电动汽车电池管理系统设计

电动汽车电池管理系统设计
电动汽车电池管理系统设计

2015届毕业设计说明书

纯电动汽车电池管理系统的设计

院、部:电气与信息工程学院

学生姓名:潘辉

指导教师:黄海波职称实验师

专业:电气工程及其自动化

班级:电气本1105班

完成时间:2015年6月17日

摘要

随着经济的发展,电力电子设备的更新速度更是突飞猛进,然而传统的能源煤,石油,天然气的储量却在日渐减少,这样带来的能源问题就引起了广大用户的关注,作为生活中的重要组成部分,汽车越来越被称为了生活得必需品,传统汽车的动力消耗也会引起环境污染,所以导致新能源汽车的发展趋势加快。而能源的减少也引发了汽车动力的改革,而以电能代替传统的汽油的汽车便走进了人们的视野中,它污染小,对周围的影响也小。电动汽车的主要特色就是它的电池工程,而对电池的管理系统也就成了试下研究的热点。电池管理系统作为电动汽车上不可缺少的一部分,在对电动车的电池管理,充放电控制,电池监控等方面有着很重要的作用。

设计拟以中国长安纯电动汽车的设计要求和主体设计规划为蓝本,设计一款以单片机C8051F040作为主要控制器的电池管理系统,实现对电池的综合检测与管理的设计。设计主要做了对电池管理系统的单片机的选择以及电压检测、电流检测、充电检测、放电检测的电路设计,并针对性的设计了外围CAN总线接口电路、及各个检测程序的软件设计。用外围的CAN总线分别连接上级控制系统和下面的检测电路。最终实现了上级控制系统对设计的电池管理系统以上功能的检测与控制。

关键词:电动汽车;充电管理;锂电池;

ABSTRACT

With the economic development, power electronic equipment has been updating by leaps and bounds. However, the reserves of traditional energy sources, such as coal, petroleum and natural gas, have been decreasing with each passing day. The energy problems thus incurred have attracted extensive attention from the vast users. As an important constituent part, vehicle has also become a necessity in our daily life. The power consumption of traditional vehicle will also cause environmental pollution, which leads to the accelerated development of new energy vehicle. The decrease of energy has also triggered the reform of vehicle power. Consequently, the replacement of traditional gasoline with electric energy in vehicle has entered the public’s vision with its limited pollution and influence on the surrounding environment. The primary characteristic of electric vehicle lies in its battery engineering, and the system of battery management also becomes a hot topic in the existing research. As an indispensable part of electric vehicle, battery management system plays a critical role in battery management, charge-discharge control and battery monitoring, etc.

It is planned that the design requirements and main body design planning of Chinese Chang’an electric vehicle should be taken as the blueprint in the design of a battery management system which takes C8051F040 single-chip microcomputer as the primary controller. It is hoped that the comprehensive detection and management of the battery can be realized through this design. The design mainly includes the selection of the single chip for the battery management system, as well as the detection of voltage, current, battery charging and discharging for circuit design. Furthermore, peripheral CAN bus interface circuit and software of different detection procedures are designed pertinently. By virtue of the peripheral CAN bus, the superior control system and inferior detection circuit are linked up respectively. Finally, the detection and control of the above mentioned functions of the designed battery management system are realized through the superior control system.

Keywords electric vehicles;charge managementli;thium battery

目录

1 绪论 (1)

1.1 选题背景及意义 (1)

1.2 纯电动汽车概况 (2)

1.3 论文主要内容的章节安排 (2)

2 整体研究方案 (4)

2.1 系统设计方案 (4)

2.2 系统总体设计方案的确定 (4)

3 硬件电路设计 (7)

3.1 单片机的选择 (7)

3.2 电池管理芯片介绍 (8)

3.3 电源模块的选择 (9)

3.4 采样电路设计 (10)

3.4.1 传感器的选择 (10)

3.4.2 电压采集电路的设计 (11)

3.4.3 电流检测电路的设计 (11)

3.4.4 温度检测电路的设计 (12)

3.4.5 绝缘电阻检测电路的设计 (13)

3.4.6 故障报警模块电路的设计 (14)

3.4.7 CAN通信模块 (15)

4 软件系统设计 (18)

4.1 软件系统整体设计思想 (18)

4.2 主控程序软件设计 (18)

4.3 主程序设计流程 (19)

4.4 初始化程序的设计 (21)

4.5 温度检测子程序的设计 (22)

4.6 电流检测子程序的设计 (23)

4.7 绝缘电阻检测子程序的设计 (23)

4.8 CAN总线通信子程序的设计 (25)

4.8.1 CAN的初始化 (25)

4.8.2 CAN 的发送 (25)

4.8.3 CAN 中断的接收 (26)

5 系统仿真 (28)

5.1 系统显示界面介绍 (29)

5.2 系统仿真结果 (29)

结束语 (31)

参考文献 (35)

致谢.............................................................................................. 错误!未定义书签。附录.. (36)

附录A 整机电路图 (36)

附录B 程序清单 (36)

1 绪论

1.1 选题背景及意义

人们现在的生活越来越离不开汽车的存在。有当前调查的结果指出,当今,汽车以每一年三千万辆的速度持续增长着。全世界汽车现在已超过十亿辆,每一千人中间,就有着一百二十个人买了汽车的群体。

在一定数量内的汽车,它的尾气排放到大气中,由于大自然的平衡体系,能够吸收一定量的有害气体,防止对人类自身的健康造成危害,但随着人们生活步调的加快,汽车的需求量也在不断地增加,此时汽车排放的尾气就会有可能超出大自然的承受力,然而,随着人口增长和经济水平的提升,人们对于汽车的需求也越来越大,因此人们迫切需要寻找一种可以代替石油的新能源汽车,电动车就因此进入了人们的眼中。

自十八世纪七十年代初,戴维逊成功地研制了第一辆电动汽车(Electric Vehicle,简称EV)后,然而电动车在十九世纪就有了一定的发展,但由于蓄电池性能差,汽车续航能力差,越来越不能达到人们的需求,这样的汽车会逐渐的被新理念的车所代替[1]。从汽车的发展看来,无污染的车已经成了汽车行业的关注焦点,现代的电动汽车技术是结合了多项工程技术成就的先进的技术,拥有电气化的高性能车就应运而生了。它将成为人们交通工具的首要选择,为人们的生活提供更多的便利,它不仅在利用率上优于传统的汽车,它不存在尾气排放问题,所以开发前景十分广阔。就目前看来,发展电动汽车将是解决未来能源与环境问题的最有希望的措施之一,也是人们关注的焦点,它不仅会带动汽车产业的发展,也会得到科研机构的高度重视,对于改善环境问题起着不可估量的作用。

