顺序存储,链表存储 比较

顺序存储,链表存储 比较
顺序存储,链表存储 比较

顺序存储:

线性表的顺序表:指的是用一组地址连续的存储单元,依次存储线性表的数据元素。

线性表的顺序存储结构具备如下两个基本特征:

1、线性表中的所有元素所占的存储空间是连续的(即要求内存中可用存储单元的地址必须是连续的)。

2、线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。

即:线性表逻辑上相邻、物理也相邻(逻辑与物理统一:相邻数据元素的存放地址也相邻),则已知第一个元素首地址和每个元素所占字节数,则可求出任一个元素首地址。

优点:

1、无须为表示结点间的逻辑关系而增加额外的存储空间。

2、可以方便的随机存取表中的任一结点。

3、存储密度大(=1),存储空间利用率高。

缺点:

1、插入和删除运算不方便,需移动大量元素。

2、由于要求占用连续的存储空间,存储分配只能按最大存储空间预先进行,致使存储

空间不能得到充分利用。

3、表的容量难以扩充。

链表存储:

线性表的链式存储:指用一组任意的存储单元存储线性表中的数据元素。

线性表的链式存储结构具备的基本特征:

链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针。

优点:

1、插入、删除操作很方便,可通过修改结点的指针实现,无须移动元素。

2、方便扩充存储空间。

缺点:

1、不能随机存取元素。

2、存储密度小(<1),存储空间利用率低。

总结:

1、顺序表适宜于做查找这样的静态操作;

链表宜于做插入、删除这样的动态操作。

2、若线性表的长度变化不大,且其主要操作是查找,则采用顺序表;

若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。

实验一 顺序表与链表 成品

实验一顺序表与链表 一、实验目的 1、掌握线性表中元素的前驱、后续的概念。 2、掌握顺序表与链表的建立、插入元素、删除表中某元素的算法。 3、对线性表相应算法的时间复杂度进行分析。 4、理解顺序表、链表数据结构的特点(优缺点)。 二、实验预习 说明以下概念 1、线性表:线性表是最常用且最简单的一种数据结构。一个线性表是n个数据元素的有限 序列。 2、顺序表:线性表的顺序存储结构或顺序映像,通常,称这种存储结构的线性表为顺序表。 3、链表:指针域中存储的信息称作指针或链。N个接点连接成一个链表,故又称线性链表。 三、实验内容和要求 1、阅读下面程序,在横线处填写函数的基本功能。并运行程序,写出结果。 ●#include ●#include ●#define ERROR 0 ●#define OK 1 ● ●#define INIT_SIZE 5 /*初始分配的顺序表长度*/ ●#define INCREM 5 /*溢出时,顺序表长度的增量*/ ●typedef int ElemType; /*定义表元素的类型*/ ●typedef struct Sqlist{ ●ElemType *slist; /*存储空间的基地址*/ ●int length; /*顺序表的当前长度*/ ●int listsize; /*当前分配的存储空间*/ ●}Sqlist; ● ●int InitList_sq(Sqlist *L); /* 构造一个空的线性表L */ ●int CreateList_sq(Sqlist *L,int n); /* 不断地插入元素 */ ●int ListInsert_sq(Sqlist *L,int i,ElemType e);/* 在L中第i个位置之前插 入一个数据元素e,L的长度加1 */ ●int PrintList_sq(Sqlist *L); /*输出顺序表的元素*/ ●int ListDelete_sq(Sqlist *L,int i); /*删除第i个元素*/

数据结构实验五矩阵的压缩存储与运算学习资料

数据结构实验五矩阵的压缩存储与运算

第五章矩阵的压缩存储与运算 【实验目的】 1. 熟练掌握稀疏矩阵的两种存储结构(三元组表和十字链表)的实现; 2. 掌握稀疏矩阵的加法、转置、乘法等基本运算; 3. 加深对线性表的顺序存储和链式结构的理解。 第一节知识准备 矩阵是由两个关系(行关系和列关系)组成的二维数组,因此对每一个关系上都可以用线性表进行处理;考虑到两个关系的先后,在存储上就有按行优先和按列优先两种存储方式,所谓按行优先,是指将矩阵的每一行看成一个元素进行存储;所谓按列优先,是指将矩阵的每一列看成一个元素进行存储;这是矩阵在计算机中用一个连续存储区域存放的一般情形,对特殊矩阵还有特殊的存储方式。 一、特殊矩阵的压缩存储 1. 对称矩阵和上、下三角阵 若n阶矩阵A中的元素满足= (0≤i,j≤n-1 )则称为n阶对称矩阵。对n阶对称矩阵,我们只需要存储下三角元素就可以了。事实上对上三角矩阵(下三角部分为零)和下三角矩阵(上三角部分为零),都可以用一维数组ma[0.. ]来存储A的下三角元素(对上三角矩阵做转置存储),称ma为矩阵A的压缩存储结构,现在我们来分析以下,A和ma之间的元素对应放置关系。 问题已经转化为:已知二维矩阵A[i,j],如图5-1, 我们将A用一个一维数组ma[k]来存储,它们之间存在着如图5-2所示的一一对应关系。 任意一组下标(i,j)都可在ma中的位置k中找到元素m[k]= ;这里: k=i(i+1)/2+j (i≥j) 图5-1 下三角矩阵 a00 a10 a11 a20 … an-1,0 … an-1,n-1

