双锥体自动向上滚的力学条件与几何条件

双锥体自动向上滚的力学条件与几何条件
双锥体自动向上滚的力学条件与几何条件

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

弹性力学基础讲解

一、基本物理量 应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为: ??? ? ??????=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量 的方向。应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。 3、应变 弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:l l l l ll ??-?=→?'lim 0ε。即正应变表示单位长度线段的伸长 或缩短。 弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。 应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分 量,得:??? ? ? ?????=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。 关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。 4、外力 体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}T z y x V V f f f V =??=→?F f 0lim 。 表面力:作用于弹性体表面,如压力,约束力等。设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}T z y x S S s s s S =??=→?F s 0lim 。 二、基本方程 1、平衡方程

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

弹性力学部分简答题

1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。 2、简述弹性力学的研究方法。 答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。 3、弹性力学中应力如何表示?正负如何规定? 答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4、简述平面应力问题与平面应变问题的区别。 答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有x σ,y σ,xy τ。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u 和v 5、简述圣维南原理。 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 6、简述按应力求解平面问题时的逆解法。 答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

结构力学 第二章 几何组成分析(典型例题)

[例题2-1-1] 计算图示体系的自由度。,可变体系。 (a)(b) 解: (a ) 几何不变体系,无多余约束 (b ) 几何可变体系 [例题2-1-2] 计算图示体系的自由度。桁架几何不变体系,有多余约束。 解: 几何不变体系,有两个多余约束 [例题2-1-3] 计算图示体系的自由度。桁架自由体。 解: 几何不变体系,无多余约束 [例题2-1-4] 计算图示体系的自由度。,几何可变体系。 解: 几何可变体系 [例题2-1-5] 计算图示体系的自由度。刚架自由体。 解: 几何不变体系,有6个多余约束 [例题2-2-1] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-2] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-3] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-4] 对图示体系进行几何组成分析。两刚片规则。

几何不变体系,有一个多余约束 [例题2-2-5] 对图示体系进行几何组成分析。二元体规则。 几何不变体系,且无多余约束 [例题2-2-6] 对图示体系进行几何组成分析。两刚片规则,三刚片规则。 几何不变体系,且无多余约束 [例题2-2-7] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束 [例题2-2-8] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束[例题2-3-1] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-2] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-3] 对图示体系进行几何组成分析。三刚片规则。 几何瞬变体系 [例题2-3-4] 对图示体系进行几何组成分析。三刚片规则。

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩 M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力 的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )???=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试 求薄板面积的改变量S ?。 题二(3)图

弹性力学

1、连续体力学包括固体力学、流体力学、热力学和电磁动力学,非连续体力 学包括原子级、波动方程、量子力学。 2、弹性力学所研究的范围属于固体力学中弹性阶段。 3、弹性力学的基本假定为:假设物体是连续的、假设物体是匀质的和各项同 性的、假设物体是完全弹性的、假设物体的变形是很少的、和假设物体内无初 应力。 4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。 5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质相同,物体的弹性常数弹性模量和泊松比不随坐标和方向的变化而变化。 6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。 7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应 力与载荷关系、应变与位移关系、应力与应变关系。 8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。 9、在弹性力学中规定,线应变以伸长时为正,压缩时为负,与正应力的正负号规定相适应。 10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 11、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变 和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L-1 MT-2 。 12、建立平衡方程时,在正六面微分体的6个面上共有9 个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立3个方程。

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

结构力学-几何构造分析

1.图示体系是几何不变体系。() 2.有多余约束の体系一定是几何不变体系。() 3.图示体系是: A.几何瞬变有多余约束; B.几何不变; C.几何常变; D.几何瞬变无多余约束。() 4.在不考虑材料の条件下,体系の 位置和形状不能改变の体系称为几何体系。() 5几何组成分析中,在平面内固定一个点,需要。 6图示体系是体系,因为 。 7联结两个刚片の任意两根链杆の延线交点称为,它の位置是定 の。 8试对图示体系进行几何组成分析。 C D B 9对图示体系进行几何组成分析。 A C D B E 10对图示体系进行几何组成分析。 C D B 11对图示体系进行几何组成分析。A B C D E F 12对图示体系进行几何组成分析。 A B C D E F 13对图示体系进行几何组成分析。B C D E F A G 14对图示体系进行几何组成分析。 A B C D E 15对图示体系进行几何组成分析。