中国纯电动汽车最早开始于六十年代,然后再随后的几十年来也有不小的发展,但是真正的大发展的契机是开始于九十年代。进入新世纪后,在中国的“十五”中长期发展计划中第一次电动汽车被提出,获得了国家战略层面的认可。提出“三横三纵”研发布局。同时大气污染也越来越严重,PM2.5指数受到人们的关注,汽油燃烧后产生的尾气是大气污染,是影响PM2.5的主要指标,因此发展电动汽车对于大气污染的治理也是非常重要的。

在中国汽车群体里。人均汽车拥有量达到每1000 人有110 辆汽车,石油进口就成为了突出性问题。因此从国家安全战略角度来讲,摆脱对汽油的依赖也变得十分重要。最新的权威机构发布的统计数据显示截止到2015年,纯电动汽车和油电混合动力汽车在世界汽车总产量上有望继续高速的持续增长,预计可以达到近70%增长率。而中国将是这个大幅度增长中的主力军。从另一方面来说,

为了环境环保问题,中国也必须大力发展电动汽车。在经过了国家战略层级的两个五年规划大发展以及北京奥运会和上海世博会的初步推广,在电动汽车方面,中国的技术已经获得了很大的发展,初步建立起了中国自己的产业体系。据最新统计,目前已有有超过75%的城市已经开始推广电动汽车,有将近200家汽车型号进入了推荐名录,电动汽车的发展已经进入了一个新的时代,在中国的发展也更是走上了更加辉煌的道路。到2011年的第三季度,汽车新品发布会上,有超过二百款新能源汽车进军了领域,包括纯电动汽车126款,以及混合动力汽车73款,还有燃料电池汽车9 款,就现在来看,大家都认为混合动力和纯电动汽车以及燃料电动汽车是未来的汽车主要发展的转型空间。随着“十二五”规划纲提出,中国的新能源汽车将会有巨大的突破性发展,也标志着能源汽车会是战略的新型产业。会加强发展纯电动汽车的发展,以及,可以预见到,在中国,新能源汽车必将获得长足的进步和发展。

1.2 纯电动汽车概况

纯电动汽车(BEV):通过电能由电动机驱动的汽车。电动车的电能来自于内部的蓄电池,纯电动汽车基本上是采用车内的电动机来进行牵引,当然也有例外的就是把电动机安装在轮子中的特殊的电动汽车。对于燃油汽车和纯电动汽车相比较而言,区别还是比较明显的,其中纯电动汽车最大的差异在于其中的四个主要结构:电池、车载充电器、调速控制器、动力电机。纯电动汽车性能的差异主要取决于这主要的四个部件,四个部件的品质也起到决定了价值的意义。首先是驱动电机的功率,决定了车能提供多大的驱动能力决定了车的速度和负重能力;其次电池的容量决定了车的续航能力,容量越大续航能力越强;同时充电器的好坏决定了充电速度的快慢,而调速控制器的性能也决定了车的基础能力。

目前纯电动汽车驱动电机有直流有刷电机和永磁电机,另外还有交流同步电动机,一个车的性能好坏,速度如何主要决定于电动机的选择,同时也影响着车的用途,性价比高的车子在电机的控制方式上也有着自己独特的特点,现阶段的电机控制主要分为两类,分别为调速控制器和不调速控制器。电动汽车也成为时下的一个研究的主题。

1.3 论文主要内容的章节安排

本文主要的研究内容如下所示:

第1章绪论,首先介绍纯电动汽车电池管理系统的课题研究背景及其意义,纯电动汽车的概念,并设计出对论文研究的章节安排。

第2章整体方案,并根据需求提出了各种方案,对方案做了对比,选择了最终的方案。

第3章硬件系统设计,主要是设计了电池管理系统的各种的电路,包括单片机系统以及电压电流检测电路,温度检测电路。

第4章软件系统设计,主要包括了ADC程序的编写,以及CAN总线的通信等部分。

第5章系统的仿真,主要包括了系统显示界面的介绍,以及显示系统仿真的结果。

2 整体研究方案

现代电动汽车相较于传统的燃油汽车的最大区别就是电动汽车的电气化水平极高,需要很多传感器采集很多的信息。电池管理需要收集数据来达到控制和管理的作用,主要需要监控的数据有电压,电流以及温度等,在系统设计初期,针对了电动汽车的需求,提出了系统设计方案,并根据需求确定了详细的各模块的设计方案,查阅了相关的资料进行了汇总。

2.1 系统设计方案

设计主要是设计一款电动汽车电池管理系统,电池使用了的普通的高能锂电池单体12节组成了一个电池包,以管理此电池包为我们的需求来进行设计,并有如下具体的细致要求:

(1)可以检测单体的电压,也可以检测总体的电压,并且也可以检测通过的总电流;

(2)具有在充电和放电时都有可以测量电流的能力,正负电流都要分别测量;(3)可以进行实时的温度检测,检测电池的当前温度值;

(4)可以检测绝缘性能,检测电池当前的绝缘性能的好坏;

(5)具有报警功能和故障处理功能,可以发出报警声;

(6)可以进行CAN总线的通信,通过CAN总线进行信息的交互;

2.2 系统总体设计方案的确定

对于电动汽车来说,它所使用的大量单体锂电串联一起组成的动力源,涉及到电池的体积以及重量的方面,若干个串联的模块被分散安装在车体中组成了电动汽车的电池组[2]。对于电池系统来说,如果使用分布式的系统方案的话所耗费的成本就会过高,并且系统本身也会过于庞大;如果使用集中式的系统方案的话,BMS 的中心处理单元就会负担过重,所以,现在如果使用电动汽车的话,在电池管理系统中通常会使用一个折中的方案。一个庞大的电池包被12个单体的电池组成在一起的,BMU是由为每个电池包配备一个电池模块的监控单元,在这里,BMS是由一个主控单元(CMU)与多个BMU 组成的,整个电池管理系统可以分成结构上层的主控模块以及下层中的监控模块[3]。其中,监控模块与主控模块之间可以通过SCI 的总线来进行系统内部的联系,其余,CAN 总线和系统的外部间实现通讯组成的主控模块[4]。