k= 0 1 2 3 …n(n- 1)/2 …n(n+1)/2-1 图5-2下三角矩阵的压缩存储 反之,对所有的k=0,1,2,…,n(n+1)/2-1,都能确定ma[k]中的元素在矩阵A中的位置(i,j)。这里,i=d-1,(d是使sum= > k的最小整数),j= 。 2. 三对角矩阵 在三对角矩阵中,所有的非零元素集中在以主对角线为中心的带内状区域中,除了主对角线上和直接在对角线上、下方对角线上的元素之外,所有其它的元素皆为零,见图5-3。 图5-3 三对角矩阵A 与下三角矩阵的存储一样,我们也可以用一个一维数组ma[0..3n-2]来存放三对角矩阵A,其对应关系见图5-4。 a00 a01 a10 a11 a12 … an-1,n-2 an-1,n-1 k= 0 1 2 3 4 … 3n-3 3n-2 图5-4下三角矩阵的压缩存储 A中的一对下标(i,j)与ma中的下标k之间有如下的关系: 公式中采用了C语言的符号,int()表示取整,‘%’表示求余。

顺序存储结构和链式存储结构

第二次作业 1. 试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 2 .描述以下三个概念的区别:头指针、头结点、首元结点(第一个元素结点)。在单链表中设置头结点的作用是什么? 3.已知P结点是双向链表的中间结点,试从下列提供的答案中选择合适的语句序列。 a.在P结点后插入S结点的语句序列是-----------。 b.在P结点前插入S结点的语句序列是-----------。 c.删除P结点的直接后继结点的语句序列是----------。 d.删除P结点的直接前驱结点的语句序列是----------。 e.删除P结点的语句序列是------------。 (1)P->next=P->next->next; (10) P->prior->next=P; (2)P->prior=P->prior->prior; (11) P->next->prior =P; (3) P->next=S; (12)P->next->prior=S; (4) P->prior=S; (13) P->prior->next=S; (5)S->next=P; (14) P->next->prior=P->prior (6)S->prior=P; (15)Q=P->next; (7) S->next= P->next; (16)Q= P->prior; (8) S->prior= P->prior; (17)free(P); (9) P->prior->next=p->next; (18)free(Q); 4. 编写程序,将若干整数从键盘输入,以单链表形式存储起来,然后计算单链表中结点的个数(其中指针P指向该链表的第一个结点)。

实验1-2顺序表和链表基本操作_参考答案

实验1、2:线性表的应用参考代码 一、实验预备知识 1.复习C中编写函数的相关内容。 2.复习如何用主函数将多个函数连在一起构成一个C完整程序。 二、实验目的 1.掌握线性表的顺序和链式存储结构 2.熟练运用线性表在顺序存储方式下的初始化、创建、输出、插入和删除运算 3.熟练运用线性表在链式存储方式下的创建、输出、插入和删除运算 三、实验要求 1.编写初始化并创建线性表和输出线性表的算法。 2.编写对线性表插入和删除运算算法,要判断位置的合法性和溢出问题。 3.编写有序表的插入和删除运算算法。 4.编写一个主函数,将上面函数连在一起,构成一个完整的程序。 5.将实验源程序调试并运行,写出输入、输出结果,并对结果进行分析。 四、实验内容 顺序表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.初始化并建立顺序表。(开辟的存储空间大小为8) 3.编写顺序表输出算法。 4.依次插入3、21、15、99四个数,分别插入在第1、8、4和12位置,每插入一次都要输出一次顺序表。 5.删除第1,第9和第12个位置上的元素,每删除一个元素都要输出一次顺序表。 6.编写一个排序算法,对线性表中元素从小到大排列。 7.向有序表分别插入20和50,插入后表仍然有序。(修改开辟的存储空间大小为15)

单链表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.建立一个带表头结点的单链表(前插入法和尾插入法均可)。 3.编写单链表输出算法。 4.依次插入3、21、15、99四个数,分别插入在第1、8、4和12位置,每插入一次都要输出一次单链表。 5.删除第1,第9和第12个位置上的元素,每删除一个元素都要输出一次单链表。 6.编写一个排序算法,对链表中元素从小到大排列。 7.向有序链表分别插入20和50,插入后表仍然有序。 五、实验结果 顺序表源程序: #include using namespace std; const int MAXSIZE=8; //做有序表插入操作时,将8改为15 typedef int DataType; typedef struct { DataType data[MAXSIZE]; int length; }SeqList; void Init_SeqList(SeqList &L);//创建空顺序表算法 void Show_SeqList(SeqList L);//顺序表输出算法 void Create_SeqList(SeqList &L);//顺序表创建算法 int Insert_SeqList(SeqList &L,DataType x,int i);//顺序表的插入算法 int Delete_SeqList(SeqList &L,int i);//顺序表的删除算法 int Locate_SeqList(SeqList L,DataType x);//顺序表的按值查找算法

