数据冗余和操作异常

数据冗余和操作异常

数据冗余和操作异常

ControlLogix系统冗余故障分析及改进措施

ControlLogix系统冗余故障分析及改进措施 摘要:介绍了ControlLogix冗余系统的组成和工作原理。针对故障现象,通过对系统软件的深入研究和不断试验、实践,提出了合理的改进措施并取得了良好的效果,提高了系统的可靠性、排除了因不确定性故障所导致的系统安全。 关键词:ControlLogix冗余系统;故障;原因分析;改进措施和处理方案 1 冗余系统应用简介 以深圳地铁一期工程为例:典型车站分为A、B两端,在A端设置两套冗余的控制器(PLC),一套作为整个车站的主控制器兼作与上位机的通讯接口,接车站交换机,另外一套负责A端的设备监控;在B端设置一套冗余的从控制器,负责B端的设备监控;在车站的其它地方设置远程I/O设备。控制器及各远程I/O设备通过冗余的ControlNet现场总线相连。(系统配置如图1) 2 冗余系统的设置和工作原理 ControlLogix冗余系统硬件结构由两个完全一样的控制器框架组成,每个ControlLogix 冗余系统框架中控制器模块、通信模块和SRM模块。两个框架尺寸完全相同,模块一模一样,插放位置也一模一样,控制器中的程序也一模一样。两个控制器框架之间,完全靠系统冗余模块SRM来完成同步和数据的交换。进入同步状态的主机控制器,自动地传送备份数据到辅机控制器,这些数据无须用户挑选和编程,只要在主机控制器中被程序运行时刷新过的数据,都会通过交叉装载传送到辅机控制器,传送的数据量可以非常大。控制器通过与SRM的连接,得知自己是主机控制器还是辅机控制器,从而决定是传送数据还是接收数据。这些完全不需要用户的介入,系统自动获取、自动判断、自动传送。两个控制器的同步运行和大量数据的复制,使得输出得到无扰切换。 在成对的冗余框架中,首先上电的框架成为主机框架,后上电的框架作为辅机框架,并建立与主机控制器的同步。当出现主机控制器所在框架掉电、拔插主机框架上的任何模块、控制器程序发生主要故障、断开CNBR模块上的ControlNet分接器或电缆、断开ENBT 模块的EtherNet/IP电缆等情况,或者收到来自主机控制器中用MSG发送的命令、来自Rslinx中SRM模块组态页面操作的命令都会发生冗余切换。 3 系统冗余故障显示及查找 冗余系统不能正常工作,常常表现在辅机不能同步。辅机不能同步的原因有很多,查找的办法也很多,一般说来,冗余框架中的CNBR模块都有清楚的提示,SRM模块的组态界面也存放了详尽的信息。冗余框架插放的CNBR模块的面板将显示系统的状态,面板是字符式显示,一般是缩写的大小字母,它们所表达的意思见表1。 最重要一点的是,所有成对的模块必须是相同的产品编号、系列号和版本号,并且插放在相同槽内。如果辅机框架的CNBR的Keeper与成对冗余的主机框架CNBR的数字签名不匹配的话,辅机框架是不能同步的。需要在RSNetworx组态软件中,选择Keeper Status,检查辅机是否为Valid Keeper。如果不是,操作Update Keeper使之恢复正常。出现这种情况的原因可能是ControlNet网络组态时,辅机CNBR模块是关闭的或者在别的网络中组态过。 根据提示检查硬件的情况,是比较直观和容易的。但是实际使用过程中,大多数故障不是硬件引起的,而是由于参数设置不合理、通信和连接规划不好,导致控制器出现主要

光盘“无法复制×数据错误(循环冗余检查)”解决方法.

