一种改进的块截断和小波图像压缩解压缩技术(IJIGSP-V9-N8-3)

一种改进的块截断和小波图像压缩解压缩技术(IJIGSP-V9-N8-3)
一种改进的块截断和小波图像压缩解压缩技术(IJIGSP-V9-N8-3)

I.J. Image, Graphics and Signal Processing, 2017, 8, 17-29

Published Online August 2017 in MECS (https://www.360docs.net/doc/345048591.html,/)

DOI: 10.5815/ijigsp.2017.08.03

An Improved Image Compression-

Decompression Technique Using Block

Truncation and Wavelets

Kuldeep Mander

Computer Science and Engineering Department, Bahra Group of Institutes, Patiala, Punjab, India – 147001

Email: kuldeepmander12dec@https://www.360docs.net/doc/345048591.html,

Himanshu. Jindal

Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India – 147004

Email: himanshu.jindal@https://www.360docs.net/doc/345048591.html,

Received: 20 March 2017; Accepted: 08 May 2017; Published: 08 August 2017

Abstract—In the modern world, digital images play a vital role in a number of applications such as medical field, aerospace and satellite imaging, underwater imaging, etc. These applications use and produce a large number of digital images. Also, these images need to be stored and transmitted for various purposes. Thus, to overcome this problem of storage while transmitting these images, a process is used, namely, compression. The paper focuses on a compression technique known as Block Truncation Coding (BTC)as it helps in reducing the size of the image so that it takes less space in memory and easy to transmit. Thus, BTC is used to compress grayscale images. After compression, Discrete Wavelet Transform (DWT)with spline interpolation is applied to reconstruct the images. The process is suggested in order to view the changed pixels of images after compression of two images. The wavelets and interpolations provide enhanced compressed images that follow the steps for its encoding and decoding processes. The performance of the proposed method is measured by calculating the PSNR values and on comparing the proposed technique with the existing ones, it has been discovered that the proposed method outperforms the most common existing techniques and provides 49% better results in comparison with existing techniques.

Index Terms—Compression; BTC (Block Truncation Coding); DWT (Discrete Wavelet Transform); Interpolation; Spline; Contrast.

I.I NTRODUCTION

A digital image is a collection of pixels that has particular location and value. These images can be represented in mathematical form. These are also known as bitmap images or raster images. The demand of digital imaging is growing rapidly due to its applications in a large number of fields. But, digital images have their limitations that they take more space in memory and therefore take more time to transfer from one device to another. In such cases, the size of the image is of utter importance, so that better results can be produced. In this context, various compression techniques are present that include:

Lossy Compression: It is a compression technique in which there is some data loss on the receiver side which may not be noticed by the user. Various lossy compression techniques are–

i.Transform Coding: This technique works by

considering the image pixels, then Discrete Cosine

Transformation (DCT) is applied upon them. The

bits are allocated to encode them and after

transmission the bits are decoded. The inverse of

DCT is applied to attain the output image.

ii.Fractal Compression: This technique divides the image into segments and uses the Quad tree coding

followed by quantization.

iii.Vector Compression: It uses a code book on both sides to encode and decode the image.

iv.Block Truncation Coding: In this method, the image is divided into blocks and each block is

reconstructed, quantized and finally reverse is

carried out to get a good quality image.

v.Chroma Sub-Sampling: This method represents red, green or blue are represented to an intensity,

initially and then reverse of this process is used to

get an image.

Lossless Compression: The compression techniques under this category do not suffer from any data loss problems in an image. Some lossless compression techniques are –

i.Run Length Encoding (RLE): In this

compression technique, there is a sequence of

repeating data in the file. This sequence or run is

replaced by a single data and a count value. In

RLE larger values are replaced by smaller values.

ii.Entropy Encoding (EE): In this type of compression technique, each incoming symbol is

replaced by a fixed length code word. These code

words are short in length and assign to symbols

based on the probability of the symbol. This

technique is a logarithmic technique.

iii.Huffman Coding: This technique is mostly used for text, images, videos and conferences. This

technique selects symbols from the source image

and calculate probability for each symbol. The

calculation is based on the probabilities of image

and a binary tree is generated. To construct binary

tree, zeroes are assigned to left nodes and ones to

the right node. At the end, all zeroes and ones are

collected to generate code.

iv.Arithmetic Encoding: This technique is used to calculate the probability of the symbols like other

techniques. The arithmetic encoding assign codes

to each symbol based on the occurrence of that

particular symbol.

v.LZW encoding: This technique assigns codes to symbols based on their occurrence following the

ASCII table. In LZW, a dictionary is generated for

encoding and decoding, on both sides of the

transmission module.

Out of these compression techniques, the paper focuses on Block Truncation Coding (BTC)as it provides the quantized reconstructed image in a very short time. It has the advantages of processing enhanced images when combined with Discrete Wavelet Transform (DWT)and interpolation. The proposed methodology of BTC with DWT and interpolation is explained by considering the existing studies of few researchers.

The organization of the paper is as follows. Section II discusses the literature survey carried out by researchers. Section III describes the preliminary studies of BTC, DWT. The proposed algorithm and results are discussed in Section IV. The proposed technique’s comparison is shown in Section V. Finally, Section VI draws the main conclusion.

II.R ELATED W ORKS

The existing researches in image compression are discussed as under.

A. K. Katharotiya et al. [1] has explained techniques of compression like DCT and DWT. The author also explains these techniques by using various parameters such as compression ratio, the MSE value of the original image and compressed image by using DCT and DWT techniques.

A. Kaur and J. Kaur [2] has proposed image compression techniques DCT and DWT,including the comparison of these techniques by using various parameters like compression ratio, PSNR, MSE, SER and time, etc. According to their comparison DWT is better as compare to DCT technique.

A. Kaushik and M. Gupta [3] has proposed image compression, which is of lossy and lossless and also explained the process of compression and decompression. This technique includes very low frequencies do high frequency can be easily discarded without any loss of quality.

A. Sinha et al. [4] has presented an interpolation method which is good as compared to existing algorithms of interpolation. Bi-cubic interpolation is suitable for 3-D images and medical use, but for general application bilinear interpolation is used.

B. S. Kumar et al. [5] have proposed Image Enhancement approach on the basis of interpolation, DWT and SWT. The application of the proposed strategy on some renowned images and the PSNR results prove this technique to be dominant over other conventional methodologies.

C. Sun et al. [6]has described a method to improve the contrast of an image. This method is dynamic contrast enhancement histogram equalization. It keeps same shape features and enhances contrast dynamically without losing the characteristics of original histogram. Dynamic histogram specification algorithm is used for this purpose. Due to its simplicity, it is used in real time systems. Noise effects are reduced using this method. On the other hand, HE and BPBHE are also used for contrast improvement, but it highlights the noise effects. Due to this limitation, humans do not accept these methods for contrast enhancement. To improve these limitations, a dynamic histogram specification algorithm is proposed. In many electric devices such as digital camera, mobile phone and LCD panel, DHE is also helpful to enhance contrast of the picture.

