线性规划期末复习题

线性规划期末复习题

《线性规划》期末复习题1

一、将下列线性规划问题化成标准型

3412281221212(1).21612,0

12MaxZ x x x x x x st x x x x =+-+≤+≤+≤≥????? 4612361221012(2).764120,0

12MinZ x x x x x x st x x x x =+-≥+≤-=≥≤????? 二、考虑下述线性规划问题 1105234912.52812,012

Maxf x x x x st x x x x ???????=++≥+≤≥ 求:

(1) 用图解法求解。

(2) 写出此线性规划问题的标准型。

(3) 求出此线性规划问题的两个松弛变量的值。 三、考虑下述线性规划问题

118121022012331812..493612,012MinZ x x x x x x st st x x x x =++≥+≤+≥≥????? 求: (1) 用图解法求解。 (2) 写出此线性规划问题的标准型。 (3) 求出此线性规划问题的三个剩余变量的值。

四、考虑下述线性规划问题的灵敏度分析

431261282.231812,0

12MaxZ x x x x st x x x x =+≤≤+≤≥????? (1) 用图解法求最优解和最优目标函数值。

(2) 假定1c 值不变,求出使最优解不变的2c 值的变化范围。

(3) 假定2c 值不变,求出使最优解不变的1c 值的变化范围。

(4) 当1c 值从4变为1,2c 值不变,求出新的最优解。

(5) 当1c 值从4变为2.5,2c 值从3变为2时,其最优解是否发生变化?为什么?

(6) 当右端项由(6,8,18)变为(7,8,18)时,最优解怎么变化?

(7) 如果1x 的约束系数由(1,0,2)变为(1,0,3时),最优解怎么变化?

(8) 如果增加一个约束5 x 1 +3 x 2≤25,最优解怎么变化?

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

2019届人教B版(文科数学) 二元一次不等式(组)与简单的线性规划问题 单元测试

一、填空题 1.若x ,y 满足不等式组???? ? x +y -3≤0,x -y +3≥0, y ≥-1, 则 =3x +y 的最大值为 【解析】将 =3x +y 化为y =-3x + ,作出可行域如图阴影部分所示,易知当直线y =-3x + 经过点D 时, 取得最大值.联立? ?? ?? x +y -3=0, y =-1,得D (4,-1),此时 max =4×3-1=11, 2.已知x ,y 满足约束条件???? ? x ≥2,x +y ≤4, -2x +y +c ≥0, 目标函数 =6x +2y 的最小值是10,则 的最大值是 即D (3,1),将点D 的坐标代入目标函数 =6x +2y ,得 max =6×3+2=20.

3.若x ,y 满足???? ? x +y -2≥0,kx -y +2≥0, y ≥0, 且 =y -x 的最小值为-4,则k 的值为 4.若x ,y 满足约束条件??? ?? 3x -y ≥0, x +y -4≤0, y ≥12x 2 , 则 =y -x 的取值范围为 【解析】作出可行域如图所示,设直线l :y =x + ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0 的交点(1,3)时, 取得最大值2;当l 与抛物线y =12x 2 相切时, 取得最小值,由????? z =y -x ,y =12x 2 ,消去y 得 x 2-2x -2 =0,由Δ=4+8 =0,得 =-1 2 ,故-12 ≤ ≤2. 5.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域???? ? x -2≤0,x +y ≥0, x -3y +4≥0 中 的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |= 【解析】作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,

线性规划题及答案

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 2x -y _2 例1、设变量x、y满足约束条件x 一y _ _1,则z =2x ? 3y的最大值为__________ 。 x y _1 二、已知线性约束条件,探求非线性目标关系最值问题 \ >1, 例2、已知」x-y+1兰0,则x2+y2的最小值是_」“(x-1)2+(y+2『”值域? 2x - y - 2 <0 三、约束条件设计参数形式,考查目标函数最值范围问题。 Zf x _0 例3、在约束条件y_0 下,当3乞s乞5时,目标函数Z=3x?2y的最大值的变化范围是() |y x _s y 2x^4 A. [6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线x2-y2 =4的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是() fx-yZ0 「x-yX0 『x-y^0 "x-y 兰0 (A) x y _ 0 (B) x y 乞0 (C) x y 乞0 (D) x y _ 0 0 _x _3 0 _x _3 0 _x _3 0 _x _3 五、已知最优解成立条件,探求目标函数参数范围问题。 (1 ::: x :「v ‘::4 例5已知变量x,y满足约束条件若目标函数ax y (其中a 0)仅在 [―2 兰x—y 兰2 点(3,1)处取得最大值,则a的取值范围为 __________ 。 六、设计线性规划,探求平面区域的面积问题 丄x y _ 2 _ 0 _ 例6在平面直角坐标系中,不等式组x_y,2_0表示的平面区域的面积是()(A)4、、2 (B)4 [八0 (C) 2.2 (D)2 七、研究线性规划中的整点最优解问题 ”5x-11y —22, 例7、某公司招收男职员x名,女职员y名,x和y须满足约束条件<2x+3yX9, 则 、2x 兰11. z =10x 10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如z =-—a时,可把z看作是动点P x, y与定点Q b, a连线的斜率,这样目 x —b 标函数的最值就转化为PQ连线斜率的最值。 x—y+ 2W 0,V

