射》习题

《热传导和热辐射》习题 一.如右图1所示,长度为L 的杆,暴露在温度为T ∞的环境中,杆内安装有电热元件,使沿杆长方向产生均匀的内热源速率q ? 。试用长度为dx 的微元体的概念推导控制方程(注:所用到的量自己设定)。 二.边界条件和初始条件如下图2所示,求(),,T x y τ的表达式。 三. 如上图3所示,一矩形板,初始条件:0τ=时,(),T f x y =。 边界条件:0x = 处,0T =;x a =处, 10T H T x ?+=?;y=0处,20T H T y ?-+=?;y b =处,30T H T y ?+=?。求0τ>时,矩形板的温度分布(),,T x y τ。 四. 某一半无限大角区,初始条件和边界条 件如右图4所示。求该区域的(),,T x y τ的表达式。 五. 一块平板0x L ≤≤,初始温度是零度,当时间0τ>时,平板内以恒定的速

率20g w m ????产生热量,而0x =处的边界面保持绝热,x L =处的边界保持温 度为零度。试求:时间0τ>时平板内温度分布(),T x τ的表达式。 六.某实心无限长圆柱,0r b ≤≤,初始温度分布为()F r ,时间0τ>时,r b =处的边界以对流方式向温度为零的环境散热。试求该圆柱的温度分布(),T r τ。 七. 半径r b =的无限长圆柱,初始温度分布为()F r ,突然圆柱体置于温度为T ∞ 环境中,在r b =处的边界以对流形式向温度为T ∞的环境散热。试求0τ>时圆柱内的温度分布(),T r τ。 八.某实心半球,01μ≤≤,0r b ≤≤,初始温度为(),0T r μ=,时间 0τ>时,r b =处的球表面保持温 度为零,0μ=处的底面绝热,如右图5所示。试求该半球的温度分布(),,T f r μτ=。 九.一半无限大物体,0x ≤≤∞,初始温度为i T ,当时间0τ>时,0x =处的边界 条件为00 x q T k x A =?-=?;x →∞时,(),i T T τ∞=。试用Laplace 变换法求解时间0τ>时该区域的温度分布。 十.已知某个函数的Laplace 变换为()22 1 F s s β = +,其中β是正实数。试求函数()F t 。 十一.处于熔解温度m T 的液体占据 0x >的半空间,见右图6,在时间0τ=时,0x =的边界温度降低到温度为0T (0m T T <),并在时间0τ>时,始终维持这个温度。试用精确法或近似法求解固相中的温度分布以及固—液界面的位置随时间的变化。

第7章-热辐射的基本定律

第七章热辐射的基本定律 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点 1、发射辐射能是各类物质的固有特性。当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。 2、特点 热辐射的本质决定了热辐射过程有如下三个特点:

2.1.2 热辐射的基本定律

2.1.2 热辐射的基本定律 第七章 光的量子性 本章主要介绍历史上在研究黑体辐射,光电效应和康普顿效应时,怎样打破经典理论成见,逐渐认识到光的波粒二象性,并阐述波粒二象性的含义。 §7—1 热辐射、基尔霍夫定律 一、几种不同形式的辐射 物体向外辐射将消耗本射的能量。要长期维持这种辐射,就必须不断从外面补偿能量,否则辐射就会引起物质内部的变化。在辐射过程中物质内部发生化学变化的,叫做化学发光。用外来的光或任何其它辐射不断地或预先地照射物质而使之发光的过程叫做光致发光。由场的作用引起的辐射叫场致发光。另一种辐射叫做热辐射,这种辐射在量值方面和按波长分布方面都取决全辐射体的温度。 任何温度的物体都发出一定的热辐射。 一物体 500℃左右,暗红色。随温度不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越多。1500℃变成明亮的白炽光。同一物体在一定温度下所辐射的能量,在不同光谱区域的分布是不均匀的,而且温度越高,光谱中与能量最大的辐射相对应的频率也越高。在一定温度下,不同物体所辐射的光谱成份有显著的不同。 二、辐射出射度和吸收比 从上面知道:在单位时间内从物体单位面积向各个方向所发射的,频率在νννd +→范围内的辐射能量Φd 与ν和T 有关,而且νd 足够小时,可认为与νd 成正比 ν ννd E d T T =Φ, T E ,ν是ν和T 的函数,叫做该物体在温度T 时发射频率为ν的单色辐射出射度(单色 辐出度)。它的物理意义是从物体表面单位面积发出的,频率在ν附近的单位频率间隔内的辐射功率。它反映了在不同温度下,辐射能量按频率分布的情况。单位为 s m J m W ?=22// 从特体表面单位面积上所发出的各种频率的总辐射功率,称为物体的辐射出射度。用 )(0T Φ表示: νννd E d T T T ,0 ,0 0)(??∞ ∞ =Φ=Φ )(0T Φ只是温度的函数。T E ,ν和)(0T Φ同表面情况有关。 另一方面,当辐射照射到某一不透明物体表面时,其中一部分能量将被物体散射或反射,另一部分能量则被物体所吸收。用T d ,νΦ表示频率在ν和ννd +范围内照射到温度为 T 的物体的单位面积上的辐射能量;T d ,ν Φ'表示物体单位面积上所吸收的辐射能量,则

