scala实现Matrix矩阵类

scala实现Matrix矩阵类
scala实现Matrix矩阵类

快学Scala Chapter11 操作符练习解答

12.8 提供一个Matrix类—你可以选择需要的是一个2*2的矩阵,任意大小的正方形矩阵,或m*n的矩阵。支持+和*操作。*操作应同样适用于单值,例如mat*2。单个元素可以通过

mat(row,col)得到

import scala.collection.mutable.ArrayBuffer

/**

* @author LiRuiqi

*/

class Matrix(private val data:Array[Int],private val nrow:Int){

val cols = (data.length.toFloat/nrow).ceil.toInt

private val matrixData:Array[Array[Int]] = {

val result:Array[Array[Int]] = Array.ofDim[Int](nrow,cols)

for(i <- 0until nrow){

for(j <- 0until cols){

val index = i*cols+j

result(i)(j) = if(data.isDefinedAt(index)) data(index) else0

}

}

result

}

override def toString = {

var str = ""

matrixData.map((p:Array[Int]) => {p.mkString(",")}).mkString("\n") }

def*(a:Matrix) = {

if(this.cols!=a.nrow)

println("error!") else {

val data:ArrayBuffer[Int] = ArrayBuffer()

for(i <- 0to this.nrow-1){

for(j <- 0to a.cols-1){

var num = 0

for(b <- 0to this.cols-1){

num += this.matrixData(i)(b) *a.matrixData(b)(j)

}

data+=num

}

}

new Matrix(data.toArray,this.nrow)

}

}

def*(a:Int) = {

val data:ArrayBuffer[Int] = ArrayBuffer()

for(i <- 0to this.matrixData.length-1){

for(j <- 0to this.matrixData(0).length-1){

data+=this.matrixData(i)(j) *a

}

}

new Matrix(data.toArray,this.matrixData.length)

}

def+(a:Matrix) = {

if(this.nrow!=a.nrow||this.cols!=a.cols)

println("error!") else {

val data:ArrayBuffer[Int] = ArrayBuffer()

for(i <- 0to this.matrixData.length-1){

for(j <- 0to this.matrixData(0).length-1){

data+=this.matrixData(i)(j) +a.matrixData(i)(j) }

}

new Matrix(data.toArray,this.matrixData.length)

}

}

def mat(row:Int,col:Int) = {

matrixData(row-1)(col-1)

}

}

object Question8 {

def main(args: Array[String]): Unit = {

val m = new Matrix(Array(1,2,3,4),2)

val n = new Matrix(Array(1,3,5,8),2)

println( m+"\n")

println( n+"\n")

println( m*n+"\n")

println( m+n+"\n")

println( m.mat(2,2) +"\n")

println( m*10+"\n")

}

}

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组 a 和 b;(上机实验指导 P92 )(2)输出 a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出 a * b 的三元组; 三实验内容: 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数} 数据关系: R={ Row , Col } Row ={ | 1≤i≤m , 1≤j ≤n-1} Col ={| 1≤i≤m-1,1≤j ≤n} 基本操作:

CreateSMatrix(&M) 操作结果:创建稀疏矩阵 M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在