高中数学(人教版A版必修五)配套单元检测:第3章:3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二) 课时目标 1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型. 1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域; (5)利用线性目标函数(直线)求出最优解; 根据实际问题的需要,适当调整最优解(如整数解等). 2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小. 一、选择题 1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( ) A.????? a 1x +a 2y ≥c 1, b 1 x +b 2 y ≥c 2 ,x ≥0,y ≥0 B.????? a 1x +b 1y ≤c 1, a 2 x +b 2 y ≤c 2 , x ≥0, y ≥0 C.????? a 1x +a 2y ≤c 1, b 1 x +b 2 y ≤c 2 ,x ≥0,y ≥0 D.????? a 1x +a 2y =c 1, b 1 x +b 2 y =c 2 , x ≥0, y ≥0 2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C .4 D.53 3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

人教版高中数学必修三单元测试线性规划及答案

(6)线性规划 一、选择题(本大题共10小题,每小题5分,共50分) 1.设直线l 的方程为:01=-+y x ,则下列说法不.正确的是 ( ) A .点集{01|),(=-+y x y x }的图形与x 轴、y 轴围成的三角形的面积是定值 B .点集{01|),(>-+y x y x }的图形是l 右上方的平面区域 C .点集{01|),(<+--y x y x }的图形是l 左下方的平面区域 D .点集{)(,0|),(R m m y x y x ∈=-+}的图形与x 轴、y 轴围成的三角形的面积有最小值 2.已知x , y 满足约束条件,11?? ? ??-≥≤+≤y y x x y y x z +=2则的最大值为 ( ) A .3 B .-3 C .1 D . 2 3 3.如果函数a bx ax y ++=2 的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为 ( ) A . B . C . D . 4.图中的平面区域(阴影部分包括边界)可用不等式组表示为 ( ) A .20≤≤x B .?? ?≤≤≤≤1 020y x C .???? ?> ≤-+y x y x 022 D .?? ? ??≥≥≤-+00 022y x y x 5.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且 D .D P D P ∈∈21且 6.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x x 1201 -y

高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f (x ) g (x ) >0(<0)?f (x )g (x )>0(<0); ②变形?f (x ) g (x )≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x ); ②当0a g (x )?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22≥a +b 2≥ab ≥2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

运筹学练习题

《运筹学》--- 数据、模型与决策练习题 2010年9月 一、线性规划:基本概念 1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S: 满足所有线性规划假设。 (1)在电子表格上为这一问题建立线性规划模型; (2)用代数方法建立一个相同的模型; (3)用图解法求解这个模型。 2、今天是幸运的一天,你得到了10000美元的奖金。除了将4000美元用于交税和请客之外,你决定将剩余的6000美元用于投资。两个朋友听到这个消息后邀请你成为两家不同公司的合伙人,每一个朋友介绍了一家。这两个选择的每一个都将会花去你明年夏天的一些时间并且要花费一些资金。在第一个朋友的公司中成为一个独资人要求投资5000美元并花费400小时,估计利润(不考虑时间价值)是4500美元。第二个朋友的公司的相应数据为4000美元和500小时,估计利润为4500美元。然而每一个朋友都允许你根据所好以任意比例投资。如果你选择投资一定比例,上面所有给出的独资人的数据(资金投资、时间投资和利润)都将乘以一个相同的比例。 因为你正在寻找一个有意义的夏季工作(最多600小时),你决定以能够带来最大总估计利润的组合参与到一个或全部朋友的公司中。你需要解决这个问题,找到最佳组合。 (1)为这一问题建立电子表格模型。找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。 (2)用代数方法建立一个同样的模型。 (3)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。 (4)使用图解法求解这个模型。你的总期望利润是多少 3、伟特制窗(Whitt Window)公司是一个只有三个雇员的公司,生产两种手工窗户:木框窗户和铝框窗户。公司每生产一个木框窗户可以获利60美元,一个铝框窗户可以获利30