【Selected】热传导与热辐射大作业报告.doc

目录 一、作业题目.............................................................................................................................. - 1 - 二、作业解答.............................................................................................................................. - 2 - 个人感想.................................................................................................................................... - 17 - 附件.计算中所用程序.............................................................................................................. - 18 -

一、作业题目 一矩形平板,,内有均匀恒定热源,在及处绝热,在 及处保持温度,初始时刻温度为,如右图1所示: 1、求时,矩形区域内的温度分布的解析表达 式; 2、若,,,,,热传导系数 ,热扩散系数。请根据1中所求温度分布用 MATLAB软件绘出下列结果,加以详细物理比较 和分析: (a)300s内,在同一图中画出点、、、、 (单位:m)温度随时间的变化; (b)200s内,画出点、、、、(单位:m)处,分别沿x、y方向热流密 度值随时间的变化; (c)画出时刻区域内的等温线; (d)300s内,在同一图中画出点(单位:m)在分别等于,,情况下 的温度变化; (e)300s内,比较点(9,6) (单位:m)在其它参数不变情况下热导 率分别为、和的温度、热流密度变化; (f)300s内,比较点(9,6) (单位:m)在其它参数不变情况下热扩 散系数分别为、和的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。 二、作业解答 1、求时,矩形区域内的温度分布的解析表达式; 解答:我们令,则可以得到一个方程和边界条件: (1-1) 将上式分解为一个的稳态问题: (1-2) 和一个的其次问题: (1-3)

热传导、空气对流和辐射热的原理与区别

热传导、空气对流和辐射热的原理与区别 传导性 当较快运动的分子将其一些能量传递给较慢运动的相邻分子(即在较低温度下)时,就会发生热传导,这可能发生在固体内部或固体与相邻的流体(例如空气)之间。在任何采暖的建筑物或围墙结构中,热量都是从温暖的内部空气传导或传递到内表面,然后通过墙或屋顶传导到较冷的外部表面,再传导到外部空气。 对流 热的对流传递即将热的和冷的流体混合,混合可能是由于自然对流的温度差异引起的密度差异的结果,或通过机械方式进行混合,则可能是强制对流。在采暖的建筑物中,对流损失发生在外部冷空气进入建筑物,与较热的内部空气混合,然后通过门或窗,裂缝等排出时。 辐射 通过辐射进行的热传递与通过传导或对流进行的热传递的不同之处在于,完成传递不需要任何物质。 远红外线热能只是辐射的几种形式之一,红外线以直线速度以每秒3亿米的光速传输,对空气的损失最小。可以通过具有高反射性的表面来瞄准,反射或聚焦它。当红外线撞击吸收性物体(例如混凝土,木材,水,油漆,皮肤或衣服)时,它会在表面转化为热量,然后通过传导和对流加热周围的空

气。这种热传递的最好例子是从太阳到地球,而没有热损失到外层空间。绝对零(-460°F)以上的所有物质都会发出辐射或红外线能量。热量的净传递是从一个物体到一个较冷的物体。温暖的物体,包括具有采暖的建筑物内的人,会向墙壁的较冷内壁散发或辐射热量,将热量传导到外表面,然后通过辐射,传导和对流将存储热量均匀地释放到房间中,可促进产生无尘和无菌的空气,从防止对流加热产生令人不适应的空气流动,完全保持静音,温度均匀垂直分布在整个房间。因此,豪赫蒂夫远红外采暖系统房间的墙壁和地板等总是温暖干燥,而不影响空气质量。