采用十字链表表示稀疏矩阵,并实现矩阵的加法运算

课程设计 所抽题目:采用十字链表表示稀疏矩阵,并实现矩阵的加法运算。 要求:要检查有关运算的条件,并对错误的条件产生 报警。 问题分析和建立模型:本题目主要是运用所学知识,用十字链表的方法去表示稀疏矩阵,并使之可以在两矩阵间进行相加。而后,若有错误,则对错误进行警报。 框架搭建: 1选择File|New菜单项,弹出New对话框,选择Files标签,选中C++ Source File项,在File编辑器中输入项目名称“十字链表表示稀疏矩阵实现加法”,在Location编辑框中输入项目所在目录,按下OK 按钮即可。 2在操作界面中输入,程序代码。 (1)结构体和共用体的定义 #include #include #define smax 45 typedef int datatype; typedef struct lnode (2)建立稀疏矩阵的函数,返回十字链表头指针 int i,j; struct lnode *cptr,*rptr; union {

struct lnode *next; datatype v; }uval; }link; int flag=0; 建立十字链表头结点 head=(link *)malloc(sizeof(link)); 建立头结点循环链表 for(i=1;i<=s;i++) (3)插入结点函数 p=(link *)malloc(sizeof(link)); p->i=0;p->j=0; p->rptr=p;p->cptr=p; cp[i]=p; cp[i-1]->uval.next=p; } cp[s]->uval.next=head; for(k=1;k<=t;k++) { printf("\t 第%d个元素(行号i 列号j 值v,数字间用空格分隔):",k); scanf("%d%d%d",&i,&j,&v); p=(link *)malloc(sizeof(link)); p->i=i;p->j=j;p->uval.v=v; q=cp[i]; while((q->rptr!=cp[i])&&(q->rptr->jrptr; p->rptr=q->rptr; q->rptr=p; q=cp[j]; while((q->cptr!=cp[j])&&(q->cptr->icptr; p->cptr=q->cptr; q->cptr=p; } return head; (4)输出十字链表的函数 link *p,*q; p=(link *)malloc(sizeof(link)); p->i=i;p->j=j;p->uval.v=v; q=cp[i];

3 链表的存储基础

链表的存储基础 管理链表的结构体: 记录节点个数的变量count 指向第一个节点(头节点)的指针head typedef int ElementType; struct Node{ ElementType value; struct Node* pre; struct Node* next; }; struct List{ struct Node* head; int count; }; 在这儿,首先我定义了我们在每一个节点中存储的数据的类型ElementType。之所以要这么写的原因是,我们现在存的可能只是一个简单的整型,但是以后可能存其他类型的元素,这样我们只需要把typedef int ElementType; 简单的修改一些就可以了。 Node 结构体: struct Node{ ElementType value; struct Node* pre; struct Node* next; }; 这个结构体是我所说的那一串结构体的一个模板,就是那一串结构体都长这个样子,但是至于里面的变量存什么值,每个节点都不一样,首先我们在上一节中看到了,需要有一个指向上一个节点的指针,在这里我用变量pre表示,因为上一个节点其实也是一个Node这个结构体类型,所以这个指针的类型需要这么定义,其次还需要一个指向下一个结构体的指针,我使用next表示,最后,我们的链表终究是用来存数据用的,所以我定义了一个变量value,代表我们这个节点存储的数据。 struct List{ struct Node* head; int count; };

接着来看List这个结构体是干什么用的,上一小节中我说到,虽然我们穿了一串Node 类型的结构体,但是我们需要一个变量来存这一串节点的头节点的指针,所以需要head,其次还需要一个count来记录这一串有多少个节点,之所以把这两个变量用结构体包装一层是因为,我们可能日后需要创建很多串节点,也就是我们可能会建立很多个链表,这样的话一个List结构体变量可以用来管理一个链表,那么,我们管理多个链表只需要简单的新建多个List结构体变量就可以了。 在List结构体中的head,相信大家已经知道是指向头节点的指针变量了,而另外的count 是用来记录head所指向的这一串节点有多少个节点用的变量。

数据结构实验报告——顺序表链表的实现

课程名称:数据结构任课教师: 实验题目:线性表的基本操作 实验环境: Visual C++ 6.0 实验目的: 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入和删除等。 实验内容: 定义一个包含学生信息(学号,姓名,成绩)的的顺表序和链表,使其具有如下功能: (1)根据指定学生个数,逐个输入学生信息; (2)逐个显示学生表中所有学生的相关信息;

(3)根据姓名进行查找,返回此学生的学号和成绩;

(4)根据指定的位置可返回相应的学生信息(学号,姓名,成绩); (5)给定一个学生信息,插入到表中指定的位置; int createStLink(struct Node *head,struct Node *stu) { struct Node *p6,*p7,*p8; p7=head; p6=stu; if(head==NULL) { head=p6;p6->next=NULL; } else { //如果链表为空则在头结点创建信息while(p6->num > p7->num && p7->next!=NULL)

{ p8=p7; p7=p7->next; } if(p6->num<=p7->num) { if(head==p7) head=p6; else p8->next=p6; p6->next=p7; } else { p7->next=p6;p6->next=NULL; } } N++; return 1; } int main() { struct Node *H,*stud; char M; int num1; H=initlist(); (6)删除指定位置的学生记录;