G. M. Padmaja and C. H.. R. Lakshmi [7],has represented the compression procedure. The DWT method is explained. In this paper where low pass and high pass filter are used to differentiate frequencies of two different types of frequencies, and in next step column wise filtering is done. For pyramid decompression; LL bands are having the highest priority and is most useful instead of this technique, various other techniques are available like vector quantization, Entropy coding and arithmetic coding, SPIHT etc.

G. Rampani [8],has discussed an interpolation technique which changes the traditional operations of the existing techniques like bilinear, bi-cubic, and cubic spline into space variant techniques. This technique takes less computational time as compare to other techniques.

H. Hauang et al. [9] has designed a new grid interpolation algorithm. The existing methods of grid interpolation have the drawbacks of long back searching. The author has presented faster searching capacity algorithm J-nearest neighbor searching strategy is based on “priority queue” and “neighbor lag” concepts.

Hitashi et al. [10] has discussed about fractal compression technique. This technique is similar forms and patterns occurring in different sizes make a structure, e.g., a floor which is made up of either wood, tiles or concrete, but having repeating patterns in its texture if we compare all parts of the floor then we find various

mathematical equations. These equations are known as fractal code. This fractal code describes the fractal properties or features of the pattern. The image can be regenerated by using these fractal equations.

M. Kaur and G. Kaur [11] has represented various lossless compression techniques like RLE, E.E, H.E and LZW are coding and various lossy compression techniques like T.C, DCT, DWT and F.C. and represent that lossy compression techniques provide more efficient compression as compare to lossless compression techniques. Lossless compression is used identical original image is required.

M. Tonge et al. [12] has studied various digital watermarking techniques. The Discrete Wavelet Transform (DWT)digital watermark algorithm based on human vision characters is proposed and implemented. The simulation result reveals that this watermarking system not only can keep the image quality, well, but also can be robust many common image processing operations of filter, etc. They had compared the results of the proposed technique with the reference method on the basis of evaluation parameters such as Normalized Cross Correlation (NC) and Peak Signal-to-Noise Ratio (PSNR). Md. F. Hossain and M. R. Alsharif [13]has proposed a new method, which is based upon the logarithmic transform coefficient adaptive histogram equalization, for image enhancement. On the basis of properties of logarithmic transform domain histogram and constraint limited adaptive histogram equalization, this method is performed. In addition, it is used EME as a measure of performance. This algorithm is compared to a classical histogram equalization enhancement technique on the basis of performance. The powerful method is LTAHE for enhancing images. The advantage of this method is that it is simply based on transform adaptive histogram. The results of this technique are outperformed as compared to commonly used enhancement technique like histogram equalization.

R. Olivier and C. Hanquing [14] has presented a new interpolation algorithm which is based on the nearest neighbor interpolation algorithm. But it uses the nearest values rather than distance to calculate the missing pixels. Z. Min et al. [15], has presented an image zooming method which is based on the boundary effects on that image. This proposed technique is a combination of both nearest neighbor interpolation and Bi-linear interpolation. The proposed method is suitable for both types of images containing words and non-words information, e.g Posters, Books, etc. AEE is good and fast method as compared to the existing methods which are compared by using two parameters MSE and PSNR values. According to the AEE method when unknown pixels are calculated by using nearest neighbor interpolation is coming under neighbor region and which is to be calculated by using bi-linear method is considered under bi-linear region.

In summary, there are approaches towards the compression of images, but existing approaches have their limitations such as (i) existing methods are not robust, (ii) methods are time consuming, (iii) provide distorted images and are noisy. Therefore, in order to remove these limitations to a certain extent, the paper focuses on proposing an enhanced compression technique in combination with Block Truncation Coding (BTC), DWT and interpolation. The proposed technique compresses using BTC. To get decompressed images the process will go wither by the inverse of a BTC or by DWT and interpolation. The inverse of BTC provides a decompressed image with distortion. Therefore, the paper suggests to use DWT with interpolation to decompress images. Moreover, it provides good quality images in order to visualize newly formed pixels. The quality of images is determined by PSNR values. The preliminary studies of the proposed method are discussed in the next section.

III.P RELIMANARIES

Before working on the proposed approach, the various existed approaches are explained by its working in the subsections. The proposed method uses Block Truncation Coding (BTC) for compressing images, Discrete Wavelet Transform (DWT)to improve the quality of images as DWT provides functionality to decompose the image into sub-bands by virtue the user can easily correct the blurriness, noise present in images. The methodology for DWT is combined with spline interpolation in order to find the newly formed pixels after correcting images (making images free from noise, blurriness). The working of DWT and spline interpolation is explained as under. A.Block Truncation Coding (BTC)

BTC algorithm uses N levels quantization process to quantize the image parts. It is a lossy compression algorithm. This is based on movement preserving quantization. The movement preserving means to retain the quality of the image and also, the storage space required that can be reduced. BTC algorithm follows three steps, i.e., (i) Performing the quantization, (ii) Coding the quantization and (iii) Bit plan reduction.

The standard mean and standard deviation are used to express the quantized data values of an image. The standard deviation represents the changes in the quantity and standard mean represents the average value of the pixels of a block. In BTC each block is encoded separately so it is beneficial to compress images having different types of blocks, e.g., text block, picture block and smooth block. In all these blocks there are various differences. The main advantages of using BTC are:

i.BTC is less complex.

ii.It is able to regenerate every edge of the original image.

iii.By using the variance of each block it can be compressed separately.

iv.It may be fixed or adaptive.

v.BTC requires little memory space.

vi.This is easy to implement.

B.Discrete Wavelet Transform (DWT)

In DWT, two types of filters are applied on the available frequency. These two types of filters are low pass filter and high pass filter. These filters divide the available frequency in exactly two halves. And process is applied onto each row, then to each column and collect their own frequencies from the available frequency.So, the filtering process results into two dimensional array of coefficients. This array consists of four bands low-low, high-low, low-high and high-high. Low-low band is further decompose into four bands to attain its second level decomposition. The low-low band is used for decomposition as it is easy to process. Moreover, the low-low filter has highest importance as compared to all other bands. The following figures show two level view DWT.

Fig.1. First level decomposition of DWT

Fig.2. Second level decomposition showing sub-bands of DWT The DWT provides better quality images to know the unknown or newly formed pixels and for decompressing images using interpolation. Following steps shows the encoding and decoding process of DWT.Image decomposition by Discrete Wavelet Transform.