光盘“无法复制×:数据错误(循环冗余检查”解决方法 上次复制DVD光盘出现此问题后,通过WINISO软件将其制作成镜像文件后就解决了这可问题。今天又遇到同样的问题,但是无法成功,再制作镜像文件到26%时就出现错误提示,点击“忽略”后WINISO程序就直接退出了,看来此路不通哟。而用暴风影音2.2确能够流畅的播放出来。 在用暴风影音2.2播放该光盘时,发现该软件可以将播放软件另存到其他地方,于是将其另存到硬盘时,大约到了26%后,然后其保存界面中的复制速度降到了0,然后直接退出保存界面。打开硬盘,发现暴风影音居然保存了该文件的前面26%的内容,但是后面的就没有了。 又到网上查找相关资料,有人提出用“CD DVD 数据恢复”软件可以解决这种问题。马上到网上下载了一个。该软件个头比较小,仅800多K,高度怀疑其是否能够胜任。死马当活马医,安装后,其界面非常简洁,就几个按钮,连菜单都免了。选择好原文件及存放目录后,点击“开始”按钮,下面出现一个进度条,显示已复制的百分比。到复制到26.7156%时,停了下来,然后显示将26.7156%偏移,一直到26.81 72%,进度条显示正常了。最终将这个文件解决了。 光盘修复法两则 一:因光盘正面(对着光头的那面划伤而无法读取数据时,可找来一块麂皮或火棉,牙膏一支,少许透明液状油脂。将光盘平放于桌面上,挤少许牙膏于划伤处,用手指裹着麂皮在伤处来回旋转摩擦。待擦得发热时再多擦几下即可,用清水洗去牙膏。你会发现划伤不见了,但有一团因牙膏摩擦留下的细小摩痕,这时用麂皮蘸少许油脂(绿豆大小即可,在摩痕处以相同方法旋转,之后擦去油脂,碟片光亮如新。 二:因光盘背面(镀膜面划破银膜或银膜脱落而无法读取数据。可找来一丁点儿水银,将碟子放在布上,背面向上。用滴管吸少许水银,滴在光盘银膜落处。注意不能滴太多,只要能盖住伤处且薄薄一层即可。用手指敲击碟片使之震荡,待水银面均匀

大数据处理框架选型分析

大数据处理框架选型分析

前言 说起大数据处理,一切都起源于Google公司的经典论文:《MapReduce:Simplied Data Processing on Large Clusters》。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入数据量很大,单机难以处理。所以需要利用分布式的方式完成计算,并且需要考虑如何进行并行计算、分配数据和处理失败等等问题。 针对这些复杂的问题,Google决定设计一套抽象模型来执行这些简单计算,并隐藏并发、容错、数据分布和均衡负载等方面的细节。受到Lisp和其它函数式编程语言map、reduce思想的启发,论文的作者意识到许多计算都涉及对每条数据执行map操作,得到一批中间key/value对,然后利用reduce操作合并那些key值相同的k-v对。这种模型能很容易实现大规模并行计算。 事实上,与很多人理解不同的是,MapReduce对大数据计算的最大贡献,其实并不是它名字直观显示的Map和Reduce思想(正如上文提到的,Map和Reduce思想在Lisp等函数式编程语言中很早就存在了),而是这个计算框架可以运行在一群廉价的PC机上。MapReduce的伟大之处在于给大众们普及了工业界对于大数据计算的理解:它提供了良好的横向扩展性和容错处理机制,至此大数据计算由集中式过渡至分布式。以前,想对更多的数据进行计算就要造更快的计算机,而现在只需要添加计算节点。 话说当年的Google有三宝:MapReduce、GFS和BigTable。但Google三宝虽好,寻常百姓想用却用不上,原因很简单:它们都不开源。于是Hadoop应运而生,初代Hadoop的MapReduce和