顺序表与链表的比较

顺序表 优点:1、方法简单,各种高级语言中都有数组,容易实现;2、不用为表示结点间的逻辑关系而增加额外的存储开销,存储密度大;3、具有按元素序号随机访问的特点,查找速度快。 缺点:1、插入删除操作时,需要移动元素,平均移动大约表中一半的元素2、采用静态空间分配,需要预先分配足够大的存储空间; 链表 优点:1、插入、删除时,只要找到对应前驱结点,修改指针即可,无需移动元素;2、采用动态存储分配,不会造成内存浪费和溢出。 缺点:1、在有些语言中,不支持指针,不容易实现,对元素较多的顺序表效率低。2、需要用额外空间存储线性表的关系,存储密度小会造成内存的浪费和溢出。3、不能随机访问,查找时要从头指针开始遍历。 顺序表的优点是便于随机存储,缺点是不便于插入删除等操作,因为插入删除一个元素需要移动其后的所有元素,但是链表不存在这个问题,链表只要改变指针就行,时间复杂度小,所以链表于顺序表恰恰相反,优点是便于插入删除等操作,缺点是随机存储没有顺序表方便。 顺序表的优点:查找方便,适合随机查找。顺序表的缺点:插入、删除操作不方便,因为插入、删除操作会导致大量元素的移动 链接表的优点:插入、删除操作不方便,不会导致元素的移动,因为元素增减,只需要调整指针。顺序表的缺点:查找方便,不适合随机查找。 链式存储结构: (1)占用额外的空间以存储指针(浪费空间) (2)存取某个元素速度慢 (3)插入元素和删除元素速度快 (4)没有空间限制,存储元素的个数无上限,基本只与内存空间大小有关. 顺序存储结构: (1)空间利用率高 (2)存取某个元素速度快 (3)插入元素和删除元素存在元素移动,速度慢,耗时 (4)有空间限制,当需要存取的元素个数可能多于顺序表的元素个数时,会出现"溢出"问题.当元素个数远少于预先分配的空间时,空间浪费巨大.

实验1顺序表和链表基本操作(给学生)

实验一、二:线性表的应用 班级学号姓名 一、实验预备知识 1 复习C++中编写函数的相关内容。 2 复习如何用主函数将多个函数连在一起构成一个C++完整程序。 二、实验目的 1 掌握线性表的顺序和链式存储结构 2 熟练运用线性表在顺序存储方式下的初始化、创建、输出、插入和删除运算 3 熟练运用线性表在链式存储方式下的创建、输出、插入和删除运算 三、实验要求 1 编写初始化并创建线性表和输出线性表的算法。 2 编写对线性表插入和删除运算算法,要判断位置的合法性和溢出问题。 3 编写一个主函数,将上面函数连在一起,构成一个完整的程序。 4将实验源程序调试并运行,写出输入、输出结果,并对结果进行分析。 四、实验步骤 顺序表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.初始化并建立顺序表。 3.编写顺序表输出算法。(内存中开辟的单元数为8) 4.依次插入3,21,15三个数,分别插入在第4,6和2位置,每插入一次都要输出一次顺序表。 5.删除第5,第3和第12个位置上的元素,每删除一个元素都要输出一次顺序表。 单链表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.建立一个带表头结点的单链表(前插入法和尾插入法都可以)。 3.编写单链表输出算法。 4.依次插入3,21,15三个数,分别插入在第4,6和12位置,每插入一次都要输出一次单链表。 5.删除第5,第3和第12个位置上的元素,每删除一个元素都要输出一次单链表。 五、实验结果 1.给出程序清单及输入/输出结果。 2.实验过程中遇到的问题、解决方法及心得体会。

数据结构实验报告顺序表和链表

实验报告 课程名称数据结构 实验项目实验一线性表的生成与操作 题目一顺序表和链表的创建与基本操作 系别___ _计算机学院 _ ______ 专业____计算机大类_ __ 班级/学号__(1406/2014011288)_____ 学生姓名 _______(孙文学)_________ 实验日期_(2015年10月19日) 成绩_______________________ 指导教师黄改娟 实验题目:实验一线性表的生成与操作 ------顺序表和链表的创建与基本操作(自己所选择实验题目,必 填) 一、实验目的 1)掌握线性表的顺序存储和链式存储结构; 2)验证顺序表及链表的基本操作的实现;(验证)