MATLAB中的矩阵与向量运算

4.1 数组运算和矩阵运算 从外观形状和数据结构来看,二维数组和数学中的矩阵没有区别.但是,矩阵作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则.而数组运算是MATLAB软件所定义的规则,其目的是为了数据管理方面,操作简单,指令形式自然和执行计算有效.所以,在使用MATLAB时,特别要明确搞清数组运算和矩阵运算的区别.表 4.1.1 数组运算和矩阵运算指令形式和实质内涵 数组运算矩阵运算 指令含义指令含义 A.'非共轭转置A'共轭转置 A=s把标量s赋给数组A的每个元素 s+B把标量s分别与数组B的每个元素相加s-B, B-s标量s分别与数组B的元素之差 s.*A标量s分别与数组A的元素之积s*A标量s分别与矩阵A的元素之积 s./B, B.\s标量s分别被数组B的元素除s*inv(B)矩阵B的逆乘标量s A.^n数组A的每个元素的n次方A^n A为方阵时,矩阵A的n次方 A+B数组对应元素的相加A+B矩阵相加 A-B数组对应元素的相减A-B矩阵相减 A.*B数组对应元素的相乘A*B内维相同矩阵的乘积 A./B A的元素被B的对应元素除A/B A右除B B.\A一定与上相同B\A A左除B(一般与右除不同) exp(A)以e为底,分别以A的元素为指数,求幂expm(A) A的矩阵指数函数 log(A) 对A的各元素求对数logm(A) A的矩阵对数函数 sqrt(A) 对A的积各元素求平方根sqrtm(A) A的矩阵平方函数 从上面可以看到,数组运算的运算如:乘,除,乘方,转置,要加"点".所以,我们要特别注意在求"乘,除,乘方,三角和指数函数"时,两种运算有着根本的区别.另外,在执行数组与数组运算时,参与运算的数组必须同维,运算所得的结果数组也是总与原数组同维. 4.2 数组的基本运算 在MATLAB中,数组运算是针对多个数执行同样的计算而运用的.MATLAB以一种非常直观的方式来处理数组. 4.2.1 点转置和共轭转置 . ' ——点转置.非共轭转置,相当于conj(A'). >> a=1:5; >> b=a. ' b = 1 2 3 4 5 >> c=b. ' c = 1 2 3 4 5 这表明对行向量的两次转置运算便得到原来的行向量. ' ——共轭转置.对向量进行转置运算并对每个元素取其共轭.如: >> d=a+i*a

数据结构三元组完成版

#include #include typedef int ElemType; // 稀疏矩阵的三元组顺序表存储表示 #define MAXSIZE 100 // 非零元个数的最大值 typedef struct { int i,j; // 行下标,列下标 ElemType e; // 非零元素值 }Triple; typedef struct { Triple data[MAXSIZE+1]; // 非零元三元组表,data[0]未用 int mu,nu,tu; // 矩阵的行数、列数和非零元个数 }TSMatrix; // 创建稀疏矩阵M int CreateSMatrix(TSMatrix *M) { int i,m,n; ElemType e; int k; printf("请输入矩阵的行数,列数,非零元素个数:(逗号)\n"); scanf("%d,%d,%d",&(*M).mu,&(*M).nu,&(*M).tu); (*M).data[0].i=0; // 为以下比较顺序做准备 for(i = 1; i <= (*M).tu; i++) { do { printf("请按行序顺序输入第%d个非零元素所在的行(1~%d)," "列(1~%d),元素值:(逗号)\n", i,(*M).mu,(*M).nu); scanf("%d,%d,%d",&m,&n,&e); k=0; // 行或列超出范围

if(m < 1 || m > (*M).mu || n < 1 || n > (*M).nu) k=1; if(m < (*M).data[i-1].i || m == (*M).data[i-1].i && n <= (*M).data[i-1].j) // 行或列的顺序有错 k=1; }while(k); (*M).data[i].i = m; //行下标 (*M).data[i].j = n; //列下标 (*M).data[i].e = e; //该下标所对应的值 } return 1; } // 销毁稀疏矩阵M,所有元素置空 void DestroySMatrix(TSMatrix *M) { (*M).mu=0; (*M).nu=0; (*M).tu=0; } // 输出稀疏矩阵M void PrintSMatrix(TSMatrix M) { int i; printf("\n%d行%d列%d个非零元素。\n",M.mu,M.nu,M.tu); printf("%4s%4s%8s\n", "行", "列", "元素值"); for(i=1;i<=M.tu;i++) printf("%4d%4d%8d\n",M.data[i].i,M.data[i].j,M.data[i].e); } // 由稀疏矩阵M复制得到T int CopySMatrix(TSMatrix M,TSMatrix *T) { (*T)=M; return 1; } // AddSMatrix函数要用到 int comp(int c1,int c2) { int i; if(c1

稀疏矩阵的运算(完美版)

专业课程设计I报告(2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主

控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。 2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