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

ControlLogix 冗余

ControlLogix 冗余 版本 19.50 功能和好处 冗余可以实现更高的生产率:当主冗余 模块检测到主机架中任何模块上发生 事件时,控制权便转交至从控制器机 架,从而提供更高的系统可用性。 高可用性可带来更少的停机时间。 ControlLogix? 冗余在以下情况时可以 帮助您: ? 需要在不停止控制器的情况下维护系 统时 ? 运行会因停机导致设备损坏或产生昂 贵重启成本的连续过程时 ? 处理会因停机而导致重大收益损失的 大批量产品时 ? 生产会因停机而导致产品受损的昂贵 产品时 建立冗余,无需另外编程 ? 管理会因停机而对公众带来大量不便 的高可见性过程时。 通过 ControlLogix 冗余,您可以在成对的控制器机架之间建立冗余,无需 另外编程。ControlLogix 冗余被视为独立的系统,对通过 ControlNet 或 EtherNet/IP 网络连接的任何设备都透明。 主控制器机架在扫描期间自动确定存在哪些数据更改,并自动将这些数据 发送到从控制器,使其随时准备好在不更改输出的情况下接手控制工作。您 无需程序消息,也不需指定传输特定的数据。通过该功能,您无需花费昂贵 的工程资源便可建立起冗余系统。 版本 19.50 可支持: EtherNet/IP? I/O 设备级的环形、星形以及其它 EtherNet/IP 拓扑,提供多种容错网络,以便能 够满足所有网络可用性、成本和性能要求。 在线部分导入 对程序进行更多的以前不大可能实现的运行时更改,例如添加新程序和/或 例程。您可以在离线状态下进行这些更改,然后在不停机的情况下下载到控 制器。

ControlLogix 和 FactoryTalk 是罗克韦尔自动化有限公司的注册商标。EtherNet/IP 是开放设备网供应商协会的商标。不属于罗克韦尔自动化公司的商标均归各自公司所有。 出版号 1756-PP017A-ZH - 2010 年 12 月 ? 2010 年罗克韦尔自动化有限公司版权所有。保留所有权利。中国印刷。完整的高可用性解决方案的组成部分 ControlLogix V19.50 固件为实现完整的端对端高可用性解决方案提供了基础,这有助于保护生产和产品质量、重要设备和工厂资产、工厂工作人员、环境以及周围社区。以下产品配备 ControlLogix 冗余 (V19.50 版) 可给出完整的解决方案。 ControlLogix L7x 控制器 与 1756-RM B 系列冗余模块一起使用时,L7x 控制器在性能方面比 ControlLogix L6x 控制器有了更大的改善。 1715 冗余 I/O , 使用冗余以太网适配器1715 容错 I/O 提供了冗余的输入和输出模块, 包括模拟量输出,由 RSLogix 5000 进行配置, 并支持冗余的以太网适配器,无需另外进行任何编程。 FactoryTalk SE View 6.0 FactoryTalk? View 6.0 支持报警和时间服务器冗余, 可使基于设备和基于标签的报警在活动服务器和备用服务器之间实现自动同步,另 外还可配置独立的报警历史。

CAN总线及其在PLC上的应用

CAN总线及其在PLC上的应用 时间:2009-10-29 10:01:12 来源:中国传动网作者:李庆敏 引言 数字电子信息技术的飞速发展对全世界的制造业日益起着巨大的推动作用,使得制造业的各种设备的设计越来越电子化,数字化,网络化,ECCT产品是艾默生CT推出的一款专门应用于纺织行业的具有CAN总线协议的专用PLC控制器,它不仅满足了纺织的基本 I/O工艺需求,更是把CAN总线协议完美地融合进去,使用户很轻易地把系统的各种设备通过CAN协议进行连接,本文介绍了CAN总线功能在艾默生CT PLC上的应用。 CAN总线基础知识简介 CAN总线(CONTROLLER AREA NETWORK,控制器局部网络)由德国BOSCH公司首先提出来的,CAN总线是目前工业界广泛应用的总线。其特点简要归纳如下:1)CAN控制器工作于多主站方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差。 2)CAN协议废除了传统的站地址编码,而代之以对通信数据进行编码,其优点是可使网络内的节点个数在理论上不受限制,加入或减少设备都不影响系统的工作。同时可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。 3)CAN总线通过CAN控制器接口芯片的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这样就保证不会出现类似在RS-485网络中系统有错误时会导致出现多节点同时向总线发送 数据而导致总线呈现短路从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。 4)CAN具有的完善的通信协议可由CAN控制器芯片及其接口芯片来实现,从而大大降低了用户系统开发的难度,缩短了开发周期,这些是仅仅有电气协议的RS-485所无法比拟的。 5)与其它现场总线比较而言,CAN总线通信最高速率可达1MBPS,传输速率为5KBPS 时,采用双绞线,传输距离可达10KM,并且数据传输可靠性高;CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线。这些也是目 前 CAN总线应用于众多领域,具有强劲的市场竞争力的重要原因。