电池管理系统中央电控单元CAN

本地电控单元

通信

外部输入信号控制信号

车载中央处理器

芯片,传感器

电池组

图1 系统总流程图

电池管理系统主要由以下几部分组成:数据采集模块、MCU 主控单片机模块、均衡模块,包括传递温度信息的温度传感器、监控电流的电流传感器和电压传感器,也包括连接这些器件的辅助器件,比如说漏电检测模块、显示单元一级需要实现控制功能的控制器件[5]。

采集模块主要是ADC 采集,可以采集电池的电压、电池的放电电流,单体电池的电压等部分组成,用来测量电压信号。

温度检测电路:对电池组的温度进行采集,温度采集非常重要,因为电池高温可能发生自燃,造成危险,因此在充电和放电过程中必须要对温度进行严格监

控,才能把危险情况降到最低[6]。

绝缘电阻的检测电路:绝缘数据的检测是为了保证电动车系统的安全工作的另一个关键点。单片机通过ADC采集可以获得正负电源以及外壳等部分的电阻值大小,如果一旦发现有电阻值不正常,小于我们标定的电阻安全值,测出触发报警,从引脚输出电平从而控制输出相应电平,此时我们设计的报警电路就会工作,发出强烈的声音指示,同时还会发出LEd闪烁报警。

故障报警电路:具有声音、光信号的报警功能,是单片机系统控制输出相对应的电平信号来控制输出。当系统采集的数据信息超过规定范围时,立刻发出声光报警。本系统采集的数据有电压数据、温度数据、电流数据以及绝缘电阻等。通过报警,可以体现对出现异常情况时的处理和改善[7]。

电压检测电路:可以对检测电池组的单体电阻电压数据,为了保证给纯电动车提供合适的电压。

CAN总线通信:该模块是用于进行数据的通信[8]。

3 硬件电路设计

3.1 单片机的选择

结合此处的需求可知,纯电动汽车电池管理系统需要的是一款带有AD功能、具有CAN通讯功能的单片机,因此我们选择了基于增强型51内核的C8051系列的单片机C8051F040,C8051F040是Cygnal生产的一个集成性高效的信号处理性的单片机,依靠其丰富的片内资源,完全可以达到我们想要的几乎全部的要求,包括内存以及丰富的IO口等部分,他几乎是达到了目前8位单片机的最高水平[9]。

如图2所示为8051单片机的全部的内部资源的结构。

这种单片机具有以下特点和功能:

(1)采用高速流水线结构的新型增强型51内核。

(2)具有我们需要的CAN总线,CAN2.0B结构。

(3)具有防止破解的内部保护,以及片上调试端口。

(4)内部有12位的高精度ADC,速度可以达到100kbps。

(5)同时也具有8位的低精度ADC,速度可以达到500kbps。

(6)内部具有12位精度的DAC两通道,满足特殊需求。

(7)内部具有64K的可在线编程的Flash空间。

(8)SRAM的大小有4KB。

(9)和普通的51单片机一样,可以外部扩展内存大小。

(10)丰富的接口包括UART,SPI,I2C。

(11)片内16位定时器5个。

(12)片内有电源电压监控器,温度传感器,以及看门狗。保证单片机在严酷的工业环境下可以稳定的运行是很重要的,因此看门狗,电源电压监控器,温度传感器这三者是很重要的,可以有效的避免程序跑飞,程序死机之类的问题,维持稳定性。

图2 C8051F040内部结构

3.2 电池管理芯片介绍

对12节电池进行管理,必须要使用专门的电池管理芯片,因为单片机是串行执行,不适合处理高响应要求的并行时间,电池12节需要实时的一直进行监控,因此需要使用电池管理芯片来进行管理,我们选择的是电池管理芯片OZ890,该芯片是由大名鼎鼎的集成电路公司O2Micro研发的。

电池管理芯片OZ890 是由凹凸科技采用结构重组的形式研究的,具有很多别的芯片没有的有的功能,它可以支持最高13节的电池,我们只需要12节,显然满足要求,同时它还具有普通的锂电池保护ic的全部功能,包括过流保护,过压保护,欠压保护等,是一个十分好的选择[10]。

OZ890 芯片采用TQFP-64的封装,具有如下性能特点:

(1)和普通的锂电池一样,需要一定的保护措施来实现它的安全和可靠性,包括充电时的过压过流,以及温度检测保护,短路检测保护等。

(2)可以通过I2C总线和单片机进行连接,包括使用I2C读取各项数据等情况。

(3)如果电池发生短路断路,则会第一时间进行切断,保护电池或者用电器的安全。

(4)实施显示电压情况,内置温度传感器,显示温度。

(5)最重要的功能是具有均衡功能,对于多节锂电池的串联系统来讲,由于电池有差异性,因此使用均衡技术进行充电是非常有必要的,OZ890

恰好支持使用均衡技术监管充电,保证每一个系统都可以运行。

3.3 电源模块的选择

电源部分是极为重要的,因此我们需要认真进行设计,使电源部分尽可能的稳定。电动车的整车供电采用的是12V输出,单片机部分需要一个5V的可靠电源,OZ890 芯片需要进行电池检测,因此需要一个尽可能宽的电压,需要±15V,风扇和蜂鸣器电压+5V。各个芯片通过DC-DC转换获得供电电压,并能起到隔离抗干扰的作用。+5V 电压通过LM2956 转换,电源模块电路如图3所示。

图3 电源模块电路

因此我们需要先把电源降压到5V,此处使用Ti的LM2956作为降压芯片。

Ti的LM2956是一款非常经典的开关电源的芯片,内部集成开关,提供最高峰值电流3A的电流输出能力,电路简单易用,并且资料成熟,便于使用。

图4 MAX743升压电路

通过查阅相关的资料,了解到MAX743升压电路的知识,MAX743电源的相关电路只能输出两个等级的电压正负15V及正负12V的电压。无法满足电路的设计,提出两个改进方法,一个是采用不一样的电阻来分压网络,第二个是从它反馈的电路入手,调整输出电压,研究表明,通过改进的方法可以得到输出电压可调的电源。通过改进电压的调节来向OZ890这个元器件提供高电压。