数据结构课程设计之稀疏矩阵实现与应用1

数据结构课程设计报告 题目:十字链表成为存储结构,实现稀疏矩阵的求和运算 学生姓名:张旋 班级:软件三班学号:201213040304 指导教师: 吴小平

一、需求分析 1.问题描述: 要求:十字链表下的稀疏矩阵的加、转、乘的实现。 2.基本功能 实现十字链表下的转置,乘法,加法运算。 3.输入输出 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (5)构造函数进行稀疏矩阵的转置,并输出结果。 (6)退出系统。 二、概要设计 1.设计思路: 本实验要求在三元组,十字链表下实现稀疏矩阵的加、转、乘。首先要进行矩阵的初始化操作,定义三元组和十字链表的元素对象。写出转置,加法,乘法的操作函数。通过主函数调用实现在一个程序下进行矩阵的运算操作。 2.数据结构设计: 抽象数据类型稀疏矩阵的定义如下: ADT SparseMatrix{ 数据对象:D={aij | i=1,2,…,m; j=1,2,..,n; aij∈Elemset, m和n分别称为矩阵的行数和列数。} 数据关系:R={Row,Col} Row={ | 1<=i<=m, 1<=j<=n-1} Col= { | 1<=i<=m-1, 1<=j<=n} 基本操作: CreateSMatrix(&M); 操作结果:创建稀疏矩阵M。 DestroySMatrix(&M); 初始条件:稀疏矩阵M存在。操作结果:销毁稀疏矩阵M。 PrintSMatrix(M); 初始条件:稀疏矩阵M存在。操作结果:输出稀疏矩阵M。 AddSMatrix(M,N,&Q); 初始条件:稀疏矩阵M与N的行数和列数对应相等操作结果:求稀疏矩阵的和Q=M+N。 MultSMatrix(M,N,&Q); 初始条件:稀疏矩阵M的列数等于N的行数。操作结果:求稀疏矩阵乘积Q=M*N。 TransposeSMatrix(M,&T); 初始条件:稀疏矩阵M存在。操作结果:求稀疏矩阵M的转置矩阵T。 }ADT SparseMatrix 3.软件结构设计:

矩阵的定义及其运算规则 (2)

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且 它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

三元组顺序表稀疏矩阵课程设计报告(不完整)

1.稀疏矩阵运算器

数据结构课程设计任务书 针对本课程设计,完成以下课程设计任务: 1、熟悉系统实现工具和上机环境。 2、根据课程设计任务,查阅相关资料。 3、针对所选课题完成以下工作: (1)需求分析 (2)概要分析 (3)详细设计 (4)编写源程序 (5)静态走查程序和上机调试程序 4、书写上述文档和撰写课程设计报告。

3.课程设计报告目录

4.正文 (1)问题描述 稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算频率。实现一个能进行稀疏矩阵基本运算的运算器。 (2)需求分析 本课程设计的稀疏矩阵运算器在visual studio 2013下运行调试成功,可以实现的功能有: 1.矩阵运算方式选择 2.根据提示输入相应数据 3.显示最终结果 使用的主要存储结构为三元组,并用三元组形式进行运算。所有参与运算数据类型为整形,因此输入的数据应为整形数据。为了节省存储空间使用三元组数据进行运算,可以通过多次扫描三元组数据来实现,即使用嵌套循环函数。输出结果为通常的阵列形式,因此使用了右对齐,保证输出形式的整齐。 (3)概要分析 本次课程设计中定义的结构体 typedef struct { int i, j;//矩阵元素所在行列 int v;//元素的值 }triple; typedef struct { triple data[MAXSIZE]; triple cop[MAXSIZE];//辅助数组 int m, n, t;//矩阵的行列数 }tripletable; Main函数调用子函数时输入1为调用 int Push_juzhen(int m, int n, int count)函数,可以实现矩阵相加功能 输入2为调用 int Dec_juzhen(int m, int n, int count)函数,可实现矩阵相减功能 输入3为调用 int Mul_juzhen()函数,可以实现矩阵相乘功能 (4)详细分析(流程图伪代码) 加法函数 int Push_juzhen(int m, int n, int count)//矩阵相加(行,列,矩阵数) { // p行,q列,s非零元素个数,v元素值 //ucount对数组下标计数的变量,与变量x实现多个矩阵相加 for (int c = 0; c < count; c++) { int x = 0; cout << "请输入第" << c + 1 << "个矩阵的非零元素个数" << endl; cin >> s; cout << "请依次输入非零元素所在行和列以及该非零元素的值并以空格隔开" << endl; for (; x< s; x++)//传递行列及元素值