Fig.3. Output pepper image of DWT

This technique includes very low frequencies do high frequency can be easily discarded without any loss of quality. There are various interpolation techniques that include spline, linear, bi-linear, cubic, bi-cubic and nearest neighbor interpolation. Out of these, spline outperforms better and is discussed in the next sub-section.

C.Spline Interpolation

The spline interpolation is used to approximate the unknown pixel data for a given image to enhance the size of the given image. The new points are determined with respect to some known points. The spline takes into consideration, a larger domain of pixels in order to produce better interpolation results. This technique is faster and provides zoomed images of better quality. IV.P ROPOSED A LGORITHM AND E XPERIMENTAL R ESULTS The image compression technique involves the application of BTC on the input images and the PSNR values are calculated. The DWT with ‘haar’ wavelet is applied on produced output by BTC to attain four sub images and are further processed by the interpolation of these sub-images to reconstruct the image and finally, inverse of DWT is applied to attain the final output image. The algorithm for the process is explained as under: Algorithm 1: Improved Block Truncation Coding Algorithm 1:start

2: A ← image

3: apply BTC (A) // block truncation code technique is applied in the input image.

4: calculate PSNR (A, X) //finding PSNR for compressed an original image.

5:Decompose ‘X’ into four sub-bands say (a1, a2, a3, a4) using DWT wit h ‘haar’ wavelet

6: for i = 1,..,3 // differentiating R, G, B colors of each of 4 sub-bands

7: b[i] ← a1(:,:,i)

8: c[i] ← a2(:,:,i)

9: d[i] ← a3(:,:,i)

10: e[i] ← a4(:,:,i)

11: end for

12: for i =1,..,3 // interpolation applied on each sub-band 13: w1[i] = interpolate(b,i) //using spline

14: w2[i] = interpolate(c,i)

15: w3[i] = interpolate(d,i)

16: w4[i] = interpolate(e,i)

17: end for

18: for i =1,..,3

19: Combine the updated sub-bands into single image using inverse DWT

20: end for

21:calculate PSNR (A, X) //finding PSNR for output and original images

22:end

The proposed methodology is tested upon several renowned benchmark images and their PSNR values have been recorded. For the purpose, six different images have been considered as input, which are as shown in Figure 4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Fig.4. Original images (a) Cameraman (b) Baboon (c) Baby (d) Ball (e) Coffee (f) Men (g) Pepper (h) Rice (i) Smartg (j) Tree (k) Girl (l) House

(m) Lena (n) Lady

The input images are processed and compressed using BTC and the PSNR values are recorded. The results are described in Table 1 which describes the calculated values of PSNR among original and output images and their storage sizes. The output images after BTC are shown in Figure 5.

Table 1. PSNR values after applying BTC on various images

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Fig.5. Compressed images (a) Cameraman (b) Baboon (c) Baby (d) Ball (e) Coffee (f) Men (g) Pepper (h) Rice (i) Smartg (j) Tree (k) Girl (l)

House (m) Lena (n) Lady

The resultant images of BTC provide the compressed images, but in grayscale. The decompression takes place using DWT and interpolation, but for a better outcome, it considers RGB images. Therefore, the resultant images are converted to RGB using gray2rgb function in order to reconstruct good quality images. The converted image has values of grayscale each of RGB bands. The storage size after conversion is shown in Table 2.

Table 2. Images after converting Grey Scale to RGB Scale

The RGB images are processed using DWT for enhancing its quality and is combined with spline interpolation to get the zoomed images. Firstly, the DWT divides the images into 4 sub-bands and then filtering is applied to each sub-band to enhance them. The spline is used within DWT to interpolate the newly formed unknown pixels. Afterwards, the inverse of DWT is applied to get decompressed quality images. The outcome of images using PSNR and its storage sizes, are shown in Table 3 and the final output images are shown in Figure 6.

Table 3. PSNR values obtained using DWT and interpolation

(a)

(b)

(c) (d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Fig.6. Reconstructed images (a) Cameraman (b) Baboon (c) Baby (d) Ball (e) Coffee (f) Men (g) Pepper (h) Rice (i) Smartg (j) Tree (k) Girl (l)

House (m) Lena (n) Lady

Here the compressed images are reconstructed using wavelets and spline interpolations to get the original image which provides the information of lost pixels during compression. The PSNR values thus obtained has a minimum value of 63.4521(dB) and the maximum value is 73.6598(dB). This procedure is done for getting the minutest details of the compressed image and the results provides astonishing outputs in reconstructing the original image.

The input and final generated resultant images are compared on the basis of its PSNR values in order to check the improvement in decompressed images after DWT and spline interpolation. The comparison is shown in Table 4.

Table 4. Image improvement using DWT and interpolation after

compression BTC

The observed percentage of improvement has a minimum value of 12 % and maximum value of 33 %. Thus, it is deduced that images can be compressed depending upon the user’s choice and with the help of DWT , its quality during decompression can be improved to a certain level. Therefore, the approach is beneficial in providing a good quality image. The proposed approach is compared with existing technique in the next section.

V. C OMPARISON WITH E XISTING T ECHNIQUES The PSNR values of proposed technique are compared

with existing techniques of image processing like Nearest Neighbor Interpolation (NNI), Bi-linear Interpolation, Bi-Cubic Interpolation, New Edge Directed Interpolation (NEDI), ICBI, Discrete Cosine Transform (DCT), Fractal Compression (FC), Vector and JPEG Compression. The comparison is shown in Table 5 and Figure 7.

It is observed from the graph that the proposed technique outperforms better with the implementation of BTC , DWT and Spline interpolation. Also, the overall presentation of images is enhanced producing better quality images than the existing techniques. In comparison with the existing methods, the difference obtained is 43% of PSNR values when calculated as an average.

Table 5. Comparison of existing Techniques with Proposed Technique

Fig.7. Comparison Graph

VI.C ONCLUSION AND F UTURE S COPE

In this paper, a novel technique is postulated for image compression, which combines the methods of BTC and DWT with spline interpolation. The observed values of PSNR are appropriate and transformations have a positive impact on the visual quality of compressed images. This compression technique deals with each and every edge of the image. The method is applied as it is less complex as compare to other and easy to implement. It is observed after applying these techniques that the results produced are almost 43% better from the techniques that are used by different users for compression. These results are calculated by comparing the results of this work with existing implementations by different authors.

The proposed method can be further used in compressing and sending images among sensors deployed to get the information/data collected via images. As the sensors are capable of retaining data but to send those image data, it should be compressed to conserve energy. After sending data to the processing center, the method is applied to get decompressed images and to find the hidden information.

R EFERENCES

[1] A. K. Katharotiya, S. Patel, and M. Goyani, “Comparative

Analysis between DCT & DWT Techniques of Image Compression”, Journal of Information Engineering and Applications, Vol. 1, No.2, 2011.