A B C D E 16对 图 示 体 系 进行 几 何 组 成 分析 。 A B C D G E F 17对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F G H K 18对 图 示 体 系 进 行 几 何 构 造 分 析 。 19对 图 示 体 系 进 行 几 何 构 造 分 析 。 20对 图 示 体 系 进 行 几 何 构 造 分 析 。 21对 图 示 体 系 作 几 何 构 造 分 析 。 22对 图 示 体 系 进 行 几 何 组 成 分 析 。( 图 中 未 编 号 の 结 点 为 交 叉 点 。) A C B D E F 23对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F 24三 个 刚 片 用 三 个 铰 两 两 相 联 时 の 瞬 变 原 因 是_________________________。 25图 示 体 系 按 三 刚 片 法 则 分 析 , 三 铰 共 线 , 故 为 几 何 瞬 变 体 系 。 ( ) 26图 示 体 系 为 几 何 不 变 有 多 余 约 束 。 ( ) 27图 示 体 系 为 几 何 瞬 变 。 ( ) 28图 示 对 称 体 系 为 几 何 瞬 变 。 ( )

弹性力学作业答案

一、填空题 1.弹性力学的基本假设为均匀性、各向同性、 连续性 、 完全弹性 和 小变形 。 2.弹性力学正面是指 外法线方向与坐标轴正向一致 的面,负面指 外法线方向与坐标轴负向一致 的面。 3.弹性力学的应力边界条件表示在边界上 应力 与 面力 之间的关系式。除应力边界条件外弹性力学中还有 位移 、 混合 边界条件。 4.在平面应力问题与平面应变问题中,除 物理 方程不同外,其它基本方程和边界条件都相同。因此,若已知平面应力问题的解答,只需将其弹性模量E 换为 ()21E -μ,泊松比μ换为()1μ-μ,即可得到平面应变问题的解答。 5.平面应力问题的几何形状特征是 一个方向上的尺寸远小于另外两个方向上的尺寸;平面应变问题的几何形状特征是 一个方向上的尺寸远大于另外两个方向上的尺寸。 二、单项选择题 1. 下列关于弹性力学问题中的正负号规定,正确的是 D 。 (A) 应力分量是以沿坐标轴正方向为正,负方向为负 (B) 体力分量是以正面正向为正,负面负向为正 (C) 面力分量是以正面正向为正,负面负向为负 (D) 位移分量是以沿坐标轴正方向为正,负方向为负 2. 弹性力学平面应力问题中应力分量表达正确的是 A 。 (A) 0z σ= (B) [()]/z z x y E σεμεε=-+ (C) ()z x y σμσσ=+ (D) z z f σ= 3. 弹性力学中不属于基本方程的是 A 。 (A) 相容方程 (B) 平衡方程 (C) 几何方程 (D) 物理方程

4. 弹性力学平面问题中一点处的应力状态由 A 个应力分量决定。 (A) 3 (B) 2 (C) 4 (D) 5 三、简答题 1. 求解弹性力学问题的三类基本方程是什么?仅由基本方程是否可以求得具体问题的解答?为什么? 答:平衡方程,几何方程和物理方程。仅由基本方程不可以求得具体解答,因为缺少边 界条件,只能得到问题的通解而不是特解。 2. 简述圣维南原理及其在弹性力学中的简化作用。 答:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢和主矩 相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用: (1)将次要边界上复杂的面力做分布的面力替代; (2) 将次要的位移边界条件转化为应力边界条件处理。 四、计算题 如图所示,设单位厚度的悬臂梁在左端受到集中力和力矩作用,体力忽略不计,l h >>。试 用应力函数233 Axy By Cy Dxy =+++?求解应力分量。 解:(I) 显然,应力函数 233Axy By Cy Dxy ?=+++ (1) 满足双调和方程。 (II) 写出应力的表达式(不计体力) 22266x B Cy Dxy y ?? σ==++? (2) 220y x ?? σ==? (3) 223xy A Dy x y ?? τ=- =--?? (4) (III) 通过边界条件确定待定系数

弹性力学部分简答题

1、 简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。 2、简述弹性力学的研究方法。 答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。 3、弹性力学中应力如何表示正负如何规定 答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4、简述平面应力问题与平面应变问题的区别。 答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有x σ,y σ,xy τ。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u 和v 5、简述圣维南原理。 ! 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 6、简述按应力求解平面问题时的逆解法。 答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

相关文档
最新文档