大数据处理及分析理论方法技术

大数据处理及分析理论方法技术 (一)大数据处理及分析建设的过程 随着数据的越来越多,如何在这些海量的数据中找出我们需要的信息变得尤其重要,而这也是大数据的产生和发展原因,那么究竟什么是大数据呢?当下我国大数据研发建设又有哪些方面着力呢? 一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。 二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。 四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。 (二)大数据处理分析的基本理论 对于大数据的概念有许多不同的理解。中国科学院计算技术研究所李国杰院士认为:大数据就是“海量数据”加“复杂数据类型”。而维基百科中的解释为:大数据是由于规模、复杂性、实时性而导致的使之无法在一定时间内用常规软件工具对其进行获取、存储、搜索、分享、分析、可视化的数据集合。 对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决

图2.1:大数据特征概括为5个V (三)大数据处理及分析的方向 众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定

传感器实验数据处理

实验一 20 40 60 80 100120 140 160 180 200 单臂电桥输出电压与负载的关系 重量/g 增砝码时的电压值/m v 拟合曲线的斜率和截距分别为p =0.2398 和3.2400 20 40 60 80 100120140 160 180 200 单臂电桥输出电压与负载的关系 重量/g 减砝码时的电压值/m v

拟合曲线的斜率和截距分别为p = 0.2497 和1.3667 输出电压与重量变化量的关系如图所示,根据拟合曲线(用o 符号标记)和实际特性曲线(实线)的关系可知,灵敏度w u s ??=/等于实际特性曲线的斜率即s=0.2398 非线性误差%100/??=FS n Y m δ,其中4.51=FS Y ,由b kx y +=,将p 值带入可得24.32398.0+=x y ,由此式可得拟合曲线各点的电压值为 将以上数据与实际测的的值进行比较可得在2.0=?m 将值带入可得%39.0%1004 .512 .0%100/=?=??=FS n Y m δ

实验二 由以上测量数据可得如下特性曲线 20 40 60 80 100 120140 160 180 200 半桥输出电压与负载的关系 重量/g 加砝码时的电压值/m v 拟合曲线的斜率和截距分别为p =0.4945 和-0.1267 20 40 60 80 100120140 160 180 200 半桥输出电压与负载的关系 重量/g 减砝码时的电压值/m v

拟合曲线的斜率和截距分别为p = 0.4988和-1.1933 输出电压与重量变化量的关系如图所示,根据拟合曲线(用o 符号标记)和实际特性曲线(实线)的关系可知,灵敏度w u s ??=/等于实际特性曲线的斜率即s=0.4944 非线性误差%100/??=FS n Y m δ,其中3.98=FS Y ,由b kx y +=,将p 值带入可得1267.04945.0-=x y ,由此式可得拟合曲线各点的电压值为 将以上数据与实际测的的值进行比较可得在3.0=?m 将值带入可得%3.0%1003 .983 .0%100/=?=??=FS n Y m δ

windows错误代码

windows错误代码 0 操作成功完成。 1 函数不正确。 2 系统找不到指定的文件。 3 系统找不到指定的路径。 4 系统无法打开文件。 5 拒绝访问。 6 句柄无效。 7 存储控制块被损坏。 8 存储空间不足,无法处理此命令。 9 存储控制块地址无效。 10 环境不正确。 11 试图加载格式不正确的程序。 12 访问码无效。 13 数据无效。 14 存储空间不足,无法完成此操作。 15 系统找不到指定的驱动器。 16 无法删除目录。 17 系统无法将文件移到不同的驱动器。 18 没有更多文件。 19 介质受写入保护。 20 系统找不到指定的设备。 21 设备未就绪。 22 设备不识别此命令。 23 数据错误(循环冗余检查)。 24 程序发出命令,但命令长度不正确。 25 驱动器找不到磁盘上特定区域或磁道。 26 无法访问指定的磁盘或软盘。 27 驱动器找不到请求的扇区。 28 打印机缺纸。 29 系统无法写入指定的设备。 30 系统无法从指定的设备上读取。 31 连到系统上的设备没有发挥作用。 32 另一个程序正在使用此文件,进程无法访问。 33 另一个程序已锁定文件的一部分,进程无法访问。 36 用来共享的打开文件过多。 38 已到文件结尾。 39 磁盘已满。 50 不支持请求。 51 Windows 无法找到网络路径。请确认网络路径正确并且目标计算机不忙或已关闭。如果Windows 仍 然无法找到网络路径,请与网络管理员联系。