[2] A. Kaur, and J. Kaur, “Comparison of DCT and DWT of

Image Compression Techniques”, International Journal of Engineering Research and Development, vol. 1, Issue 4, pp. 49-52, 2012.

[3] A. Kaushik, and M. Gupta, “Analysis of Image

Compression Algorithms”, International Journal of Engineering Research and Application, 2012. [4] A. Sinha, M. Kumar, A. K. Jaiswal, and R. Sexena,

“Performance Analysis Of High Resolution Images Using Interpolation Techniques in Multimedia Communication System”, Signal & Image Processing: An International Journal, Vol. 5, Issue 2,2014.

[5] B. S. Kumar, and S. Nagaraj, “Discrete and Stationary

Wavelet Decomposition for Image Resolution Enhancement”, International Journal of Engineering Trends and Technology (IJETT), Vol. 4, Issue 7, 2013. [6] C. Sun, S. J. Ruan, M. C. Shie, and T. W. Pai, “Dynamic

Contrast Enhancement based on Histogram Specification”, IEEE Transactions on Consumer Electronics, Vol. 51, No.

4, pp.1300-1305, 2005.

[7]G. M. Padmaja, and C. H. R. Lakshmi, “Analysis of

Various Image Compression Techniques”, International Journal of Reviews in Computing, 2012.

[8]G. Rompani, “Warped Distance for Space Variant Linear

Image Interpolation”, IEEE T ransactions of Image Processing, Vol. 8, Issue 5,1999.

[9]H. Huang, C. Cui, L. Cheng, Q. Liu, and J. Wang, “Grid

Interpolation Algorithm Based On Nearest Neighbor Fast Search”, Springer, 2012.

[10]Hitashi, and G. Kaur, and S. Sharma, “Fractal Image

Compression–A Review”, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 2, No. 2, 2012.

[11]M. Kaur, and G. Kaur, “A Survey of Lossless and Lossy

Image Compression Technique”, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue 2, 2013.

[12]M. Tonge, P. K. Malviya, and A. Gupta, “Implementation

of Digital Watermarking Algorithm based on DWT and DCT”, International Journal of Advanced Engineering and Global Technology, Vol. 2, Issue 1, 2014.

[13]Md. F. Hossain, and M.R. Alsharif, “Image Enhancement

Based on Logarithmic Transform Coefficient and Adaptive Histogram Equalization”, IEEE International Conference on Convergence Information Technology, 2007.

[14] R. Olivier, and C. Hanqiang, “Nearest Neighbor Value

Interpolation ”, International Journal of Advanced Computer Science and Application”, Vol. 3, Issue 4, 2012. [15] Z. Min, W. Jiechao, L. Zhiwei and, L. Yonghua, “An

Adaptive Image Zooming Method with Edge Enhancement ”, 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), pp. 608-611, 2010.

Authors’ Profiles

Kuldeep Mander, is M. Tech pursuing from Rayat Bahra Group of Institutes, Patiala. She is B. Tech (2014) from Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib. Her main research area of interest is Image Compression in the field of Digital Image processing.

Himanshu Jindal, is M.Tech (CSA), 2014, Ph.D. (CSE) pursuing from Thapar University, Patiala, Punjab. He has 7 international publications in reputed journals and conferences. His area of research includes Wireless Sensor Networks, Digital Image Processing, and Acoustic Communications.

He is currently working on Underwater Acoustic Sensor Networks project funded by Thapar University, Patiala, Punjab, India.

How to cite this paper: Kuldeep Mander, Himanshu. Jindal,"An Improved Image Compression-Decompression Technique Using Block Truncation and Wavelets", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.9, No.8, pp.17-29, 2017.DOI: 10.5815/ijigsp.2017.08.03

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

数字图像压缩技术

数字图像压缩技术 二、JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成 了基于自适合DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG压缩原理及特点 JPEG算法中首先对图像实行分块处理,一般分成互不重叠的大小的块,再对每一块实行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表实行量化,量化的结果 保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后实行哈夫曼编码。JPEG的特点如下: 优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好 图像质量。 缺点:(1)因为对图像实行分块,在高压缩比时产生严重的方块效应;(2)系数实行量化,是有损压缩;(3)压缩比不高,小于502。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如 边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其 结果不是最优的3。 2.JPEG压缩的研究状况及其前景2 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年 来提出了很多改进方法,最有效的是下面的两种方法: (1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案实行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。 (2)层式DCT零树编码 此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数实行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,所以在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合实行压缩。 三、JEPG2000压缩 JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。 1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示4。 编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提升 10%~30%,而且压缩后的图像显得更加细腻平滑。对于当前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在 JPEG2000系统中,通过选择参数,能够对图像实行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波变换的图像压缩

研究基于小波变换的图像压缩 摘要 图像压缩的关键技术是图像数据转换,转换后的数据进行数据量化和数据熵编码。基于小波变换的图像压缩是一种常见的图像压缩方法,本篇论文使用小波变换、多分辨率分析及不同规模的量化和编码实现图像压缩。在相同的条件下,本文采用两种不同的方法,第一种方法保留低频和放弃高频,第二种方法是阈值方法来实现图像压缩。 关键词:关键词——小波变换;小波图像系数;量化;编码 1.引言 图像压缩是指损失一部分比特率的技术或无损还原原始图像信息。在信息理论中,它的有效性,源编码的问题,即通过移除冗余即不必要的信息来实现这一目标。压缩的图像信息有两个方法,模拟和数字,因为数字压缩方法有大幅减少比特数量的优势,绝大多数的系统使用数字压缩方法。信号分析及处理的常用方法是傅里叶变换(FT),而且最广泛的分析工具应用于图像处理,但由于傅里叶变换不能满足局部的时间域和频率域的特点,小波变换具有傅立叶变换没有的两个特征,同时小波变换系数相同的空间位置描述在不同的尺度上有相似性,使得小波变换能进行量化编码。近年来,使用基于小波变换的图像压缩已取得了很大的进步,也变换算法充分利用小波系数的特性。 2.图像压缩编码的基本原理 图像编码研究侧重于如何压缩图像数据信息,允许一定程度的失真条件下的还原图像(包括主观视觉效果),称为图像压缩编码。然后使图像信号的信号源通过系统PCM编码器由线性PCM编码,压缩编码器压缩图像数据,然后摆脱码字的冗余数据。图像压缩编码的基本原理是图1。