矩阵与向量的运算及操作

%MATLAB支持教学中的矩阵类型P18 A=[123;456]%变量名=[第一行元素;第二行元素;……;第m行元素] A=ones(2,3)%ones(m,n)创建m*n阶全1矩阵 A=ones(3)%ones(n)创建n*n阶全1(方)矩阵 A=zeros(3,4)%zeros(m,n)创建m*n阶全0矩阵 A=zeros(4)%zeros(m,n)创建m*n阶全0方阵 A=eye(1)%eye(n)创建n阶单位矩阵 B=eye(2)%eye(n)创建n阶单位矩阵 C=eye(4)%eye(n)创建n阶单位矩阵 A=rand(2,3)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1,1)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1,3)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(2)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(3)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 %MATLAB矩阵的运算及操作P16 clc A=[123;456]; B=[222;333]; C=[1423;2501;3612]; A1=1:49 y=reshape(A1,7,7)' %取矩阵A中的行下标=i,列下标=j的元素A(行下标i,列下标j) A(1,1) A(2,3) %取矩阵A中的第i行元素返回值为行向量A(行下标i;:) A(1,:) A(2,:) %取矩阵A中的第j列元素返回值为列向量A(:;列下标j)

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

基于十字链表与三元组表的稀疏矩阵压缩存储实例研究

龙源期刊网 https://www.360docs.net/doc/3f13695709.html, 基于十字链表与三元组表的稀疏矩阵压缩存储实例研究 作者:周张兰 来源:《软件导刊》2017年第11期 摘要:十字链表和带行链接信息的三元组表是稀疏矩阵的两种压缩存储方法。十字链表为链式存储结构,带行链接信息的三元组表为顺序存储结构。在MovieLens数据集上设计了分别采用十字链表和带行链接信息的三元组表对以用户为行、项目为列、用户评分为矩阵元的稀疏矩阵进行压缩存储,并在这两种存储结构上实现用户相似度计算算法。通过测试分析和比较了两种不同的压缩存储方法在创建及相似度计算上的执行效率,并探讨了各自的特点及适用条件。 关键词关键词:稀疏矩阵;十字链表;三元组表;压缩存储 DOIDOI:10.11907/rjdk.171845 中图分类号:TP302 文献标识码:A文章编号文章编号:16727800(2017)011002204 0引言 矩阵是科学与工程计算问题中研究的数学对象。在高阶矩阵中,可能存在很多相同值或零值的矩阵元,对这些矩阵元的存储造成存储空间的浪费。因此,可以对矩阵进行压缩存储,以节省存储空间,达到提高存储利用率的目的。在算法实现中,选择的存储结构不同,执行效率也将不同。对不同矩阵存储方法的特点进行分析和比较,有助于根据不同的实际应用,有针对性地选择更为合适的存储结构,以此提高矩阵运算及其它相关操作的运行效率。 1稀疏矩阵及存储 若一个m行n列矩阵中的零元素有t个,零元素个数t与矩阵元总数m×n的比值称为稀疏因子,一般认为若稀疏因子不大于0.05,则此矩阵为稀疏矩阵。设矩阵有10行10列,即总共100个元素,若其中零元素有95个,而非零元素仅有5个,则此矩阵为稀疏矩阵。在存储稀疏矩阵时,可以采用非压缩存储和压缩存储两种方式。非压缩存储使用二维数组,比如,设10 行10列的稀疏矩阵M的矩阵元均为整数,则可以使用二维数组存储该矩阵M,数组的定义用C语言[1]描述如下: int a[10][10];