52 由于网络上有重名,没有连接。请到“控制面板”中的“系统”更改计算机名,然后重试。 53 找不到网络路径。 54 网络很忙。 55 指定的网络资源或设备不再可用。 56 已达到网络BIOS 命令限制。 57 网络适配器硬件出错。 58 指定的服务器无法运行请求的操作。 59 出现了意外的网络错误。 60 远程适配器不兼容。 61 打印机队列已满。 62 服务器上没有储存等待打印的文件的空间。 63 已删除等候打印的文件。 64 指定的网络名不再可用。 65 拒绝网络访问。 66 网络资源类型不对。 67 找不到网络名。 68 超出本地计算机网络适配器卡的名称限制。 69 超出了网络BIOS 会话限制。 70 远程服务器已暂停,或正在启动过程中。 71 已达到计算机的连接数最大值,无法再同此远程计算机连接。 72 已暂停指定的打印机或磁盘设备。 80 文件存在。 82 无法创建目录或文件。 83 INT 24 上的故障。 84 无法取得处理此请求的存储空间。 85 本地设备名已在使用中。 86 指定的网络密码不正确。 87 参数不正确。 88 网络上发生写入错误。 89 系统无法在此时启动另一个进程。 100 无法创建另一个系统信号灯。 101 另一个进程拥有独占的信号灯。 102 已设置信号灯,无法关闭。 103 无法再设置信号灯。 104 无法在中断时请求独占的信号灯。 105 此信号灯的前一个所有权已结束。 107 由于没有插入另一个软盘,程序停止。 108 磁盘在使用中,或被另一个进程锁定。 109 管道已结束。 110 系统无法打开指定的设备或文件。 111 文件名太长。 112 磁盘空间不足。 113 没有更多的内部文件标识符。 114 目标内部文件标识符不正确。

大数据处理流程的主要环节

大数据处理流程的主要环节 大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结果解释,本节将基于以上环节分别分析不同阶段对大数据质量的影响及其关键影响因素。 一、数据收集 在数据收集过程中,数据源会影响大数据质量的真实性、完整性数据收集、一致性、准确性和安全性。对于Web数据,多采用网络爬虫方式进行收集,这需要对爬虫软件进行时间设置以保障收集到的数据时效性质量。比如可以利用八爪鱼爬虫软件的增值API设置,灵活控制采集任务的启动和停止。 二、数据预处理 大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。

大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量; 数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面质量; 数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。 数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。 总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素 三、数据处理与分析 1、数据处理 大数据的分布式处理技术与存储形式、业务数据类型等相关,针对大数据处理的主要计算模型有MapReduce分布式计算框架、分布式内存计算系统、分布式流计算系统等。

MicrosoftWindows系统错误代码-25页文档资料

Microsoft Windows 系统错误代码0000 操作已成功完成。 0001 错误的函数。 0002 系统找不到指定的文件。 0003 系统找不到指定的路径。 0004 系统无法打开文件。 0005 拒绝访问。 0006 句柄无效。 0007 存储区控制块已损坏。 0008 可用的存储区不足,无法执行该命令。 0009 存储区控制块地址无效。 0010 环境错误。 0011 试图使用不正确的格式加载程序。 0012 访问代码无效。 0013 数据无效。 0014 可用的存储区不足,无法完成该操作。 0015 系统找不到指定的驱动器。 0016 无法删除该目录。 0017 系统无法将文件移到其他磁盘驱动器上。 0018 没有其他文件。 0019 媒体写保护。 0020 系统找不到指定的设备。