图1 图像压缩编码的基本框图 因此,图像编码是使用统计特性的固有效果和视觉特征,从原始图像中提取有效信息,信息压缩编码和删除一些无用的冗余信息,从而允许高效传输的数字图像或数字存储。图像恢复时,恢复图像的不完全与原始图像相同,保留有效信息的图像。 3.小波分析的基本理论 小波变换具有良好的定位时间和频域的特征,充分利用非均匀分布的分辨率,对于高频信号,使用时域的小时间窗口,进行低频信号分析,使用一个大的时间窗口。这正值一个时频分布特征,高频信号持续很长时间,不易衰减,低频信号持续很长时间,正好适合图像处理。 4. 基于小波的图像压缩变换 小波变换用于图像压缩的基本思想,小波变换用于图像压缩:首先选择小波对原始图像进行小波变换,得到了一系列小波系数,然后对这些系数量化和编码。使用某些特征相同的相邻元素之间的子频带的小波系数和量化小波系数实现图像数据压缩的目的。二维图像信号多分辨率分析和Matlab算法是关键,需要引入二维多分辨率分析和Matlab算法。二维可分离的多分辨率分析和Matlab算法可以很容易地由一维离散小波变换得到。图3 Matlab分别为二维分解图和重建算法图。 图2二维Matlab分解图

图像压缩技术介绍.

图像压缩技术介绍 由于图像和视频本身的数据量非常大,给存储和传输带来了很多不便,所以图 像压缩和视频压缩得到了非常广泛的应用。比如数码相机、USB摄像头、可视电话 、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 常用的图像的压缩方法有以下几种: 1、行程长度编码(RLE) 行程长度编码(run-length encoding)是压缩一个文件最简单的方法之一。 它的做法就是把一系列的重复值(例如图象像素的灰度值)用一个单独的值再加上 一个计数值来取代。比如有这样一个字母序列aabbbccccccccdddddd它的行程长度编码就是2a3b8c6d。这种方法实现起来很容易,而且对于具有长重复值的串的压缩编码很有效。例如对于有大面积的连续阴影或者颜色相同的图象,使用这种方法压 缩效果很好。很多位图文件格式都用行程长度编码,例如TIFF,PCX,GEM等。 2、LZW编码 这是三个发明人名字的缩写(Lempel,Ziv,Welch),其原理是将每一个字节的值都要与下一个字节的值配成一个字符对,并为每个字符对设定一个代码。当同 样的一个字符对再度出现时,就用代号代替这一字符对,然后再以这个代号与下个 字符配对。 LZW编码原理的一个重要特征是,代码不仅仅能取代一串同值的数据,也能够代替一串不同值的数据。在图像数据中若有某些不同值的数据经常重复出现,也能找到 一个代号来取代这些数据串。在此方面,LZW压缩原理是优于RLE的。 3、霍夫曼编码 霍夫曼编码(Huffman encoding)是通过用不固定长度的编码代替原始数据来实现的。霍夫曼编码最初是为了对文本文件进行压缩而建立的,迄今已经有很多变体。它的基本思路是出现频率越高的值,其对应的编码长度越短,反之出现频率越 低的值,其对应的编码长度越长。 霍夫曼编码很少能达到8∶1的压缩比,此外它还有以下两个不足:①它必须精确地统计出原始文件中每个值的出现频率,如果没有这个精确统计,压缩的效果就 会大打折扣,甚至根本达不到压缩的效果。霍夫曼编码通常要经过两遍操作,第一 遍进行统计,第二遍产生编码,所以编码的过程是比较慢的。另外由于各种长度的 编码的译码过程也是比较复杂的,因此解压缩的过程也比较慢。②它对于位的增 删比较敏感。由于霍夫曼编码的所有位都是合在一起的而不考虑字节分位,因此增 加一位或者减少一位都会使译码结果面目全非。 4、预测及内插编码

图像压缩编码

小波变换在图像压缩中的应用 学院精密仪器与光电子工程学院 专业光学工程 年级2014级 学号1014202009 姓名孙学斌

一、图像压缩编码 数字图像 图像是自然界景物的客观反映。自然界的图像无论在亮度、色彩,还是空间分布上都是以模拟函数的形式出现的,无法采用数字计算机进行处理、传输和存储。 在数字图像领域,将图像看成是由许多大小相同、形状一致的像素(Picture Element简称Pixel组成)用二维矩阵表示。图像的数字化包括取样和量化两个主要步骤。在空间将连续坐标离散化的过程为取样,而进一步将图像的幅度值整数化的过程称为量化。 图像编码技术 数据压缩就是以较少的数据量表示信源以原始形式所代表的信息,其目的在于节省存储空间、传输时间、信号频带或发送能量等。其组成系统如图所示。 过程应尽量保证去除冗余量而不会减少或较少减少信息量,即压缩后的数据要能够完全或在一定的容差内近似恢复。完全恢复被压缩信源信息的方法称为无损压缩或无失真压缩,近似恢复的方法称为有损压缩或有失真压缩。 图像压缩编码的必要性与可行性 1.图像压缩编码的必要性 采用数字技术会使信号处理技术性能大为提高,但其数据量的增加也是十分惊人的。图像数据更是多媒体、网络通信等技术重点研究的压缩对象。不加压缩的图像数据是计算机的处理速度、通信信道的容量等所无法承受的。 如果将上述的图像信号压缩几倍、十几倍、甚至上百倍,将十分有利于图像的存储和传输。可见,在现有硬件设施条件下,对图像信号本身进行压缩是解决上述矛盾的主要出路。 2.图像压缩编码的可能性 图像数据量大,同时冗余数据也是客观存在的。在有些图像中可压缩的可能性很大。一般图像中存在着以下数据冗余因素。 (1)编码冗余 编码冗余也称信息熵冗余。去除信源编码中的冗余量可以在对信息无损的前提下减少代表信息的数据量。对图像进行编码时,要建立表达图像信息的一系列符号码本。如果码本不能使每个像素所需的平均比特数最小,则说明存在编码冗余,就存在压缩的可能性。 (2)空间冗余

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

基于小波变换的图像压缩算法研究.