热辐射的基本定理

第八章热辐射的基本定理 本章从分析热辐射的本质和特点开始,结合表面的辐射性质引出有关热辐射的一系列术语和概念,然后针对辐射规律提出了热辐射的基本定律。学习的基本要求是:理解热辐射本质和特点。有关黑体、灰体、漫射体,发射率(黑率)、吸收率的概念。理解和熟悉热辐射的基本定律,重点是斯蒂芬—玻尔兹曼定律和基尔霍夫定律。了解影响实际物体表面辐射特性的因素。主要内容有: 一、作为表面的热辐射性质,主要有:对外来投射辐射所表现的吸收率、反射率、透射率和自由温度所表现出的发射率。对实际表面,这些性质既有方向性又具有光谱性,即它们既和辐射的方向有关,又和辐射的波长有关。所以实际表面的辐射性质是十分复杂的。工程上为简化计算而提出了“漫”“灰”模型:前者指各向同性的表面,即辐射与反辐射性质与方向无关;后者指表面的辐射光谱与同温度黑体的辐射光谱相似,或表面的单色吸收率不随波长而变化是一个常数。如某表面的辐射特性,除了与方向无关外,还与波长无关,则称为“漫—灰”表面,本教材主要针对这类表面作分析计算。 二、有关黑体的概念。黑体既是一个理想的吸收体又是理想的发射体,在热辐射中可把它作为标准物体以衡量实际物体的吸收率和发射率。基于黑体是理想吸收体,如把他置于温度为T的黑空腔中,利用热平衡的原理可推论出黑体尚具有如下特性: 1、在同温度条件下,黑体具有最大的辐射力Eb,既(T)> (T)。 2、黑体的辐射力是温度的单调递增函数。 3、黑体辐射各向同性,即黑体具有漫射性质,辐射强度与方向无关,≠。 三、发射率 发射率 单色发射率 与的关系 对灰表面≠,可有= 。 四、辐射力E和辐射强度I均表示物体表面辐射本领。只要表面温度T>0 K,就会有辐射能量。前者是每单位表面积朝半球方向(0 K环境)在单位时间内所发射全波长的能量,而后者是某方向上每单位投影面积在单位时间、单位立体角内所发射的全波长能量。它们之间的关系是,对黑体。 如果是单色辐射能量,相对有单色辐射力和单色辐射强度,并有,对黑体。 五、热辐射的基本定律有: 1、普朗克定律: 2、斯蒂芬—玻尔兹曼定律: W/(m2·K4) 对灰表面 3、兰贝特定律: 或 对漫表面才有此关系。 4、基尔霍夫定律: 在热平衡条件下得出 温度不平衡条件下几种不同层次: (1)、无条件成立; (2)、漫表面成立;

热辐射的基本概念·辐射、热辐射和辐射波谱

辐射、热辐射和辐射波谱 无锡凤谷工业炉 (1)辐射、热辐射和辐射波谙 辐射是物质固有的属性。热辐射则是许多辐射现象中的一种。 辐射具有横波(电磁波)和粒子(光子)的二象性。物体的原子内部电子的振动或激发,会产生交替变化的电磁场,实现电磁波的发射和传播,或者说,会释放光子,光子以射线方式传播,直到被所遇到的其他原子吸收为止。 辐射的过程就是物体的内能转变为辐射能,以发射电磁波、或者说,以发射光子的形式对外放射,当辐射能落在另一些物体上而被吸收时,可以转化为该物体的内能增量而产生热效应、化学效应、或光电效应等。各种不同效应的产生取决于投射的电磁波的波长和受投射物体的性质。 2)热辐射及其波长 任何温度大于绝对零度的物体.都会将它的热能不断地转换为辐射能向外发射,这种由于温度的原因而发生的电磁波(光子)辐射称为热辐射。从理论上说,物体热辐射的电磁波波长可以包括电磁波的整个波谱范围,即波长从零到无穷大。然而在工业上所遇到的温度范围