0021 设备尚未准备好。 0022 设备无法识别该命令。 0023 数据错误(循环冗余检查)。 0024 程序发出命令,但是该命令的长度错误。 0025 驱动器在磁盘上无法定位指定的区域或磁道。 0026 无法访问指定的磁盘或软盘。 0027 驱动器找不到所请求的扇区。 0028 打印机缺纸。 0029 系统无法写入指定的设备。 0030 系统无法读取指定的设备。 0031 与系统连接的设备不能正常运转。 0032 其他进程正使用该文件,因此现在无法访问。 0033 另一进程已锁定该文件的某一部分,因此现在无法访问。 0034 驱动器中的软盘不正确。请将 %2 (卷标序列号: %3)插入驱动器 %1。0036 打开共享的文件太多。 0038 已到达文件结尾。 0039 磁盘已满。 0050 不支持此网络请求。 0051 远程计算机无法使用。 0052 网络中存在重名。 0053 找不到网络路径。 0054 网络正忙。

ControlLogix 控制系统特点

2. ControlLogix 控制系统特点 ControlLogix控制系统的整体特点包括: 可靠、安全(Safety):ControlLogix控制站模块MTBF百万小时级,并且是TUV认证的SIL2安全控制系统;全冗余结构,冗余控制器,冗余电源,冗余IO网络,冗余以太网CIP网络。 功能强大:强大的32位多处理器结构的Logix PAC控制引擎,运行实时多任务内核系统,结合智能化的I/O卡件和和恒定5Mbps通讯速率的ControlNet总线,实现现场一个完美的自动化控制系统。 易维护、易扩展:带电插拔、在线编程、在线扩展系统、远程在线组态、诊断及维护、集成的资产管理系统等等。 开放系统:与各种厂商的PLC及自动化系统的实时通讯、与各种专家模型系统和信息管理系统的双向、稳定高速数据连接(无需编程)。

2.1可靠、安全(Safety) 2.1.1 ControlLogix控制站模块平均无故障间隔时间(MTBF)百万小时级。 2.1.2 单机ControlLogix控制站即已是获得TUV认证的SIL2安全控制系统。这意味着高达99.9999%的故障安全率,即每小时连续运行系统安全失效率(PFH)小于千万分之一。当然,每一DO和AO通道均可图形化组态为当故障及在线编程时为关断、保持上次值及预定义值三种状态之一,以确保工艺系统及设备有安全的控制输出。 2.1.3 ControlLogix热备冗余:在2个独立框架中电源、控制器、通讯及热备冗余模块完全按1:1配置,热备模块通过高速光纤同步数据。在主控制器意外故障时系统自动切换,由“从控制器”使用最新数据内容执行程序并更新I/O。热备冗余系统实现主从之间平稳无扰动切换。并且,以太网模板IP

CAN通信解析

CAN通信 1. CAN总线的产生与发展 控制器局部网(CAN-CONTROLLER AREA NETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其高性能、高可靠性、实时性等优点现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。控制器局部网将在我国迅速普及推广。 随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。 分散式工业控制系统就是为适应这种需要而发展起来的。这类系统是以微型机为核心,将5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION (通信技术)、CRT(显示技术)和CHANGE(转换技术)紧密结合的产物。它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。 典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。现场总线的研究与应用已成为工业数据总线领域的热点。尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。控制器局部网CAN (CONTROLLER AERANETWORK)正是在这种背景下应运而生的。 由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。为此,1991年9月PHILIPS SEMICONDUCTORS制订并发布了CAN技术规范(VERSION 2.0)。该技术规范包括A和B两部分。2.0A给出了曾在CAN技术规范版本1.2中定义的CAN报文格式,能提供11位地址;而2.0B给出了标准的和扩展的两种报文格式,提供29位地址。此后,1993年11月ISO正式颁布了道路交通运载工具--数字信息交换--高速通信控制器局部网(CAN)国际标准(ISO11898),为控制器局部网标准化、规范化推广铺平了道路。 2. CAN总线特点 CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。 2.1 CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。 2.2 CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接收到相同的数据,这一点在分布式控制系统中非常有用。数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而保证了通信的实时性。CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。CAN卓越的特性、极高的可靠性和独特的设计,特别适合工业过程监控设备的互连,因此,越来越受到工业界

简析大数据及其处理分析流程

昆明理工大学 空间数据库期末考察报告《简析大数据及其处理分析流程》 学院:国土资源工程学院 班级:测绘121 姓名:王易豪 学号:201210102179 任课教师:李刚