基于小波变换的图像压缩算法研究 袁林张国峰戴树岭 (北京航空航天大学先进仿真技术实验室北京 100083 摘要小波变换是一种对信号的时间 -尺度 (时间 -频率进行分析的方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力。本文对基于小波变换的图像数据压缩编码方法进行研究, 首先利用小波变换对图像进行多分辨率分解, 然后对分解后的图像数据进行小波零数编码和自适应算术编码,从而实现图像压缩的目的。 关键词虚拟现实小波变换图像压缩零数编码算术编码 1 引言 在分布式虚拟环境中,随着应用的日益广泛和系统结构的日渐复杂,将有大量的图像、语音等多媒体的数据需要在网络上传输。在带宽资源有限的情况下传输这些多媒体数据时,需要对这些数据进行有效的压缩和解压,以达到快速传输的效果。因此,在虚拟现实系统中进行有关多媒体数据压缩的研究是非常有应用价值的。 近几年,小波变换作为一种新兴的信息处理方法,已经受到广泛重视。具有“数学显微镜”之称的小波变换同时在时域和频域具有分辨率。对高频分量用逐渐精细的时域或空域步长,可以聚焦到分析对象的任意细节,对于剧烈变换的边缘,比常规的傅立叶变换具有更好的适应性。由于小波变换的优良特性与 Mallat 算法的简便易行,使得小波变换图像编码压缩成为图像压缩领域的一个主要研究方向。 2小波变换 [1] 与多分辨率分析 小波变换就是将信号在一个函数族上作分解,该函数族是由一个独立的函数 (小波母函数(t Ψ 经过平移和伸缩而得到的,如式 2-1所: (|| (2/1a

b t a t ?Ψ=Ψ? 0, , ≠∈a R b a (2-1 其中,分别为伸缩和平移尺度, (t Ψ的傅立叶变换必须满足容许性条件 : ∞<Ψ=∫ ΨωωωC R 2| (| (2-2 此式隐含了0 (=Ψ∫dt t R ,表明小波具有正负交替的波动性。 图像的多分辨率分析 (MultiResolution analysis采用不同分辨率下处理图像中不同信息的方法, 将图像在各种分辨率下的细节提取出来, 得到一个拥有不同分辨率的图像细节序列再进行分析处理。与 DCT 变换不适合于带宽较宽 (拥有较多边缘轮廓信息的图像信号不同,小波变换是一种不受带宽约束的图像处理方法,即小波变换多分辨率的变换特性提供了利用人眼视觉特性的良好机制,从而使小波变换后图像数据能够保持原图像在各种分辨率下的精细结构。 2.1快速小波变换算法 (Mallat算法 [2] Mallat 首先将多分辨率分析用于图像数据的压缩,他给出了信号分解与合成的快速算法,该算法在小波分析中的地位相当于 FFT 算法在傅立叶分析中的地位。Mallat 算法将数学领域的小波方法、计算机视觉中的多分辨率方法和信号处理中的子带滤波方法完美的统一起来,它的出现使小波分析方法在信号处理领域真正得以实用化。根据多分辨率分析理论,可得出快速分解算法表达式: ((∑∑???=?=m m j k j m m j k j c k m g d c k m h c , 1, , 1, 22 (2-3 其快速重构算法的表达式为 : ∑∑?+?=?k

图像压缩技术文档

J P E G 标准是由国际标准化组织ISO和国际电话电报咨询委员会CCITT为静止图像所建立的第一个国际数字图像压缩标准,它是一个适用范围很广的通用标准,既可以用于灰度图像,又可以用于彩色图像,可以支持各种应用。例如在计算机技术中,基于JPEG 有损压缩的数字水印算法,和嵌入式系统中的JPEG 分层压缩等。在JPEG 各类图像压缩算法中,基于离散余弦变换的图像压缩编码过程称为基本顺序过程,它应用于绝大多数图像压缩场合,并且它能在图像的压缩操作中获得较高的压缩比,并且重构图像与源图像的视觉效果基本相同。 基本原理 基于DCT 顺序型工作模式的JPEG 压缩算法系统的编码器与解码器的结构如图1 所示,量化编码是在进行了二元D C T 的系数量化后,且熵编码部分使用Huffman 编码方法。 图1 系统结构图 1 色彩变换与部分数据取样 色彩变换将计算机屏幕显示使用的RGB 色彩数据按照(1 )式给定的关系,转换成JPEG

中使用的YCbCr 数据,其中Y 是颜色的亮度,CbCr 是色调。 Y=0.2999R+0.5870G+0.1140B Cb = -0.1687R-0.3313G+0.5000B+128 (1) Cr = 0.5000R-0.4187G-0.0813B+128 在取样部分,考虑到人眼对图像的亮度变化敏感,而对颜色的变化迟钝。因此,对反映颜色变化的色调信息只取其部分数据进行处理。本文的JPEG 格式采用的部分取样方式为Yuv411,即每取4 个Y 数据,只取一个Cb 数据和一个Cr 数据。因此,原数据在尚未编码时,已获得50% 的压缩。 2 利用DCT 对空间频率的变换 离散余弦变换(DCT)实现将一组光强数据转换成频率数据。在压缩时,将源图像数据分成8*8 像素构成的像块的集合。经过零偏置将每一取样值从0~255 转为-128~+127,再做DCT 处理。DCT 将每个数据单元的值转换为64 个DCT 系数Svu,其中S00 称为直流系数,其余63 个系数称为交流系数。解压缩是正向变换的反过程。D C T 和IDCT 分别由公式(2)和公式(3)实现。 770 01(21)(21)(,)()()(,)cos cos 41616i j i u j v F u v C u C v f i j ππ==++????=????????∑∑ (2) 7700 1(21)(21)(,)()()(,)cos cos 422u v x u y v f i j C u C v F u v N N ππ==++????=????????∑∑ (3) 上式中(),()C u C v = (当u ,v=0时) (),()1C u C v = (其他情况) 3 量化和熵编码 直流分量和各交流分量可用不同量化间隔量化,低频分量量化得细,高频分量量化得粗。Y 、U 、V 也可用不同的量化表,Y 细量化,U 、V 粗量化。JPEG 规范中,Y 数据和Cb 、Cr 数据各有一个8 × 8 的推荐量化表,根据具体要求可以构造专用的量化表,但量化过程和逆量化过程应使用同样的量化表。量化是在图像文件品质与压缩比例之间做一选择的重要过程,而这也就是JPEG 所谓的失真压缩方式。经量化处理后的数据,应用平均压缩比最高的Huffman 码进行熵编码。 经过上述过程后可得到压缩图像。

基于小波变换的图像压缩方法[开题报告]