3.4 采样电路设计

3.4.1 传感器的选择

传感器的选择要求和作用:传感器是借助于检测元件接收一种信息,并且按照一定的规律把它转换成另一种信息的装置,其获取的信息,可以是各种物理量,化学量和生物量,而且其转换后的信号也有多种形式[11]。传感器是我们控制系统中最基础的部分,只有传感器精准的提出了相应的采集,才可以做出精准的结果。所以,对传感器有以下要求:

(1)必须要有足够量程。传感器的量程应该足够大;应该有一定的负载能力。(2)响应速度快,工作的可靠性高。

(3)与测量或控制系统匹配性好,并且转换灵敏度高,线性程度好。

(4)传感器其精度适当且稳定性良好,静态响应和动态响应的准确度能达到要求还可以长期稳定。

(5)适应性强,不因恶劣环境损坏,干扰小,噪声低,可适应我们的使用。(6)传感器性价比高。在尽可能低的成本下保持尽可能长的寿命,并且易于维修更换。现在能达到上述要求传感器是非常少的,所需的传感器应该参考其目的、使用环境、被测的对象状况、精度的要求和信号的处理等,具体条件来选择进行处理。

3.4.2 电压采集电路的设计

OZ890 芯片含有电池电压巡查电路,这些电路集成了多路单体才构成,根据图5的设计,主要是把转换好的数据借助I2C 总线传送到C8051F040。鉴于OZ890 芯片巨头能够自动平衡的功能。电路由两部分组成,单体电压的采集电路,还有另一种电路叫做均衡电路[12]。

图5 电压采集电路

如图5所示BATn+1 和BATn 为OZ890 芯片的入口端,反馈电阻起到的作用是检测电流,以防止过流。同时OZ890具有均衡功能,当电池充电完成或者单节电池电压过高后,MOS管闭合来分走电流,避免过充。

3.4.3 电流检测电路的设计

电流作为估计电池相关的容量以及参数,所以系统对电流的采集有很高的要求,不仅要保证采样中电流由高精度,同时要求必须具有较强的抗干扰能力,也就注定了电流传感器的选择是相当重要,目前的电流传感器大体有以下几种,互感器,分流器,以及光纤和霍尔电流传感器,光纤的性能是最好的,但是它的价

格非常昂贵,一半只用于一些不可避免的,无法替代的通信领域中,很少用到控制中,霍尔电流互感器由于具有很好的抗震性,但是它的机械性能却很差,一般不容易检修和更换,分流器的测量范围很广,耐机械性能良好,相对来说造价便宜经分析比较后,选择分流器比较适合本系统的电流检测。本文采用超光仪表公司生产的FL一2型分流器(75mA一100A)作为电流检测传感器OZ8920芯片自身带有温度传感器,如FL—2型分流器图6所示。

图6 FL—2型分流器

3.4.4 温度检测电路的设计

本文温度信号采集是采用DS18B20来完成的,18B20是最常用的一种数字型的温度传感器,价格低,体积小,操作易,被广泛使用在各个领域。区别于传统的模拟温度传感器,他可以不用ad采集,直接输出温度值。它能够在很短的时间内完成数字量的交换,交换12位的时间可以达到几百毫秒,而交换9位的几乎只需要几十毫秒。DS18B20芯片有两种供电方式,分别为外部电源和寄生电源[13]。当其采用寄生供电方式时,温度变换功率来源于数据总线,内部结构框如图7所示,温度测量电路如图8所示。当采用寄生电源供电时,需要把其中的两个输入端接地。当处于写存储器操作和温度变换操作时,这是总线上必须有一个向上拉的电压,启动时间大约几微秒。

图7 DS18B20芯片内部结构

图8 温度检测电路

硬件处理需要其他相对软件的配合使用,对于该DS18B20和单片机之间是使用的1-wire总线通信,因此对读写时序要求极其严格,必须要遵循时序,否则读取到数据会失败。

3.4.5 绝缘电阻检测电路的设计

绝缘电阻检测是非常重要的一环,关系着驾驶员的生命安全,如果一旦出现漏电现象,会产生严重后果,乃至威胁性命[14]。因此我们设计的绝缘电阻检测装置,可以有效的检测车辆的绝缘电阻的大小,如果一旦电阻大小不对,马上停车报警。其高压部件(如高压直流电池组,驱动部分,功率部分,电机部分等等)绝缘性变差后,电阻变低,因此可能会产生漏电(可能漏电流很小),使车身带点电,严重情况下产生漏电,非常有可能产生事故,危害乘客的安全,损坏电动

车的设备,因此我们要防患于未然将漏点问题提早检测出来,才可以满足我们电动车漏电检测的要求。

当今,全世界很多学者对电动汽车直流系统的绝缘电阻检测方法做了大量研究工作,其中检测方法多部分采用外接测量电阻的方法。此方法只有母线端接地的条件下才准确检测出绝缘故障,但在正负母线双端对称接地时无法精确计算出绝缘电阻。电动汽车运行中,由于电机控制器等高压零部件电磁辐射较强,可能绝缘检测单元在车辆运行中的严格电磁干扰状态下,所以我们考虑到可能会出现因为干扰问题出现了错误的检测,因此我们需要加入一些错误状态判别的方案。故选择有源绝缘电阻检测方法。有源绝缘检测方法原理如图9所示,我们通过高频的磁隔离变压器给车身之间诸如短暂的高压电,然后我们使用单片机对这个压降进行测量,根据电压值即可测量出导通的电阻率,进而获得我们想要的电阻值。车体通过开关S1 ,S2 将电阻R1 ,R2 ,R3 ,R4 R5 ,R6 ,R7 ,R8 与正负直流母线相连,S3 ,S4为MOS管,MOS管S3 ,S4 的通断由单片机发出PWM信号控制,当MOS管导通后会在变压器副边形成700V的高压。

U

+

R110

Ω

R3

R3

R4

10Ω

10Ω

10Ω

R5

10Ω

R6

10

Ω

R7

10

Ω

R8

10Ω车体

R11

10Ω

R12

图9 绝缘电阻检查电路

3.4.6 故障报警模块电路的设计

在该系统设计中,当锂电池组单体电压、总电压被检测到为方便人们了解电池组运行情况,主控单元中电路板上设置了指示灯及蜂鸣器来显示不同的电池故障。如报警电路图10所示,发光二极管可以作为指示灯选用。选用LED灯来代

表的故障显示。故障分为的两级是临界故障及严重故障。如果发生临界故障的情况下,对应的故障指示灯将会闪烁。如果发生严重故障时,对应的故障指示灯将常亮。如果无故障发生时额情况下,所有的指示灯都熄灭。