内(T≤1400K),有实际意义的热辐射波长位于波谱的0.38~1000μm之间,即在可见光与红外线范围,见表3-1。而且,热辐射的大部分能量位于0.76~20μm范围内,故红外线有时俗称热射线当热辐射线投射到受射物体而被其吸收时,就产生了加热效应。显然,当热辐射的波长大于0.76脚时,人们的眼睛将看不见它们。 3)辐射波的速率和光子的能量 各种电磁辐射波,包括热辐射线都以光速在空间进行传播。电磁波的速率等于辐射波长同其频率的乘积。 由此可见,不同的电磁波可由波长或频率来确定其性质。当辐射线从一种介质进人另一种介质而出现折射的情况下,其频率不变,而速率及波长将发生变化。 电磁波或者光子所携带的能量,即辐射能。1900年普朗克(planck)把辐射的关于波和粒子的二象性联系了起来,创立了量子学说,把光子看作一种具有能量和质量的粒子,提出了一个光子的能量为: 由此可见,光子的能量随其频率而不同。

传热习题与答案

一选择(单选或多选) 1.[ ] 在传热的三种基本形式中,不需要介质即在真空中可以发生传热的形式为。A、热辐射 B、热对流 C、热传导 D、冷却啊 2.[ ] 根据热流量方程,下列哪种办法不能提高冷、热流体之间的热流量。 A、定期清除管内垢层 B、用翅片管代替光滑管 C、采用逆流操作代替并流操作 D、降低冷流体流速 3.[ ] 管壳式换热器内采用多管程的主要目的是。 A、减少换热面积 B、增加管子数目 C、强化传热 D、降低换热介质流量4.[ ] 翅片管换热器的翅片应安装在。 A、对流换热系数α小的一侧 B、对流换热系数α大的一侧 C、管内 D、管外 5.[ ] 蒸发操作中的单位蒸汽消耗量(D/W)通常。 A、<1 B、≥ C、=1 D、=2 6.[ ] 非金属液体中,导热系数最大的是。 A、甘油 B、水 C、乙酸 D、苯 7.[ ] 纯粹的热传导只可能发生在中。 A、液体 B、固体 C、气体 D、流体 8.[ ] 传热单元数大,说明传热推动力,传热过程较。 A、小,难 B、大,难 C、小,易 D、大,易 9.[ ] 引起蒸发操作中温差损失的因素不包括。 A、溶液沸点升高 B、液柱静压头 C、蒸汽密度 D、二次蒸汽的流动阻力10.[ ]纯金属的导热系数随温度升高而。 A、增大 B、减小 C、不变 D、不确定 11.[ ] 水平管外相变传热,滴状冷凝的传热效果膜状冷凝时。 A、小于 B、等于 C、大于 D、不确定 12.[ ] 根据描述对流传热的特征数关联式,流体流动的雷诺数越大,对流传热系数。 A、越大 B、越小 C、无关 D、不确定 13.[ ] 化工生产中应用最广的一类换热器为换热器。 A、蛇管式 B、套管式 C、板式 D、管壳式 14.[ ]蒸发操作中的单位蒸汽消耗量(D/W)通常。 A、<1 B、=1 C、≥ D、=2

热传导和辐射

热传递有三种方式:传导、对流和辐射。 传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。 对流靠液体或气体的流动来传热的方式叫做对流。 对流是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。 利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。 辐射热由物体沿直线向外射出,叫做辐射。 用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。 地球上得到太阳的热,就是太阳通过辐射的方式传来的。 一般情况下,热传递的三种方式往往是同时进行的。 补充内容: 一、热传递与动量传递、质量传递并列为三种传递过程。 二、热传递与热传导的关系 有许多人在学习物理、解答物理习题时,常把热传递与热传导混为一谈,认为热传递与热传导描述的是同一物理过程,殊不知它们是两个不同的概念。 由内能与热能一节以及热、热运动与热现象的阐述可知,物体的内能就是组成物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的能量交换来达成(或者是两者兼有)。前者能量交换的方式就是作宏观机械功的方式,后者能量交换的方式就是所谓的热传递。更确切地讲,所谓热传递就是没有作宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。实际热传递过程中,这三种方式常常是相伴进行的,重要的是看哪一种方式占主要地位。在热力学中,把除了热传递以外的其他一切能量转移方式都归于作功。所以,热传递和作功是能量转移的两种方式,除此之外没有其他方式。 由以上论述可知,热传递是能量传递的一种方式,它具体又包括热传导、对流和热辐射三种

相关文档
最新文档