3)理解算法与程序的关系,能够将算法转换为对应程序; 4)体会线性表在实际应用中能够解决的问题。(设计、综合) 二、实验内容 1)根据实验一题目列表,选定题目,说明题目的主要需求; 2)结合所选定的题目,定义存储结构,并完成对应应用的线性表创建、插入、删除、 查找等基本操作的算法描述; 3)程序编码实现,并获得运行结果。 三、报告内容 1)实验题目及主要存储结构定义 (提示:请根据所选定题目,描述存储结构) 题目:顺序表和链表的创建及基本操作 顺序表我是采用数组存储的,链表是采用结构体存储的 2)结合题目,说明对相应线性表的基本操作算法描述 (提示:可用自然语言、流程图、伪代码等均可,要求对每一个操作,都给出具体的算法描述) 基本操作: #顺序表# (1)插入:在线性表中的x位置插入y----将x位置及之后的元素都往后挪一位,将y的值赋给a[x]. (2)删除:删除位置为x的元素----另y=a[x],然后x之后的元素都往前挪一位。 (3)查找:寻找值为y的元素----从a[0]开始,若a[i]==y,则返回i,否则i++。 #链表# (1)插入:当i小于要插入的位置x时,i++,插入p->data------p->next=s->next;s->next=p; (2)删除:当p->data不等于要删除的值x时,p=p->next; q=p->next; p->next=q->next; free(q); (3)查找:当p->data!=x时,p=p->next,找到之后返回p->data 3)程序源码 (提示:列出所编写程序的代码。如果利用图形界面IDE等编程,这里只要求写出关键操作的程序代码。此外,程序一定要有注释说明) 1.顺序表的基本操作(用数组实现) #include #include int main(){

比较顺序存储结构和链式存储结构

比较顺序存储结构和链 式存储结构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

1、试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 答:① 顺序存储时,相邻数据元素的存放地址也相邻(逻辑与物理统一);要求内存中可用存储单元的地址必须是连续的。 优点:存储密度大(=1),存储空间利用率高。缺点:插入或删除元素时不方便。 ②链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针 优点:插入或删除元素时很方便,使用灵活。缺点:存储密度小(<1),存储空间利用率低。 顺序表适宜于做查找这样的静态操作;链表宜于做插入、删除这样的动态操作。若线性表的长度变化不大,且其主要操作是查找,则采用顺序表; 若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。 顺序表与链表的比较 基于空间的比较 存储分配的方式 顺序表的存储空间是静态分配的 链表的存储空间是动态分配的 存储密度 = 结点数据本身所占的存储量/结点结构所占的存储总量 顺序表的存储密度 = 1 链表的存储密度 < 1

基于时间的比较 存取方式 顺序表可以随机存取,也可以顺序存取 链表是顺序存取的 插入/删除时移动元素个数 顺序表平均需要移动近一半元素 链表不需要移动元素,只需要修改指针 顺序表和链表的比较 顺序表和链表各有短长。在实际应用中究竟选用哪一种存储结构呢?这要根据具体问题的要求和性质来决定。通常有以下几方面的考虑: ┌───┬───────────────┬───────────────┐ │ │ 顺序表│链表 │ ├─┬─┼───────────────┼───────────────┤ │基│分│静态分配。程序执行之前必须明确│动态分配只要内存空间尚有空闲,│ │于│配│规定存储规模。若线性表长度n变│就不会产生溢出。因此,当线性表│

(数据结构C语言版)顺序表和单链表的逆置

} 实验 1-1 顺序表的逆置操作 程序原码 // 创建顺序表,确定元素个数,插入各个元素,逆置列表。 #include #define max_list_size 100 //定义给顺序表分配空间大小 typedef struct{ int *elem; int length; }list_node; //指向顺序表首地址的结构体单元 list_node L; // 这里使用了全局变量,在所有的函数里可以随意修改其值 int list[max_list_size]; void init(); void inversion(); void creat(); void display(); //************* 主函数 ****************** int main() { init(); creat(); printf("\n 您输入的顺序表的结点数 : \n"); display(); inversion(); printf("\n 倒置顺序表的结点数 : \n"); display(); void init() { L.elem = (int *) malloc (max_list_size * sizeof(int) ); if (! L.elem) { printf(" 顺序表已满 "); exit(-1); } L.length = 0; #include #include // 初始化操作 // 倒置部分 // 建表部分 // 显示部分 //* ************ 初始化操作分配空间 ******************

稀疏矩阵的十字链表加法

目录 前言 (1) 正文 (1) 1.课程设计的目的和任务 (1) 2.课程设计报告的要求 (1) 3.课程设计的内容 (2) 4.稀疏矩阵的十字链表存储 (2) 5.稀疏矩阵的加法思想 (4) 6.代码实现 (5) 7.算法实现 (5) 结论 (8) 参考文献 (9) 附录 (10)

前言 采用三元组顺序表存储稀疏矩阵,对于矩阵的加法、乘法等操作,非零元素的插入和删除将会产生大量的数据移动,这时顺序存储方法就十分不便。稀疏矩阵的链接存储结构称为十字链表,它具备链接存储的特点,因此,在非零元素的个数及位置都会发生变化的情况下,采用链式存储结构表示三元组的线性更为恰当。 正文 1.课程设计的目的和任务 (1) 使我我们进一步理解和掌握所学的程序的基本结构。 (2) 使我们初步掌握软件开发过程的各个方法和技能。 (3) 使我们参考有关资料,了解更多的程序设计知识。 (4) 使我们能进行一般软件开发,培养我们的能力并提高我们的知识。 2.课程设计报告的要求 (1)课程设计目的和任务,为了达到什么要求 (2)课程设计报告要求 (3)课程设计的内容,都包含了什么东西 (4)稀疏矩阵和十字链表的基本概念,稀疏矩阵是怎么用十字链表存储 (5)十字链表矩阵的加法 (6)代码实现 (7)算法检测