图10 报警电路

3.4.7 CAN通信模块

(1)CAN总线基本原理

德国Bosch公司最早提出关于CAN总线的概念,之后经过一段时期的研究,开始出现了它的成品,严格的说作为这种工业性的串行总线,它在电子领域有着广泛的应用[15]。CAN总线具有如下的特点:

1) 在CAN总线中,短帧结构是CAN总线中基本的结构,然后每一帧的数

据都进行了CRC校验,一旦错误即可补发,因此可以大大的保证在任

何情况下的传输的正确率,并且就算是干扰大,因此补发的机制也可以

降速来做的准确率。

2) 只需要两个线就可以实现总线结构,总线上可以挂很多的子节点。

3) 有优先级的概念,因此如果出现了不同的节点的总裁问题,可以优先解

决高优先级的。

4) 数据通信速率非常快。

5) 可靠灵活多样是他的特点,可以进行点对点的通信,也可以将进行点对

面的通信,是一个非常好的总线。

6)系统的柔软性。在多数情况下,在与总线相连的单元不存在能够识别的信息来确保其他单元能够找到信息的位置。当总线增加单元时,它因为

没有地址信息,对其他单元不构成影响,与他连接的其他单元只需要保

持原有的配置即可。

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

电动车辆动力电池组电压采集电路设计

电动车辆动力电池组电压采集电路设计 作者:张彩萍, 张承宁, 李军求 作者单位:北京理工大学机械与车辆工程学院,100081 刊名: 电气应用 英文刊名:ELECTROTECHNICAL APPLICATION 年,卷(期):2007,26(12) 被引用次数:3次 参考文献(4条) 1.朱正动力电池组分布式管理系统设计及实车试验 2006 2.卢居霄;黄文华;陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电源技术 2006(05) 3.何朝阳;戴君蓄电池在线监测系统的设计与实现[期刊论文]-今日电子 2006(10) 4.童诗白;华成英模拟电子技术基础 2000 本文读者也读过(3条) 1.张彩萍.张承宁.李军求.张玉璞.ZHANG Cai Ping.ZHANG Cheng Ning.LI Jun Qiu.ZHANG Yu Pu电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用2008,34(9) 2.赵慧勇.罗永革.王保华.刘珂路.Zhao Huiyong.Luo Yongge.Wang Baohua.Liu Kelu多路电压采集单元模块仿真设计[期刊论文]-湖北汽车工业学院学报2010,24(2) 3.卢居霄.黄文华.陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电子设计应用2006(5) 引证文献(3条) 1.张彩萍.张承宁.李军求.张玉璞电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用 2008(9) 2.雷晶晶.李秋红.龙泽.王太宏.张金顶锂电池组单体电压精确检测方法[期刊论文]-电源技术 2012(3) 3.雷晶晶.李秋红.陈立宝.张金顶.王太宏动力锂离子电池管理系统的研究进展[期刊论文]-电源技术 2010(11)引用本文格式:张彩萍.张承宁.李军求电动车辆动力电池组电压采集电路设计[期刊论文]-电气应用 2007(12)

电池管理系统在电动汽车中的应用

第23卷第3期 2010年6月 山东科学SHANDONG SCIENCE Vol.23No.3Jun.2010 收稿日期:2010- 04-15作者简介:于良杰(1977-),男,工程师,从事实时系统,汽车电子的研究。E- mail :embedlinux@126.com 文章编号:1002-4026(2010)03-0087-05电池管理系统在电动汽车中的应用 于良杰1,乔昕2,张许峰2,邓楠 2(1.山东省科学院自动化研究所,山东省汽车电子技术重点实验室,山东济南250014; 2.北京尚能联创科技有限公司北京10029) 摘要:本文介绍了电池管理系统(Battery Management System )的发展以及应用在电动汽车中所面临的前端数 据采集、电池均衡管理、SOC 电量计量、实时通信以及电池绝缘监测等关键问题。 关键词:电动汽车;电池管理系统 中图分类号:U468.3文献标识码:B 随着人们环保意识的增强以及能源的日趋紧张,电动汽车受到国家和民众的广泛关注。电动汽车是全部或者部分由电能驱动电机作为动力系统的汽车,因此,电池系统作为电动汽车的动力系统在整个电动汽车 的研究和发展中具有举足轻重的作用。电池系统一般分为电池和电池管理系统两个部分。就电池而言, 铅酸、镍氢、锂离子或锂聚合物电池在电动汽车的研究中都有应用。锂离子电池由于其比能量大、放电电压高、循环寿命长、无记忆效应、具有快速充电能力、自放电速率小、具有多种安全保护措施、密封良好,无泄漏现 象、 环保等众多优点,使得其在未来电动汽车中的应用前景非常广阔。就电池管理系统而言,在锂离子电池被广泛关注之前,已经有学者针对铅酸和镍氢电池开展了电池管理系统的研究,这些研究包括数据采集、SOC 估算、实时通信、均衡、绝缘监测等。由于锂离子物理特性相当活跃,过充、过放更容易对锂离子电池带来损坏,这就对电池保护系统的性能提出了更高的要求。一个好的电池管理系统可以确保车辆的行驶安全、增加电池使用寿命、提供给驾驶员有用的信息、减少能源消耗等,是电动汽车的一个重要组成部分。 国外对电池管理系统的研究已经有几十年了,并取得了一定的成果。我国对电动汽车电池管理系统的研究还处于起步阶段,目前清华大学、北京理工大学、同济大学、北京航天航空大学在电动汽车的电池管理系统上取得了一定的研究成果,并应用于奥运大巴的项目中。 总的来说,电池管理系统按照实现方式可以分为两大类:一类是基于芯片的电池管理系统;另一类是基 于分立式器件的电池管理系统。基于芯片的电池管理系统一般将前端采集电路、 均衡电路以及电量计量算法、通讯功能等集成在芯片中,辅以外围电路完成对电池的管理功能,如德州仪器在电池管理IC 领域的bq 系列芯片[1-2],凹凸科技的OZ890电池管理芯片[3]等,具有更小的体积、更高的集成度等优势;基于分立器件的电池管理系统,有基于纯硬件和基于软硬件协调工作的解决方案,而软硬件协调工作方案由于实现更灵活、功能更完善,被广泛采用,如各院校和科研单位开发的电池管理系统、北京市中天荣泰科技有限公司的智能电池管理系统等,分立器件方案在产品设计的灵活性上占有一定优势。 无论是采用芯片还是采用分立器件搭建系统,都要面临一些电池管理系统需要解决的关键问题,而这些问题也被国内外学者广泛的研究,他们包括前端数据采集、数据存储、保护功能、均衡管理、电池健康状态、电量计量和实时通信,针对不同的应用需求可能还需要内置充电管理、后备态管理、绝缘监测等功能,其结构见