Scala从基础到开发实战

Scala从基础到开发实战 对于进化缓慢的Java跟C++语言来说,目前Scala无疑更适应现代化特质的语言,语法简洁,同时兼备函数式编程与面向对象编程,具有令人耳目一新的编程范式。而运行在Java 虚拟机上的编译环境使得其具有很多的现有工具与类库,拥有快速的可靠的解释器和编译器。 本课程是Scala语言基础课程,面向没有或仅有少量编程语言基础的同学,当然,具有一定的Java或C、C++语言基础将有助于本课程的学习。在本课程内,将更注重scala的各种语言规则和应用,通过学习本课程能具备初步的Scala语言实际编程能力。 Scala最近的红火也得益于Spark分布式内存计算平台的兴起,由于其惊人的计算速度,Spark将要革命Hadoop的说法尘嚣日上,但学习Spark的一项瓶颈是其原生语言Scala并不为大众所熟知,即使是资深程序员,从未听说过Scala者大有人在,于是本门课程也可以称为Spark系列的前置课程,供深入学习大数据技术的同仁们进行热身运动。 课程大纲: 第一课:Scala介绍——如何安装Scala REPL、SBT、IDE,编写简单的Scala程序;函数式编程简介 第二课:Scala的class和object,Scala的变量、类的介绍 第三课:Scala的基本数据类型、控制语句 第四课:高阶函数、Currying、尾递归 第五课:数据结构:List、Map、Set 第六课:组合和继承 第七课:Trait 第八课:响应式编程介绍 第九课:Akka框架(一)——akka的基本用法 第十课:Akka框架(二)——actor的监控 第十一课:Akka框架(三)——网络编程 第十二课:Akka框架(四)——akka使用技巧

稀疏矩阵的运算(完美版)

专业课程设计I报告( 2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。

2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输入要进行相乘的两个矩阵的详细信息。然后进行相乘,最后得到结果。 (3)稀疏矩阵的转置: 此功能由函数void Zhuanzhi( )实现。当用户选择该功能,系统提示用户初始

向量与矩阵运算

向量与矩阵运算 (摘自:华东师范大学数学系) §2.1向量及矩阵的生成 §2.1.1 通过语句和函数产生 §2.1.2 通过后缀为.m的命令文件产生 §2.2 矩阵操作 Matlab能处理数、向量和矩阵.但一个数事实上是一个1×1的矩阵,1个n 维向量也不过是一个1×n或n×1的矩阵.从这个角度上来讲,Matlab处理的所有的数据都是矩阵.Matlab的矩阵处理能力是非常灵活、强大的.以下我们将从矩阵的产生、基本运算、矩阵函数等几个方面来说明. §2.1向量及矩阵的生成 除了我们在上节介绍的直接列出矩阵元素的输入方法,矩阵还可以通过几种不同的方式输入到Matlab中. §2.1.1 通过语句和函数产生 1. 向量的产生 除了直接列出向量元素(即所谓的“穷举法”)外,最常用的用来产生相同增量的向量的方法是利用“:”算符(即所谓的“描述法”).在Matlab中,它是一个很重要的字符.如: z=1:5 z = 1 2 3 4 5

即产生一个1~5的单位增量是1的行向量,此为默认情况. 用“:”号也可以产生单位增量不等于1的行向量,语法是把增量放在起始量和结尾量的中间.如: x=0:pi/4:pi 即产生一个由0~pi的行向量,单位增量是pi/4=3.1416/4=0.7854. x = 0 0.7854 1.5708 2.3562 3 .1416 也可以产生单位增量为负数的行向量.如: y=6:-1:1 y = 6 5 4 3 2 1 2. 矩阵的产生 Matlab提供了一批产生矩阵的函数: 例如: ones(3) ans = 1 1 1 1 1 1 1 1 1

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

大数据开发新手学习指南(经典)