3.课程设计的内容 (1)根据所学知识并自主查找相关资料 (2)进行算法设计与分析 (3)代码实现,组建并运行结果查看是否正确 (4)书写课程设计说明书 4.稀疏矩阵的十字链表存储 稀疏矩阵是零元素居多的矩阵,对于稀疏矩阵,人们无法给出确切的概念,只要非零元素的个数远远小于矩阵元素的总数,就可认为该矩阵是稀疏的。 十字链表有一个头指针hm ,它指向的结点有五个域,如图1所示。row 域存放总行数m ,col 域存放总列数n ,down 和right 两个指针域空闲不用,next 指针指向第一个行列表头结点。 c o l r o w 图1 总表点结点 有S 个行列表头结点h[1],h[2],......h[s]。结点结构与总表头结点相同。Row 和col 域置0,next 指向下一行列表头结点,right 指向本行第一个非零元素结点,down 指向本列第一个非零元素结点如图2所示。当最后一个行列表头结点的next 域指向总表头结点的hm 时,就形成循环链表,见图4的第一行。

比较顺序存储结构和链式存储结构 (1)

1、试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 答:① 顺序存储时,相邻数据元素的存放地址也相邻(逻辑与物理统一);要求内存中可用 存储单元的地址必须是连续的。 优点:存储密度大(=1),存储空间利用率高。缺点:插入或删除元素时不方便。 ②链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值, 另一部分存放表示结点间关系的指针 优点:插入或删除元素时很方便,使用灵活。缺点:存储密度小(<1),存储空间利用率低。顺序表适宜于做查找这样的静态操作;链表宜于做插入、删除这样的动态操作。 若线性表的长度变化不大,且其主要操作是查找,则采用顺序表; 若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。 顺序表与链表的比较 基于空间的比较 存储分配的方式 顺序表的存储空间是静态分配的 链表的存储空间是动态分配的 存储密度= 结点数据本身所占的存储量/结点结构所占的存储总量 顺序表的存储密度= 1 链表的存储密度< 1 基于时间的比较 存取方式 顺序表可以随机存取,也可以顺序存取 链表是顺序存取的 插入/删除时移动元素个数 顺序表平均需要移动近一半元素 链表不需要移动元素,只需要修改指针 顺序表和链表的比较顺序表和链表各有短长。在实际应用中究竟选用哪一种存储结构呢?这要根据具体问题的要求和性质来决定。通常有以下几方面的考虑:┌───┬───────────────┬───────────────┐││ 顺序表│链表│├─┬─┼───────────────┼───────────────┤│基│分│静态分配。程序执行之前必须明确│动态分配只要内存空间尚有空闲,││于│配│规定存储规模。若线性表长度n变│就不会产生溢出。因此,当线性表││空│方│化较大,则存储规模难于预先确定│的长度变化较大,难以估计其存储││间│式│估计过大将造成空间浪费,估计太│规模时,以采用动态链表作为存储││考││小又将使空间溢出机会增多。│结构为好。 ││虑├─┼───────────────┼───────────────┤││存│为1。当线性表的长

实验1顺序表和链表基本操作(学生)

实验一线性表运算的实现 班级学号姓名 一、实验预备知识 1.复习C中函数的相关内容。 2.复习如何用主函数将多个函数连在一起构成一个C完整程序。 3.复习多文件结构。 二、实验目的 1.掌握线性表的顺序和链式存储结构 2.熟练运用线性表在顺序存储方式下的初始化、创建、输出、插入和删除运算 3.熟练运用线性表在链式存储方式下的创建、输出、插入和删除运算 三、实验要求 1.编写初始化并创建线性表和输出线性表的算法。 2.编写对线性表插入和删除运算算法,要判断位置的合法性和溢出问题。 3.编写有序表的插入和删除运算算法。 4.编写一个主函数,将上面函数连在一起,构成一个完整的程序。 5.将实验源程序调试并运行,写出输入、输出结果,并对结果进行分析。 四、实验内容 顺序表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.初始化并建立顺序表。(开辟的存储空间大小为8) 3.编写顺序表输出算法。 4.依次插入3,21,15三个数,分别插入在第4,6和2位置,每插入一次都要输出一次顺序表。 5.删除第5,第3和第12个位置上的元素,每删除一个元素都要输出一次顺序表。 6.编写一个排序算法,对线性表中元素从小到大排列。 7.向有序表分别插入20和50,插入后表仍然有序。(修改开辟的存储空间大小为15) 单链表实验内容: 1.给定的线性表为L=(12,25,7,42,19,38),元素由键盘输入。 2.建立一个带表头结点的单链表(前插入法和尾插入法都可以)。 3.编写单链表输出算法。 4.依次插入3,21,15三个数,分别插入在第4,6和12位置,每插入一次都要输出一次单链表。 5.删除第5,第3和第12个位置上的元素,每删除一个元素都要输出一次单链表。 6.编写一个排序算法,对线性表中元素从小到大排列。 7.分别删除值为25和42的元素,删除后表仍然有序。 五、实验结果 给出程序清单及输入/输出结果 六、总结 1.实验过程中遇到的问题及解决方法 2.收获