简析大数据及其处理分析流程 【摘要】大数据的规模和复杂度的增长超出了计算机软硬件能力增长的摩尔定律,对现有的IT架构以及计算能力带来了极大挑战,也为人们深度挖掘和充分利用大数据的大价值带来了巨大机遇。本文从大数据的概念特征、处理分析流程、大数据时代面临的挑战三个方面进行详细阐述,分析了大数据的产生背景,简述了大数据的基本概念。 【关键词】大数据;数据处理技术;数据分析 引言 大数据时代已经到来,而且数据量的增长趋势明显。据统计仅在2011 年,全球数据增量就达到了1.8ZB (即1.8 万亿GB)[1],相当于全世界每个人产生200GB 以上的数据,这些数据每天还在不断地产生。 而在中国,2013年中国产生的数据总量超过0.8ZB(相当于8亿TB),是2012年所产生的数据总量的2倍,相当于2009年全球的数据总量[2]。2014年中国所产生的数据则相当于2012 年产生数据总量的10倍,即超过8ZB,而全球产生的数据总量将超40ZB。数据量的爆发式增长督促我们快速迈入大数据时代。 全球知名的咨询公司麦肯锡(McKinsey)2011年6月份发布了一份关于大数据的详尽报告“Bigdata:The next frontier for innovation,competition,and productivity”[3],对大数据的影响、关键技术和应用领域等都进行了详尽的分析。进入2012年以来,大数据的关注度与日俱增。

AB_PLC冗余配置说明

A-B ControlLogix 冗余系统 一、ControlLogix 冗余系统 1. 1.冗余系统构成:2对高性能1756-L55处理器和1757-SRM 冗余模板分别配置在2个独立的框架中(每个框架可选择单电源或冗余电源供电),冗余模块间通过高速光纤进行同步。 1.2.ControlLogix 系统冗余模块SRM ● 1757-SRM 在主控和备用框架之间提供高速的数据传输,并负责判定主控/备用框架的工作状况 ● 双槽模块 ● 每个框架上需要一个SRM 模块 a) 最早的版本在每个热备的框架中支持1个 Logix5555 处理器,以及最多5个 CNB 通讯模块 b) 增强版则支持多处理器/多通讯模块在热备框架中共存 TCP/IP EtherNet (冗余/ 环网均可选) TCP/IP EtherNet (Redundant/ Ring Optional) Redundancy ControlNet 冗余ControlNet

● 两个 SRM 系统冗余模块之间通过光缆进行连接. 1757-SRC1、 SRC3、SRC10 (分别为1米、 3米、10 米长度) 1. 3. 配置冗余解决方案:硬件配置8步曲 1) 一个ControlLogix 框架 2) 插入一块 Logix5555 处理器 3) 插入一块/多块ControlNet 通讯模块(D 版本以上) 4) 插入一块系统冗余模块(占双槽位) 5) 插入一块/对EtherNet/IP 通讯模块 6) 依次拷贝,准备另外一个框架 7) 连接两个SRM 系统冗余模块 8) 加入操作员终端, ControlNet 网络扩展 I/O 等 二、ControlLogix 冗余系统优点 ● 自动完成冗余切换,不需要用户做任何编程; ● 应用程序只需下载一次:系统将自动完成从控制器的程序装载; ControlNet Ethernet ControlNet 设备/备用框架中 CNB 模块以外,另外 接点

文.mdf)无法复制,拷贝出现数据错误循环冗余检查

问题发生案例:客户备份帐套出现,灾难型错误。根据正常思维,打电话叫客户删除硬盘多余文件。可能是空间不够 数分钟后,客户打电话过来,空间足够,备份依然提示灾难性故障。。上门检查后。发现问题确实如 此,空间足够,不能备份。注明:帐套依然可以正常使用 尝试解决出现的症状:1.在企业管理器中(该数据库还好。没有质疑)做数据库备份,发现不行。出现I/O设备中断。 备份依然失败。 2.停止数据库后直接拷贝mdf和ldf文件。在拷贝过程中出现,数据错误,循环冗余检查.文件拷贝失败。 问题的分析:首先这个问题不是个好预兆,数据处在非常不稳定状态,或者已经出现啦(在磁盘上)逻辑错误。 从该错误提示得到的解释是:循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算, 并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。若CRC 校验不通过,系统重复向硬盘复制数据,陷入死循环,导致复制过程无法完成。 循环冗余检测失败的可能原因:光盘拷贝可能会是光盘损坏。硬盘拷贝可能会是硬盘出现物理坏道(很严重,恢复性不确定, 一般只能恢复部分或者完全不能恢复,而且数据可能是不完整的)。或者硬盘出现逻辑坏道(属于软件上的问题。 可修复性非常大)。 我们急需做的是什么:我们现在最重要的是要把文件拷贝出现,确认文件是否可用。 拷贝的方法:推荐软件。finaldata2.0.这款软件是恢复硬盘数据的一款比较好的软件