上市公司,官网:https://www.360docs.net/doc/3f13695709.html, 大数据开发初学者该如何学习 导读: 第一章:初识Hadoop 第二章:更高效的WordCount 第三章:把别处的数据搞到Hadoop上 第四章:把Hadoop上的数据搞到别处去 第五章:快一点吧,我的SQL 第六章:一夫多妻制 第七章:越来越多的分析任务 第八章:我的数据要实时 第九章:我的数据要对外 第十章:牛逼高大上的机器学习 经常有初学者会问,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高……首先,如果你确定了想往这个方面发展,先考虑自己的过去从业经历、专业、兴趣是什么。计算机专业——操作系统、硬件、网络、服务器?软件专业——软件开发、编程、写代码?还是数学、统计学专业——对数据和数字特别感兴趣? 其实这就是想告诉你大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。 先扯一下大数据的4V特征: ?数据量大,TB->PB ?数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;

上市公司,官网:https://www.360docs.net/doc/3f13695709.html, ?商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来; ?处理时效性高,海量数据的处理需求不再局限在离线计算当中。 现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的: 文件存储:Hadoop HDFS、Tachyon、KFS 离线计算:Hadoop MapReduce、Spark 流式、实时计算:Storm、Spark Streaming、S4、Heron K-V、NOSQL数据库:HBase、Redis、MongoDB 资源管理:YARN、Mesos 日志收集:Flume、Scribe、Logstash、Kibana 消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ 查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid 分布式协调服务:Zookeeper 集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager 数据挖掘、机器学习:Mahout、Spark MLLib 数据同步:Sqoop 任务调度:Oozie 1.1 学会百度与Google

稀疏矩阵乘法的运算

课程设计任务书 学生姓名:专业班级: 指导教师:夏红霞工作单位:计算机科学与技术学院题目: 稀疏矩阵乘法的运算 课程设计要求: 1、熟练掌握基本的数据结构; 2、熟练掌握各种算法; 3、运用高级语言编写质量高、风格好的应用程序。 课程设计任务: 1、系统应具备的功能: (1)设计稀疏矩阵的存储结构 (2)建立稀疏矩阵 (3)实现稀疏矩阵的乘法 2、数据结构设计; 3、主要算法设计; 4、编程及上机实现; 5、撰写课程设计报告,包括: (1)设计题目; (2)摘要和关键字; (3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、不足之处、设计体会等; (4)结束语; (5)参考文献。 时间安排:2010年7月5日-9日(第19周) 7月5日查阅资料 7月6日系统设计,数据结构设计,算法设计 7月7日 -8日编程并上机调试 7月9日撰写报告 7月10日验收程序,提交设计报告书。 指导教师签名: 2010年7月4日系主任(或责任教师)签名: 2010年7月4日

目录 1.摘要 (1) 2.关键字 (1) 3.引言 (1) 4. 问题描述 (1) 5. 系统设计 (1) 6. 数据结构 (3) 7. 算法描述 (3) 8. 测试结果与分析 (4) 9. 源代码 (12) 10. 总结 (29) 11.参考文献 (29)