纯电动汽车电池管理系统的设计说明书模板

纯电动汽车电池管理系统的设计说明 书

毕业设计说明书 纯电动汽车电池管理系统的设计 院、部: 学生姓名: 指导教师: 职称 专业: 班级: 完成时间: 摘要

随着经济的发展, 电力电子设备的更新速度更是突飞猛进, 然而传统的能源煤, 石油, 天然气的储量却在日渐减少, 这样带来的能源问题就引起了广大用户的关注, 作为生活中的重要组成部分, 汽车越来越被称为了生活得必须品,能源的减少引发了汽车动力的改革, 而以电能代替传统的汽油的汽车便走进了人们的视野中, 它污染小, 对周围的影响也小。电动汽车的主要特色就是它的电池工程, 而对电池的管理系统也就成了试下研究的热点。电池管理系统作为电动汽车上不可缺少的一部分, 在对电动车的电池管理, 充放电控制, 电池监控等方面有着很重要的作用。 本课题拟以中国长安纯电动汽车的设计要求和主体设计规划为蓝本, 设计一款以单片机作为主要控制器的电池管理系统, 实现对电池的综合检测管理的设计。主要包括电压检测、电流检测、充电检测、放点检测, 并针对性的设计外围CAN总线接口电路, 以方便上级控制系统和我们设计的电池管理系统有机结合。 关键字: 电动汽车, 充电管理, 锂电池

ABSTRACT With the development of economy, the updating speed of power electronic equipment is advancing by leaps and bounds. However, the traditional energy of coal, oil, natural gas reserves but in dwindling, energy problem has caused attention of the majority of users, as an important part of life, more and more vehicles is known to life necessities, energy reduction caused by the reform of the electric vehicle, and the electrical energy takes the place of the traditional gasoline car went into people's field of vision, it little pollution, influence on the surrounding is small. The main feature of electric car is its battery engineering, and the battery management system has become a hot spot for the study. As an indispensable part of electric vehicle, battery management system plays an important role in battery management, charge discharge control, battery monitoring and so on.. This paper intends to China Changan pure electric vehicle design

电池管理系统 (BMS)

如何重新定义电动汽车电池管理系统 (BMS )? 来源:英飞凌公司 作者:Klaus & Bj?rn2013年12月13日 12:01 0 分享 订阅 [导读] 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。 关键词:电池管理处理器英飞凌电动汽车 随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未 来,甚至车辆控制单元 (VCU ) 的部件和功能也会与 BMS 相关联。 图1 配备所有相关部件的电动汽车电池管理系统 (BMS )

未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂定制,会因系统配置不同而存在很大差异。因此,不可能制定出适用于每一个电动汽车制造商的完整的 BMS 要求列表。然而,电池管理系统处理的任务范围不断扩大,这一事实毋庸置疑。BMS 最常见的要求包括安全要求、控制和监控功能、待机功能、热管理、加密算法和预留可扩展接口增加新功能。 安全要求 在 ISO 26262 安全标准范围内,如 BMS 等特定的电气和电子系统将被归类为从 ASIL C 至 ASIL D 的高安全类别。与之对应的故障检测率至少为 97% 至 99%。电池系统中最危险的故障来源有:因电缆磨损或事故而导致车辆底盘出现高电压漏电而未被发现;各种引起高电压电池起火或爆炸的原因:例如对电池过度充电(例如在公用电网上或因停电恢复引起)、电池过早老化(例如爆炸性气体泄漏)、液体进入和短路(例如因雨水引起)、滥用(例如维修不当)和热管理错误(例如冷却失效)等。 在安全方面,主开关(主继电器)在避免与高电压相关的事故中起到了重要的作用,它可确保 BMS 电子系统能够作出充分的故障反应。发生故障时,BMS 模块会在适当的故障反应时间内断开开关(例如 10ms 以内)。非关键故障安全条件的特征通常是:如果 BMS 微控制器(MCU)失效,甚至在控制器逻辑完全失效的情况下,独立的外部安全元件(例如窗口看门狗)仍可确保主开关继电器可靠地打开逆变器(正/负)的两个高电压触点。BMS 系统中还集成了其他安全功能,包括漏电电流监控和主开关继电器监控。 控制和监控功能: 其他 BMS 功能包括对电动汽车中昂贵的高电压电池的监控、保养和维护。BMS 控制和监控功能来源于安装于电池包中的电子平衡单元。管理各个电池组内(battery slave pack)的平衡,同时精确地感测各个单电池的电压。平衡芯片通常可管理多达 12 个单电池组成的群组。相关数量的电池群组串联后可产生高达数百伏的高中间电路电压以供逆变器控制之用,这是电动汽车的逆变器电驱动所必需的。 位于主开关对所有高电压电池的总电流的测量,以及从芯片对各个单电池电压的单电池精确同步监控,BMS 可使用特定算法(例如,基于电池化学 Matlab Simulink 模型)评估充电状态及健康状态等电池参数。BMS 通常不会安装在非常靠近高电压电池的位置,但是通常会通过冗余的流电去耦总线系统(比如 CAN 或其他适合的差分总线)与电子平衡从动元件相连接。它由汽车电压(12 伏电池)供电,因此可通过现有的网络架构与现有的控制单元群组结合使用,无需进一步的流电去耦措施。最后,它还改善了安全性,因为它让 BMS 能够在高电压电池发生机构或化学缺陷时确保功能正常并且安全地断开主开关。 随着电池专用的化学/电气算法日益复杂,预计 BMS 将需要使用拥有 2.5MB 至 4MB 闪存和强大的多核处理器架构的 AURIX 等微控制器(MCU)。这种组合可以保证有足够的内存用于全面校准参数并提供足够的计算能力(图 2)。