开题报告 通信工程 基于小波变换的图像压缩方法 一、课题研究意义及现状 随着计算机多媒体技术和通信技术的日益发展以及网络的迅速普及,图像数据信息以其直观、形象的表现效果,在信息交流中的使用越来越广泛。每天都有大量的图像信息通过数字方式进行存储、处理和传输。由于技术上对图像数据的要求,图像的分辨率、谱段的数量在不断增加,由此导致图像数据量急剧增加。这就给图像的传输和存储带来了极大的困难。因此,图像数据压缩势在必行,通过压缩手段将信息的数据量降下来,以压缩的形式存储和传输,既节约了存储空间,又提高了通信干线的传输效率。 小波变换是基于傅里叶变换理论发展起来的一种新型变换方法,其作为一门较新的数学分支,被引入图像信号处理以后,很快引起了人们的空前关注,成为迅速应用到图像处理和语音分析等众多领域的一种数学工具。 图像数据可以压缩,一方面可以利用人眼的视觉特性,在不被主观视觉察觉的容限内,通过降低表示信号的精度,以一定的客观失真换取数据压缩;另一方面是图像数据中存在大量的冗余度可供压缩.图像数据的冗余度存在于结构和统计2 个方面,结构上的冗余度表现为很强的空间和时间相关性,即图像的相邻像素之间、相邻行之间或者相邻帧之间存在着较强的相关性;统计上的冗余度来源于被编码信号概率密度分布的不均匀,若采用变字长编码技术,用较短的代码表示频繁出现的符号,用较长的代码表示不常出现的符号,就可消除符号统计上的冗余,从而实现图像数据的压缩. 由于小波变换具有明显的优点,且存在明显的相关性,有利于获得较高的编码效益.这就是小波图像压缩的近期现状,通过对小波图像压缩的研究,可以更深层次的挖掘图像压缩这方面的技术,为日新月异的科技做一份自己的贡献。 目前已经提出和正在进行研究的小波图像压缩方法择要列举如下: (1)多分辨率编码。最早提出的是金字塔编码,后来是子带编码(SubbandCoding),最近是用小波变换进行图像编码。 (2)基于表面描述的编码方法(三角形逼近法)。 (3)模型编码。它可以分为物体模型未知的物体基编码和物体模型已知的语义基编码。 (4)利用人工神经网的压缩编码。

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

小波变换及其在图像压缩中的作用

小波变换及其在图像压缩中的作用 南京信息工程大学 电子与信息工程学院 张志华 20091334030 摘 要:主要分析了基于小波变换的图像分解和图像压缩的技术,并运用Matlab 软件对图像进行分解,然后提取其中与原图像近似的低频信息,达到对图像进行压缩的目的. 分别作第一层分解和第二层分解,并比较图像压缩的效果. 关键词:小波变换;多分辨分析;图像分解;图像压缩 小波变换的理论是近年来兴起的新的数学分支,素有“数学显微镜”的美称. 它是继1822 年傅立叶提出傅立叶变换之后又一里程碑式的领域,解决了很多傅立叶变换不能解决的困难问题. 小波变换可以使得信号的低频长时特性和高频短时特性同时得到处理,具有良好的局部化性质,能有效地克服傅氏变换在处理非平稳复杂信号时存在的局限性,具有极强的自适应性,因此在图像处理中具有极好应用价值. 本文主要分析了基于小波变换的图像分解和图像压缩技术,并运用Matlab 软件对图像进行分解,然后提取其中与原图像近似的低频信息,达到对图像进行压缩的目的. 分别作第一层分解和第二层分解,并比较图像压缩的效果. 先引入文中的有关基本理论. 1 基本理论 小波是指函数空间2()L R ) 中满足下述条件的一个函数或者信号()x ψ 3 () R x C d ψψωω = <∞? , 这里, 3R = R - { 0} 表示非零实数全体. 对于任意的函数或者信号f ( x) ,其小波变换定义为 (,)1(,)()()()f a b R R x b w a b f x x dx f x dx a a ??-?? = = ?? ?? ? ? , 因此,对任意的函数f ( x) ,它的小波变换是一个二元函数. 另所谓多分辨分析是指设{ Vj ; j ∈Z} 是2()L R 上的一列闭子空间,其中的一个函数,如果它们满足如下五个条件,即 (1) 单调性:Vj < Vj + 1 , P j ∈Z ; (2) 惟一性: {}0j j z I V ∈= ; (3) 稠密性: 2 ()j Y R V L = ;

Matlab的图像压缩技术

Matlab的图像压缩技术 一.目的要求 掌握Matlab图像图像压缩技术原理和方法。理解有损压缩和无损压缩的概念,了解几种常用的图像压缩编码方式,利用matlab进行图像压缩算法验证。二.实验内容 1、观察颜色映像矩阵的元素 >> hot(8) ans = 0.3333 0 0 0.6667 0 0 1.0000 0 0 1.0000 0.3333 0 1.0000 0.6667 0 1.0000 1.0000 0 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 数据显示第一行是1/3红色,最后一行是白色。 2、pcolor显示颜色映像 >> n=16; >> colormap(jet(n)); >> pcolor([1:n+1;1:n+1]); >> title('Using Pcolor to Display a Color )Map'); 图2 显示颜色映像

3、colorbar显示当当前坐标轴的颜色映像>> [x,y,z]=peaks; >> mesh(x,y,z); >> colormap(hsv); >> axis([-3 3 -3 3 -6 8]); >> colorbar; 图3 显示当前坐标轴的颜色映像4、图像格式转换 g=rgb2gray(I); g=rgb2gray(I); >> imshow(g),colorbar; 图4-1 原图像saturn.png

图4-2转换后的图像 5、求解图像的二唯傅里叶频谱 I=imread('cameraman.tif'); >> imshow(I) >> J=fftshift(fft2(I)); >> figure; >> imshow(log(abs(J)),[8,10]) 图5-1 原图像cameraman.png

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

实验五 基于小波变换的图像压缩

实验五小波变换在图像压缩中应用 一、实验内容 利用MATLAB小波工具箱,基于小波变换进行图像压缩处理。 二、实验目的及说明 所谓图像压缩就是去掉各种冗余,保留重要的信息。图像压缩的过程常称为编码,而图像的恢复则称为解码。图像数据之所以能够进行压缩,其数学机理有以下两点: (1)原始图像数据往往存在各种信息的冗余(如空间冗余、视觉冗余和结果冗余等),数据之间存在相关性,邻近像素的灰度(将其看成随机变量)往往是高度相关的。 (2)在多媒体应用领域中,人眼作为图像信息的接收端,其视觉对边缘的急剧变化敏感,以及人眼存在对图像的亮度信息敏感,而对颜色分辨率弱等,因此在高压缩比的情况下,解压缩后的图像信号仍有满意的主观质量。三、实验原理 小波压缩沿袭了变换编码的基本思想,即去相关性。小波变换、量化和熵编码等是构成小波编码的三个主要部分。其基本原理:将原始图像经小波变换后,转换成小波域上的小波系数,然后对小波系数进行量化编码。采用二维小波变换快速算法,小波变换就是以原始图像为基础,不断将上一级图像分为四个子带的过程。每次分解得到的四个子带图像,分别代表频率平面上不同的区域,他们分别含有上一级图像中的低频信息和垂直、水平及对角线方向的边缘信息,如下图所示: LL为低频子带,HL、LH、HH为高频子带 图像进行小波变换后,并没有实现压缩,是对图像的能量进行了重新分配。 四、核心函数介绍 Wavedec2()函数:多尺度二维小波分解

appcoef2()函数:提取二维小波分解低频系数wcodemat()函数:对矩阵进行量化编码 五、实验结果 实验结果: 表5-1 压缩图像的尺寸和字节数 压缩的图像结果显示: 原图像: 第一次压缩后的图像:

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

小波变换在图像压缩中的应用

二维小波在图像压缩中的应用研究 学院:电气与自动化工程学院 学号:1013203045 姓名:齐亚莉

二维小波在图像压缩中的应用研究 图像压缩是将原来较大的图像用尽量少的字节表示和传输,并要求图像有较好的质量。通过图像压缩,可以减轻图像存储和传输的负担,提高信息传输和处理速度。小波变换已广泛应用到图像的各种处理环节中,这里我结合小波分析和基于小波变换的图像压缩基本原理,用Matlab 实现一个小波图像压缩算法。 1. 小波分析 1.1 一维连续小波变换 定义:设)()(2R L t ∈ψ,其傅立叶变换为)(?ωψ ,当)(?ωψ满足允许条件(完全重构条件或恒等分辨条件) ?=R d C ωωωψψ2 )(?< ∞ (1) 时,我们称)(t ψ为一个基本小波或母小波。将母函数)(t ψ经伸缩和平移后得 )(1 )(,a b t a t b a -=ψψ 0;,≠∈a R b a (2) 称其为一个小波序列。其中a 为伸缩因子,b 为平移因子。对于任意的函数)()(2R L t f ∈的连续小波变换为 dt a b t t f a f b a W R b a f )()(,),(2/1,->==

基于小波变换的图像压缩技术

ISSN1009-3044 ComputerKnowledgeandTechnology电脑知识与技术V01.6,No.3January2010,PP.698—700 E—mail:eduf@CCCC.net.eii http://www.dnzs.net.cnTeh+86—55l一56909635690964 基于小波变换的图像压缩技术 闫凡勇,张颖,张有志,白红成 (上海海事大学信息工程学院,上海200135) 摘要:小渡分析在图像处理中有很重要的应用,包括图像压缩,图像去噪等。二维小波分析用于图像压缩是小波分析应用的一个重要方面。该论文主要分析了EZW算法思想,并通过Madab仿真说明小波变换理论在图像处理中所发挥的重要作用。 关键词:小波变换;图像压缩;EZW 中图分类号:TPl8文献标识码:A 文章编号:1009-3044(2010)03-698埘 ResearchofImageCompressionBasedonWaveletTransform YANFan—yong,ZHANGYing.ZHANGYou—zhi.BAIHong—cheng (ShoolofInformationan-.1Engineeringsllarl西1aiMaritimeUniversity,shanghai200135,chir扭) Abstract:Thewaveletanalysishassomeimportantapplicationsinimageprocessing,includingimagecompression,imagede—noismgandSOon.Waveletanalysisfor tVl,O—dimensionalin札gecompressionisakeyaspectinthefieldofitsapphcadons.ThepapermainlyanalyzesthetheoryofEZWalgorithm,andillustratesthebetterresultsoftheapplicationsonusmgwaveletdieoryinimageprocessingbasedonMatlabsimulatiom。 Keywords:wavelettransformation;imagecompression;EZW 随着科技的飞速发展.图像编解码技术也正朝着高编码效率和低复杂度的方向不断改善和优化。我们知道图像经过抽样、量化、编码后会含有丰富的数据,但是由于存储空间、传输速率等因素的限制,使得我们在对图像进行存储和传输之前旨先要对图像进行压缩。在保证可恢复原始图像的前提下,尽量减少或消除图像中的冗余,达到存储卒间和传输速率的最佳化,在需要时,再对压缩图像进行解码和复原。快速傅立叶变换、离散余弦变换用于图像压缩时会显现出明显的局限性,通过利用这些技术我们只能得到整个信号的整体频域信息,而不能获得任何时间或空间段上的频域特性。一幅图像在编码之前首先要进行特征提取,比如提取图像纹理、边缘等,这是因为它们都是高度局部性的,显然这两种技术用于图像压缩时效果不理想。被称为“数学显微镜”的小波变换具有明显的时域、频域的局部性,小波分析的出现刚好解决了这一难题,其性能和算法的复杂度上都明显优予以上两种技术。在处理低频数据时.通过降低时域分辨率来提高频域分辨率;在处理高频数据时,可以在较高的时域分辨率下处理数据的局部性特征,从而降低频域分辨率。 1小波分析的基本理论 1.1小波图像压缩编码基本原理 小波图像压缩编码原理是基于MaHat塔式算法的基础1-.提出的。Maltat塔式算法的思想是:在选取好小波基的基础七将一幅图像经过小波变换分解为一许多不同尺度、方向、空间域上局部变化的子带图像。按照这种算法思想把一幅图像经过一次小波变换后分解为4个子图像:LL代表原始图像的特征分量,它包含原始图像的基本内容;LH、HL和HH分别表示垂直向下、水平向右和斜对角线的高频特征分量。它们分别包含了图像数据垂直方向、水平方向与斜对角线方向的边缘、纹理和轮廓等。这里需要说明的是LL子带包含了图像的大部分数据。随后的小波变换都是在上一级变换产生的低频子带(LL)的基础上再进行小波变换。 1.2小波变换在图像压缩中的步骤 小波变换实现图像压缩的一般步骤:首先选择一组合适的正交小波基函数,目的是保证多级小波分解时有正交特性,从而有利于图像压缩编码。其次对所要处理的图像进行多级小波分解,把原始图像分解为低频分最和水平向下、垂直向右以及斜对角线的高频分量。第三,根据所得到的不同频率分量分别实施不同的量化和编码操作。通过利用小波变换算法思想就可以把原始图像数据分解为不同频率分量的子带数据,然后分别对不同频率分量的数据实施不同的编码算法,就达到了对原始图像的压缩目的。 2小波图像压缩算法 目前3个比较经典的小波图像编码分别是嵌入式小波零树图像编码(EZ聊,分层小波树集合分割算法(SPIHT)和优化截断点的嵌入块编码算法(EBCOT)。该论文主要研究了EZW编码算法。‘。 EZW编码算法【1】 Lewis和Nowles等首先提出了零树结构[21.并且第一个实现了零树编码思想,但是Lewis等人提出的算法并不完美。1993年,Shapiro将这种数据结构与比特平面编码技术结合起来,提出了嵌入式零树小波(EZW:EmbededdZero—treeWavelet)编码算法13】。EZW算法中采用的零树结构充分利用了不同尺度问小波系数的相似特性,有效地剔除了对高频小波系数的编码,极大的提高了小波系 收稿日期:2009—10—24 作者简介:闫凡勇(1984-),男,硕士,研究方向为交通通信系统。 698??人工■_I及识别技术????-本栏目责任编辑:唐一东

相关文档
最新文档