单链表的存储与操作

重庆邮电大学 课程设计实验报告 班级:1301416 姓名:陈昊 学号:2014214156 指导老师:夏晨洋 课程名称:数据结构 实验时间:2015年10月26日-2015年11月2日实验地点:数字图书馆负一楼B132

实验二单链表的存储与操作 一、实验目的 1.理解线性表的逻辑结构; 2.理解单链表的存储结构特点,掌握单链表的存储分配要点; 3.掌握单链表的基本操作及实现,并能正确分析其时间复杂度。 二、主要数据结构描述 LinkList( ); //建立只有头结点的空链表 LinkList(T a[ ], int n); //建立有n个元素的单链表 ~LinkList(); //析构函数 int Length(); //求单链表的长度 T Get(inti); //取单链表中第i个结点的元素值 int Locate(T x); //求单链表中值为x的元素序号 void Insert(inti, T x); //在单链表中第i个位置插入元素值为x的结点 T Delete(inti); //在单链表中删除第i个结点 void PrintList( ); //遍历单链表,按序号依次输出各元素 Node *first; //单链表的头指针 在单链表中,需要有构造函数用来构造整个单链表。需要析构函数来删除整个单链表。需要一个Length函数来求单链表的长度。需要一个取值函数Get,传入节点的编号,返回节点的值。需要一个求序号的函数,传入数据的值,返回数据对应的编号,即在单链表中的位置。需要一个插入函数,用来在特定的位置插入一个节点用来存储新数据。需要一个删除函数,用来删除某个节点,并将该节点两端的节点连起来。需要一个遍历函数,用以遍历单链表。 三、算法的基本思想描述 1. 按位置/值查找:按位置和按值查找的思路大体相同,需要一个工作指针来对整个链表进行遍历,如果所遇到的编号或值与想要的一致,便会把工作指针的信息返回。此函数只需对链表遍历一次,所以平均时间复杂度为O(n); 2. 在位置i插入一个数据元素:此函数可以大体分成两个部分。第一个部分是遍历,寻找到要插入的位置,这个与上面的方法相同。第二个部分是插入,要先申

基于十字链表与三元组表的稀疏矩阵压缩存储实例研究

龙源期刊网 https://www.360docs.net/doc/3d6957308.html, 基于十字链表与三元组表的稀疏矩阵压缩存储实例研究 作者:周张兰 来源:《软件导刊》2017年第11期 摘要:十字链表和带行链接信息的三元组表是稀疏矩阵的两种压缩存储方法。十字链表为链式存储结构,带行链接信息的三元组表为顺序存储结构。在MovieLens数据集上设计了分别采用十字链表和带行链接信息的三元组表对以用户为行、项目为列、用户评分为矩阵元的稀疏矩阵进行压缩存储,并在这两种存储结构上实现用户相似度计算算法。通过测试分析和比较了两种不同的压缩存储方法在创建及相似度计算上的执行效率,并探讨了各自的特点及适用条件。 关键词关键词:稀疏矩阵;十字链表;三元组表;压缩存储 DOIDOI:10.11907/rjdk.171845 中图分类号:TP302 文献标识码:A文章编号文章编号:16727800(2017)011002204 0引言 矩阵是科学与工程计算问题中研究的数学对象。在高阶矩阵中,可能存在很多相同值或零值的矩阵元,对这些矩阵元的存储造成存储空间的浪费。因此,可以对矩阵进行压缩存储,以节省存储空间,达到提高存储利用率的目的。在算法实现中,选择的存储结构不同,执行效率也将不同。对不同矩阵存储方法的特点进行分析和比较,有助于根据不同的实际应用,有针对性地选择更为合适的存储结构,以此提高矩阵运算及其它相关操作的运行效率。 1稀疏矩阵及存储 若一个m行n列矩阵中的零元素有t个,零元素个数t与矩阵元总数m×n的比值称为稀疏因子,一般认为若稀疏因子不大于0.05,则此矩阵为稀疏矩阵。设矩阵有10行10列,即总共100个元素,若其中零元素有95个,而非零元素仅有5个,则此矩阵为稀疏矩阵。在存储稀疏矩阵时,可以采用非压缩存储和压缩存储两种方式。非压缩存储使用二维数组,比如,设10 行10列的稀疏矩阵M的矩阵元均为整数,则可以使用二维数组存储该矩阵M,数组的定义用C语言[1]描述如下: int a[10][10];

实验二顺序表及链表

常熟理工学院 《数据结构与算法》实验指导与报告书 __2017_学年第__1__ 学期 专业:物联网工程___________________________ __ 学号:__________________________ ____ 姓名:________________________________ __ 实验名称:顺序表与链表_______________________________ 实验地点:N6-210_____________________________ ____ 指导教师:聂盼红__________________________ ___