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车的电池管理系统

电动汽车中的电池能量管理系统 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能

电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行 驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能 电池能量管理系统随时参与整车检测工作,检测电池的工作状态,尤其对每只电池的技术状态进行检测分析,将检测的数据在车辆停驶,充电之前“通知”充电机,即“车与机”的对话。告诉充电机,电池组的工作状态及每只电池的技术状态,“落后”电池和“先进”电池性能差异。此时充电机应当采用什么样的充电模式给电

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统 解析 1.Tesla目前推出了两款电动汽车,Roadster 和Model S,目前我收集到的 Roadster的资料较多,因此本回答重点分析的是 Roadster的电池管理系统。 2.电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。 BMS勺主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管

理系统(Battery Thermal Man ageme nt System, BTMS). 1.热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子

电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0° C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30° C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池

电动汽车整车电池热管理研究

电动汽车整车电池热管理研究 发表时间:2018-11-17T18:52:14.633Z 来源:《建筑模拟》2018年第24期作者:汪勇[导读] 笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。汪勇 身份证号码:3408811992****0113 安徽江淮汽车集团股份有限公司安徽合肥 230000摘要:笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。关键词:电动汽车;整车电池;热管理前言: 确保电池组工作在安全区间内,提供车辆控制所需的必需信息,发生意外的情况的时候要及时响应处理,并按照环境温度、电池状态和车辆需求等决定电池的充放电功率等这就是电池管理系统的主要任务。监测电池参数、估计电池状态、在线故障诊断、充电控制、自动均衡、热管理等。是BMS的主要功能。 1 电动汽车整车电池热管理的意义整个电动汽车的使用性能和寿命和安全性等内容直接受到电动汽车的电池热管理问题的影响,因此需要我们着重注意,在电动汽车中,蓄电池往往是重要的动力供应部分,所以如何提高电动汽车整车的性能以及安全性需要从蓄电池入手,蓄电池的温度特性关系着整个电动车的耐久性和使用寿命,常见的锂电池具有多方面的优点,比如循环寿命较长、允许工作温度范围较大、比能大、自放电率低等。所以目前的电动汽车常选用锂电池作为动力电源,在锂离子电池的热管理工作中需要根据锂离子的具体发热方式进行管理,通过对电池包结构的设计来进行热管理的方式和策略的设定,从而实现整个电池组中单体电池之间的串联和合理温度的保障,整个电池组中任何一个电池出现问题都会造成电池组整体的性能下降,所以要分别注重,例如在相同充电的条件下,不同的温差将会出现不同的电池组荷电状态,而电池热管理正是针对电池的热相关问题来进行的技术内容,通过热管理的方式来保障电池的正常动力供应,通常的热管理系统主要是在电池温度较低的情况下做好预热情况,保障低温充电、放电的高效和安全,其次是电池长时间工作之后温度升高,热管理进行有效的散热,避免因为温度过高造成的事故,另外在电池组之间的温度上也要进行均衡,避免产生过大的温度差异,造成局部过热,影响电池组的寿命和安全[1]。 2 电动汽车整车电池热管理的措施 2.1 以锂电池为例现阶段,锂电池是电动汽车运用的电源供应主要方式,所以以锂电池为例,在电动汽车的整车电池管理工作中,锂电池的电池温度对于整个车辆的使用和功率性能有直接的影响,所以需要进行热管理的控制,当温度较低时将造成电池容量的迅速衰减,在电动汽车的运行中不能提供足够的能源,例如在0度以下电池的可用容量大大减少,温度过低的情况还有可能出现瞬间的电压过充问题,出现电池内部锂的析出,有可能引起短路的问题,另外,在锂电池的热相关问题上,电池安全性的问题也与电池热问题相关,在生产和制造的过程中不当操作容易造成电池的局部过热,出现放热反应,严重的甚至造成爆炸、起火等严重事故,出现人员的安全隐患。除了以上问题,在锂电池的存放和工作过程中的环境温度也将影响到电池的寿命,通常而言,在电池的存放和工作过程中最佳温度为 10-30度之间,温度的过高或过低都会造成电池的寿命和安全问题,电力的需求使得动力电池的大型化成为一种趋势,这就更容易造成内部温度的不均匀和局部温度过高的现象,造成电池寿命的问题,电池加速衰减,从而影响到电动汽车的使用,在具体的运行过程中,动力系统必须要及时降低锂离子电池的问题,保障电池的安全性和足够的动力[2]。 2.2 空气强制对流在电池的热管理工作中,散热是一个重要的内容,空气的强制对流是散热的重要方式,将空气作为主要的传热介质,通过空气在模块的穿过来消散热量,从而达到散热的目的,但是空气本身的冷却效果是很小的,这就需要强制的空气冷却方式,运动产生的流动空气带走电池的热量,从而尽可能的降低电池温度,在强制对流的实现中,需要注意的是电池间的散热槽、距离等方面的设计工作,只有做好了科学的散热面积以及电池封装工作才能有效的进行散热工作,通常常见的电池组采用串联和并联式的通道,在仿真结果下对电池的散热性进行研究可以得出热辐射在整个散热过程中占有非常大的比例,所以强化传热是降低温度的有效措施,通过风冷的方式能够有效的进行电池的散热工作,并且结构简单,成本较低,但是同时冷却和加热的速度较慢[3]。 2.3 液体冷却通常在普通的要求下采用空气的流通方式就可以满足基本的散热要求,但是在较复杂的工况和要求下空气对流的方式就不能满足热管理的要求,所以在这种情况下我们通常采用液体冷却的方式,通过液体的方式进行电池组的热交换,常见的采用模块间布置管线或者模块布置夹套的方式,通过液体的沉浸来进行热交换,常见的传热介质包括油、制冷剂、水、乙二醇等,由于液体的导电问题,所以必须采取有效的绝缘措施,避免出现短路的现象,造成严重事故。传热介质的传热速率主要是根据液体的热导率、流动速率、密度、粘度等确定,在相同的流速和条件下,液体的传热速度大大高于空气的传热速度,这是由于液体本身的特点高于空气的导热率,液冷的方式能够热传递效率高、速度快,但是同时也有重量较大、部件较为复杂、保养过程复杂等缺点。通过试验结果可以证明液体的热传递效果大大高于空气介质的传热效果,但是同时系统较为复杂,并联型的混合动力车中只采用空气的冷却方式即可保证散热要求,纯电动汽车由于要求较高则需要液体冷却的方式,通过流道设计的研究可以得出并联流道整体温度要低于串联流道,在具体的设计和应用角度来看,串联流道结构更适用于产品的使用,综合而言整体散热较好,随着电池模块容量的增大,恶劣环境下运行对电池性能的要求越来越苛刻,高效的电池热管理系统极其重要[4]。结语 在电动汽车管理中,要重视整车电池的热管理,在设计不一样的汽车时,要根据不一样的汽车特点选择合适的热管理方式,从而确保电池的动力供应与热管理效果,使电动汽车的寿命与运行质量能得到保证。参考文献:

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 王楠 摘要:主要针对电动汽车动力电池运行检修管理, 研究了电池接收检验、运行管理、日常维护、运行检测与安全管理等关键环节, 结合电池运行的技术特点, 对电池的日常检测、维护与检修等进行了分析, 分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法, 同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 目录: 摘要 1、动力电池的检修内容 (1)电压异常(2)温度异常(3)外观异常(4)检测振动对电池的影响 2、动力电池的检测系统总成 3、动力电池的维护 (1)充电不足与过充电 (2)大电流放电与过放电 (3)要及时充电 (4)短时充电 4、如何解决电池硫化与修复仪的使用 引言:在环境污染日益加剧,能源形势日益严峻的现代生活中,电动汽车无疑以其对排碳量减少无可非议的贡献受到全球的关注。当前与电动汽车有关的研究热点很多,但电池技术无疑就是其中重之又重的一块领域。现在应用于电动汽车的电池大多为电化学电池,在电池的发展史之中,铅酸蓄电池就是最成熟的电动汽车蓄电池,动力电池在能量、安全性、使用寿命等各个方面进行一代又一代的优化,才有了今天相对较为完备的电池体系。在今年4月21日至29日的北京国际车展当中备受人瞩目的典型车型都就是新出的纯电动汽车,不管就是国内还就是国外,许多汽车厂商都推出了自己的纯电动车型。由此可见在未来的汽车发展当中电动汽车将成为未来汽车发展的主要方向,然而由于受到电池技术的影响,纯电动汽车一直难以推广到市场。本文主要就是结合电池产业的厂商,引出当下比较主流的电池技术,从中了解电动汽车动力电池的结构,并结合各电池厂商分析可以怎样改正,以及探究了电动电池的检测与维护方法。 动力电池的结构 1、电池盖 2、正极--活性物质为氧化钴锂 3、隔膜--一种特殊的复合膜 4、负极--活性物质为碳 5、有机电解液 6、电池壳 动力电池的特点 1、高能量(EV)与高功率(HEV); 2、高能量密度;

电动汽车电池管理系统(BMS)的研究

电动汽车电池管理系统的研究 摘要 在电动汽车中,电池系统是其中不可或缺的重要组成部分它对电动汽车的续航里程、加速能力和最大爬坡度都会产生直接的影响,由于蓄电池特性高度的非线性、结构的特殊性故容易导致电池寿命的缩短以致损坏。所以电池管理系统是电动汽车的必备重要部件,与电池系统、整车控制系统共同构成电动汽车的三大核心技术。它能保护电动汽车电池的安全可靠使用,发挥电池的能力和影响其使用寿命,通过一系列的管理和控制,从而保障了电动汽车的正常运行。目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一。为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 关键词:电动汽车;电动汽车电池;电池管理系统;功能 目录

1前言 (3) 1.1本研究的意义 (3) 1.2电池管理系统在国内外的发展概况及存在问题 (3) 2电动汽车电池管理系统 (4) 2.1电池管理系统的运行模式 (4) 2.2电池管理系统的技术 (5) 3本文结论 (8) 参考文献 (9)

1前言 随着能源紧缺、石油涨价、城市环境污染的日益严重,替代石油的新能源的开发利用越来越被各国政府所重视。所以说随着各国対新能源汽车的推广,电动汽车会被越来越多的关注,电池系统是电动汽车的关键部件,由于电动汽车的显著特点和优势,各国都在发展电动汽车。根据汽车的使用特点,其实用的动力电池一般应具有比能量高、比功率大、自放电少、工作温度范围宽、能快速充电、使用寿命长和安全可靠等特点,因此,电池管理系统对电动汽车的性能起到了决定性的作用。 1.1本研究的意义 综合各国的电动汽车研究情况,可以发现共同存在的一个现象,即电池是整个电动汽车研究中出问题最多的部件。电动汽车用电池的使用性能和寿命远不能满足电动汽车运营的要求制约着电动汽车事业的发展。能源短缺和环境污染是现今世界汽车工业发展面临的两大挑战,因此开展新能源汽车的研究已经刻不容缓。虽然电池电动汽车有良好的前景,但目前技术门槛比较高尚未产业化,同时燃料电池的可靠性、寿命有待改进,氢气的基础设施有待建立,氢气的来源和供应有待解决。 本研究通过对电动汽车电池和电池管理系统的存在的问题,技术难题和前景来分析动力电池及其管理系统的现状和发展趋势。 1.2电池管理系统在国内外的发展概况及存在问题 近年来,我国的汽车行业发展迅速,已成为世界第四大汽车生产国和第三大汽车消费国。但是我国的石油资源短缺,目前石油进口量以每年两位数字的百分比增长,预计到2010年进口依存度将接近50%。因此大力发展新能源汽车,用电代油是保证我国能源安全的战略措施。因此大力发展新能源汽车是实现我国能源安全、环境保护以及中国汽车工业实现跨越式、可持续发展的需要。 车用动力蓄电池是电动汽车产业化的关键。B电动汽车电池管理系统(BMS)是电动汽车中一个越来越重要的关键部分,近年来已经有了很大提高,但在采集数据的可靠性、SOC的估计精度、均衡技术和安全管理等方面都有待进一步改进和提高。所以,大部分企业在电动汽车研制中曾遭遇尴尬,车用动力电池不仅是制约电动汽车规模发展的技术瓶颈,而且是电动汽车价格居高不下的关键因素,其成本占整车成本的30%~50%。因此,动力BMS的性能对电动汽车使用成本、节能和安全性至关重要。 我国在这方面的研究还刚刚起步,即使美国等汽车工业发达国家的研制工作也不完善我国在“十五”期间设立电动汽车重大研究项目,积极推进BMS研究、开发和工程化应用,取得了一系列的成果和突破。在电动汽车领域,我国与发达国家的科技水平差距不是很大,决定电动汽车产业成熟度的关键因素是动力电池技术,目前中国企业在电

相关文档
最新文档