稀疏矩阵乘法的运算 1.摘要:在一些数值计算中,一些二维矩阵的乘法运算很常见,我们经常采用线性代数中的知识进行运算,然而对一些含有非零元很少的二维矩阵也采用相同的方法时,就会发现那样的方法不仅需要很多的空间来存储0,造成空间复杂度比较大,而且算法的时间复杂度也较大。因此需要采取其他的方法来解决这个问题,由于0在乘法中其结果总是0,所以可以考虑采用三元组的方式去存储稀疏矩阵中的非零元,这样在计算过程中不仅需要的内存空间减少了,而且运算的速率也提高了。 2.关键字:稀疏矩阵乘法二维矩阵算法复杂度 3.引言:随着科学技术的发展,人们对矩阵的运算的几率越来越大,特别是高新科技研究中对矩阵的运算更是常见。但是如何高效的并占内存少的进行矩阵运算就是一个急需解决的问题。本文主要对稀疏矩阵的存储以及稀疏矩阵的乘法运算进行了研究和探讨。 4.问题描述:在一些数值计算中,一些二维矩阵的乘法运算很常见,我们经常采用线性代数中的知识进行运算,然而对一些含有非零元很少的二维矩阵也采用相同的方法时,就会发现那样的方法不仅需要很多的空间来存储0,造成空间复杂度比较大,而且算法的时间复杂度也较大。为了减少空间和时间复杂度,可以根据给定的二维数组的数据设计稀疏矩阵的存储结构,然后根据设计的稀疏矩阵存储结构建立一个稀疏矩阵,最后获得两个二维数组得到他们各自的稀疏矩阵,计算这两个稀疏矩阵的乘积。 5.系统设计: 5.1 设计目标:通过一定的数据结构,存储含有少量数据的矩阵,把他们存入一个稀疏矩阵中,然后实现稀疏矩阵的乘法运算。[基本要求]设计稀疏矩阵的存储结构;建立稀疏矩阵;实现稀疏矩阵的乘法

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

用Apache Spark进行大数据处理——第一部分:入门介绍

用Apache Spark进行大数据处理——第一部分:入门介绍 什么是Spark Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架。最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一。与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势。 首先,Spark为我们提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求。 Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍。 Spark让开发者可以快速的用Java、Scala或Python编写程序。它本身自带了一个超过80个高阶操作符集合。而且还可以用它在shell中以交互式地查询数据。 除了Map和Reduce操作之外,它还支持SQL查询,流数据,机器学习和图表数据处理。开发者可以在一个数据管道用例中单独使用某一能力或者将这些能力结合在一起使用。 在这个Apache Spark文章系列的第一部分中,我们将了解到什么是Spark,它与典型的MapReduce解决方案的比较以及它如何为大数据处理提供了一套完整的工具。 Hadoop和Spark Hadoop这项大数据处理技术大概已有十年历史,而且被看做是首选的大数据集合处理的解决方案。MapReduce是一路计算的优秀解决方案,不过对于需要多路计算和算法的用例来说,并非十分高效。数据处理流程中的每一步都需要一个Map阶段和一个Reduce阶段,而且如果要利用这一解决方案,需要将所有用例都转换成MapReduce模式。 在下一步开始之前,上一步的作业输出数据必须要存储到分布式文件系统中。因此,复制和磁盘存储会导致这种方式速度变慢。另外Hadoop解决方案中通常会包含难以安装和管理的集群。而且为了处理不同的大数据用例,还需要集成多种不同的工具(如用于机器学习的Mahout和流数据处理的Storm)。 如果想要完成比较复杂的工作,就必须将一系列的MapReduce作业串联起来然后顺序执行这些作业。每一个作业都是高时延的,而且只有在前一个作业完成之后下一个作业才能开始启动。 而Spark则允许程序开发者使用有向无环图(DAG)开发复杂的多步数据管道。而且还支持跨有向无环图的内存数据共享,以便不同的作业可以共同处理同一个数据。

稀疏矩阵乘法运算

稀疏矩阵的乘法运算 程序代码: #include #include #include #include #include #include #define Ture 1 #define Overflow -1 typedef struct OLnode { int i,j; int e; struct OLnode *right,*down; }OLnode,*Olink; typedef struct { Olink *rhead,*chead; int mu,nu,tu; }Crosslist; //在十字链表M.rhead[row]中插入一个t结点

void insert_row(Crosslist &M,OLnode *t,int row) { OLnode *p; int col=t->j; if(M.rhead[row]==NULL||M.rhead[row]->j>col) { t->right=M.rhead[row]; M.rhead[row]=t; } else { for(p=M.rhead[row];p->right&&p->right->jright);//寻找在行表中的插入位置 t->right=p->right; p->right=t; } } //在十字链表M.chead[col]中插入一个结点t void insert_col(Crosslist &M,OLnode *t,int col) { OLnode *p; int row=t->i; if(M.chead[col]==NULL||M.chead[col]->i>row) { t->down=M.chead[col];

相关文档
最新文档