计算机科学与工程学院 2017

实验二顺序表与链表 【实验目的】 1、掌握线性表中元素的前驱、后续的概念。 2、掌握顺序表与链表的建立、插入元素、删除表中某元素的算法。 3、对线性表相应算法的时间复杂度进行分析。 4、理解顺序表、链表数据结构的特点(优缺点)。 【实验学时】 4学时 【实验预习】 回答以下问题: 1、顺序表的存储表示 在顺序表中,任一数据元素的存放位置是从起始位置开始、与该数据元素的位序成正比的对应存储位置,借助LOC(ai)=LOC(a1)+(i-1)*1确定,则顺序表是一种随机存取的存储结构。 2、单链表的存储表示 线性链表也称单链表,在每一个结点中只包含一个指针,用于指示该结点的直接后继结点,整个链表通过指针相连,最后一个结点因为没有后继结点,其指针置为空(NULL)。这样,链表中所有数据元素(结点)构成一对一的逻辑关系,实现线性表的链式存储。 【实验容和要求】 1、按照要求完成程序exp2_1.c,实现顺序表的相关操作。以下函数均具有返回值,若操作完成,返回OK,操作失败返回ERROR。函数需返回的其他数据,使用函数参数返回。exp2_1.c部分代码如下: #include #include #define ERROR 0 #define MAXSIZE 100 #define OK 1 typedef int ElemType; /*定义表元素的类型*/ typedef struct slist{ ElemType *list; int listsize; int length;

链表顺序表实验报告--数据结构与算法分析

链表顺序表实验报告--数据结构与算法分析

数据结构与算法分析课程设计报告 课题名称: 使用一个链表和顺序表构建城市数据库 提交文档组号: 2 编程学生姓名及学号: 测试学生姓名及学号: 报告学生姓名及学号: 指导教师姓名: 指导教师评阅成绩: 指导教师评阅意见: . . 提交报告时间: 2013 年 11 月日

实验一:Implement a city database using unordered lists and link lists 1.实验的目的和要求: <1>采用C++的ASCII码文件和模块函数实现; <2>熟练掌握数组列表和链表列表的实现; <3>熟练掌握计算机系统的基本操作方法,了解如何编译、运行一个C++程序; <4>上机调试程序,掌握查错、排错使程序能正确运行。 2. 实验的环境: 1、硬件环境:索尼笔记本电脑,Intel(R) Core(TM) i7-3632M ,8GB内存可; 2、软件环境:Windows 8 下的Microsoft Visual Studio 2008 2.算法描述: 数据结构与算法分析的背景: 数据结构是计算机程序设计的重要理论技术基础,它不仅是计算机学科的核心课称,而且已成为其他理工专业的热门选修课。 数据结构是一门专业选技术基础科。一方面,它要求我们学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构、存储结构及其相应的算法,并初步掌握算法的时间分析和空间分析的技术;另一方面,数据结构的学习过程也是复杂程序设计的训练过程,要求我们编写的程序结构清楚和正确易读,复合软件工程的规

数据结构 课程设计 十字链表

数据结构课程设计十字链表 xx学院 一、问题的分析和任务定义: 该设计是采用十字链表表示稀疏矩阵,并实现矩阵的加法运算。还要检查有关运算的条 件,并对错误的条件产生报警。 根据对该程序任务的理解,对本程序分别从以下几个方面进行分析: 1.输入数据的的类型和输入的范围 该程序首先输入稀疏矩阵的行数和列数,再输入一个有非零元素的行号,有非零元素的 列号,再输入非零元素的值,然后输入当前行下一个元素所在的列,如果该行只有一个非零 元素就直接输入-1结束当前行的一组数据,如果还有其他的非零元素的话就输入当前行下 一个非零元素所在的列,就这样,直到该当前行的非零元素输入完。然后再输入当前列下一 个非零元素的所在的行,其步骤与前一步相同。其输入值都为稀疏矩阵的数据,类型都为整 型。 2.输出数据的形式 这样得到一个稀疏矩阵a,以同样的方法就可以得到另一个稀疏矩阵b,最后就可以得到稀疏矩阵a和稀疏矩阵b的和矩阵.输出是以稀疏矩阵的标准形式输出的。输出值的有两种:

一种是字符,一种是整数。输出的字符型数据是稀疏矩阵的代号,输出的整型数据为稀疏矩 阵的值。 3.测试数据 测试数据一:测试数据二:稀疏矩阵的行数与列数:3 3 稀疏矩阵的行数与列数:3 3 矩阵a:矩阵b:矩阵a:矩阵b: 2 0 0 0 0 2 2 0 0 0 0 0 0 0 6 3 0 0 0 0 0 0 0 0 7 0 0 2 0 5 0 0 0 7 0 0 二、概要设计和数据结构的选择: 1.算法(程序)中用到的所有各种数据类型的定义: 定义整型数据为int m,int n,分别代表矩阵的行和列; 定义十字链表类型结点OLnode *h,*p分别代表为头结点开辟空间和指向下一结点; 在主函数中定义OLnode *a,*b,分别表示a,b两个稀疏矩阵。 2.各程序模块之间的层次关系: 程序中用到的函数: 1 OLnode *create(int m,int n); 创建以十字链表表示的一个元素全为零的稀疏矩阵。 2 int insert(OLnode *a ,int row,int col,int val); 创建稀疏矩阵结点插入函数。 3 OLnode *shuru(); 创建稀疏矩阵的输入函数。 4 void shuchu(OLnode *a); 创建稀疏矩阵的输出函数。 5 OLnode *add(OLnode *a,OLnode *b);创建对两个相同行列数矩阵进行加法运算函数。 6 void main();创建该程序的主函数。

相关文档
最新文档