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

2020年高考数学课时53简单的线性规划单元滚动精准测试卷文

课时53简单的线性规划 模拟训练(分值:60分 建议用 时:30分钟) 1. (2020 ?浙江衢州质量检测,5分)不等式(x — 2y + 1)( x + y — 3) < 0在坐标平面内表示 【答案】C 【解析】S+F — 3UQ fjr- 1WQ 』 应十厂3 wo i 卄尹fa 结合图形可知选: 2. ( 2020 ?北京崇文一模,5分)6. (2020年山东潍坊一模)某企业生产甲、乙两种产品,已知生产每 吨甲产品要用 A 原料3吨、B 原料2吨;生产每吨乙产品要用 A 原料1吨、B 原料3吨?销售每吨甲产品可 获得利润1万元,每吨乙产品可获得利润 3万元,该 企业在某个生产周期内甲 产品至少生产1吨,乙产品 至少生产2吨,消耗A 原料不超过13吨,消耗B 原料不超过18吨,那么该企业在这个生产周期内获得最 大利润时甲产品的产量应是 ( ) A. 1吨 B . 2吨 11 C. 3吨 D.—吨 3 【答案】A 【解析】设该企业在这个生产周期内生产 x 吨甲产品,生产 y 吨乙产品,x 、y 满足的条件为 3x + y w 13, 2x + 3y w 18, x > 1, 所获得的利润z = x + 3y ,作出如图所示的可行域: 16 A (1 , 3)时所获利润最大,此时甲产品的产 作直线I 。: x + 3y = 0,平移直线I 。,显然,当直线经过点 的区域(用阴影部分表示

量为1吨.

x —y+ 5>0 3. (2020 ?宁波二模,5分)不等式组y > a 0W x<3 表示的平面区域是一个二角形,则a的范围是 A. a<5 C. 5w a v 8 B . a>8 D . a v 5 或a>8 【答案】C 阖斤】如朋示的交助(心 的交点为〔3£儿衣& x —K 0, 4. ( 2020 ?金华模拟,5分)2.已知点P(x, y)满足2x+ 3y —5<0, 4x+ 3y —1 > 0, 2 点Qx, y)在圆(x + 2) + (y+ 2)2= 1上,则| PQ的最大值与最小值为() A. 6,3 C. 5,3 【答案】B 【解析】可行域如图阴影部分,设|PQ = d,则由图中圆心q —2, —2)到直线4x + 3y— 1 = 0的距离最小,则到点A距离最大. 2x+ 3y —5= 0, 由4x+ 3y —1= 0,得风—2'3). 二d max= | CA + 1 = 5+ 1 = 6 ,

高考全国卷线性规划真题含答案

高考全国卷线性规划真 题含答案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1,0,x y x y y +≤?? -≥??≥? 则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330233030x y x y y -≤?? -+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件32600 0x y x y +-≤?? ≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件???? ?x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最 小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件? ??? ?2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5

2020高考:高中数学线性规划各类习题精选

线性规划 基础知识: 一、知识梳理 1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 例题: 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

线性规划习题

1. 一水源地的年供水能力为6000万m 3,供水范围包括工业、农业、生活三个部分,各部门的需水量、水价、供水要求见表1,如何在满足供水要求的情况下分配水量,使得供水收入达到最大?列出该问题的数学模型。 表1 各用户需水量、水价及供水要求 2. 用图解法求解以下线性规划问题,并指出问题具有唯一最优解、无穷多最优解、无界解,还是无可行解? (1) (2) ≥,4≤1≥+10 ≤2+..3+=max 212212121x x x x x x x t s x x Z ,2+3 3+..5.1+=min 2121212 1≥≥≥x x x x x x t s x x Z 3. 将以下线性规划问题转化为标准型,找出所有基解,确定其中的 基可行解并计算其目标函数值,找出最优解及最优目标函数值。 ,12≤+315 5+3..+2=max 21212121≥≤x x x x x x t s x x Z 4. 用对偶单纯形法解下题。

≥,3≤2+x 63+4x 3≥+3x +2=max 212121212 1x x x x x x x Z ≥约束条件: 5.某企业计划生产A,B 两种产品。生产1kg 产品A 需经甲设备加工1小时,乙设备加工5小时,获利5元;生产1kg 产品B 需经甲设备加工2小时,乙设备加工2小时,获利6元。现该企业甲设备加工能力不超过12小时,乙设备加工能力不超过30小时。试问如何安排生产计划,使企业获利最大,并计算两种设备的影子价格。 6. 某地区在今后三年内有四种投资机会。第一种是在三年内每年年初投资,每年年底可将该年投资收回,并获利20%;第二种是在第一年年初投资,第二年年底可获利50%,并将本金收回,但是该项投资最多不得超过2万元;第三种投资是在第二年年初投资,第三年年底收回本金,并获利60%,该项投资不得超过1.5万元;第四种是在第三年年初投资,于该年年底收回本金,且获利40%,该项投资不得超过1万元。现在该地区准备拿出三万元资金,问如何制定投资计划,使到第三年年末本利和最大。

六种经典线性规划例题

1 线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选 D

2 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 解:如图,作出可行域,x 2 +y 2 是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方, 即|AO|2 =13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选 C 六·比值问题 当目标函数形如y a z x b -= -时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。 例 已知变量x ,y 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0, 则 y x 的取值范围是( ). (A )[95,6] (B )(-∞,9 5]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6] 解析 y x 是可行域内的点M (x ,y )与原点O

相关文档
最新文档