图《1》 图《2》,选择文件--打开,然后找到无法拷贝的mdf文件所在的盘。,如d 盘。点确定

图《3》,等确定,扫描完后。找到该mdf 和ldf文件 图《4》,把该mdf文件和ldf文件恢复到其他盘。然后重新附加到数据库

拷贝数据时出现“数据错误_循环冗余检查”的解决方法

拷贝数据时出现“数据错误循环冗余检查”的解决方法 问题描述:将硬盘中的文件数据复制到可移动磁盘,如U盘等设备中时,系统提示“无法复制:数据错误循环冗余检查”,导致无法复制文件,如下图所示; 数据错误循环冗余检查的解决办法: 第一步:如果是从硬盘的某一个盘符复制到另一个盘符时出错;打开“我的电脑”——>在复制文件出错的盘符上(如C盘)点击鼠标右键——>选择“属性”——>弹出“本地磁盘(X:)属性”窗口,切换到“工具”选项卡中——>点击第一个项目中的“开始检查(C)”——>弹出窗口中,勾选中“自动修复文件系统错误(A)”——>点击“开始”——>此时如果系统提示“磁盘检查不能执行,因为磁盘检查实用程序需要独占访问磁盘上的一些Windows文件...”,直接点击“是”——>然后重新启动计算机后,将自动进行磁盘错误检查并且修复出错的文件;

第二步:对出错的磁盘盘符进行“磁盘碎片整理”;点击“开始”菜单——>选择“所有程序”——>鼠标指向“附件”——>再指向“系统工具”——>单击“磁盘碎片整理程序”——>在“卷”下方选中出错的盘符,点击“碎片整理”——>耐心等待磁盘碎片整理结束,重新启动计算机即可; 第三步:检查磁盘格式是否不统一,如源文件所在盘符为NTFS,但需要保存复制的磁盘格式为FAT32,这种情况下也可能导致“数据错误循环冗余检查”无法复制的情况;打开“我的电脑”——>鼠标右键点击磁盘——>选择“属性”——>在“属性”窗口中部就能查看到该磁盘是哪种格式的——>如果两个磁盘不统一,将FAT32格式的磁盘格式转换为NTFS即可;

第四步:如果是复制文件到U盘或其他可移动磁盘时出错,采用上述步骤无效时,建议优先使用杀毒软件对U盘进行杀毒,如果杀毒也无法解决“数据错误循环冗余检查”的问题,就需要对U盘等可移动磁盘进行格式化了;先将U盘中的所有数据备份出来,然后鼠标右键点击U盘的盘符,选择“格式化”——>勾选中“快速格式化”——>点击“开始”——>直至格式化完毕后,在进行复制操作; 总结:U盘等可移动磁盘导致“数据错误循环冗余检查”的错误提示时,优先使用杀毒软件进行杀毒,很有可能是病毒木马感染导致的。

大数据处理分析的六大最好工具

大数据处理分析的六大最好工具 来自传感器、购买交易记录、网络日志等的大量数据,通常是万亿或EB的大小,如此庞大的数据,寻找一个合适处理工具非常必要,今天我们为大家分享在大数据处理分析过程中六大最好用的工具。 【编者按】我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。本文转载自中国大数据网。 CSDN推荐:欢迎免费订阅《Hadoop与大数据周刊》获取更多Hadoop技术文献、大数据技术分析、企业实战经验,生态圈发展趋势。 以下为原文: 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

相关文档
最新文档