随机脉位脉冲多普勒引信回波信号判别及处理

随机脉位脉冲多普勒引信回波信号判别及处理
随机脉位脉冲多普勒引信回波信号判别及处理

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

传感器脉冲信号处理电路设计

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (2) 2.2.2 时钟电路 (3) 2.3 单片机复位电路 (3) 2.4 霍尔传感器电机采样电路 (4) 2.4.1 A3144霍尔开关的工作原理及应用说明 (4) 2.4.2 霍尔传感器测量原理 (5) 2.5 电机驱动电路 (6) 2.6 显示电路 (6) 3 软件系统设计 (7) 3.1 软件流程图 (7) 3.2 系统初始化 (9) 3.3 定时获取脉冲数据 (10) 3.4 数据处理及显示 (11) 3.5 C语言程序 (12) 总结 (15) 致谢 (16) 参考文献 (17)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar) 学习笔记 1:PD雷达简介 PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。 PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。 它们各具特点,分别适用不同的环境。低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。 1:测速原理 雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。 2:距离模糊产生原因 雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。为保证单值测距, 通常应R max 选取T R>2 C

R max为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为 R=c (m×T r+t r) 式中,t r为测得的回波信号与发射脉冲间的时延。这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。 2:

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

连续多普勒和脉冲多普勒的区别之欧阳家百创编

脉冲波多普勒是由同一个(或一组)晶片发射并接收超声波的。它用较少的时间发射,而用更多的时间接收。由于采用深度选通(或距离选通)技术,可进行定点血流测定,因而具有很高的距离分辨力,也可对喧点血流的性质做出准确的分析。由于脉冲波多普勒的最大显示频率受到脉冲重复频率的限制,在检测高速血流时容易出现混叠。

这对像二尖瓣狭窄、主动脉瓣狭窄等这类疾病的检查十分不利。连续波多普勒由于采用两个(或两组)晶片,由其中一组连续地发射超声,而由另一组连续地接收回波。它具有很高的速度分辨力,能够检测到很高速的血流,这是它的主要的优点。而其最主要的缺点是缺乏距离分辨能力。 1.连续式多普勒超声仪

超声多普勒诊断仪简称D型超声仪。它是利用多普勒效应原理,对运动的脏器和血流进行探测的仪器。连续式多普勒超声仪是由振荡器发出高频连续振荡,送至双片探头中的一片,被激励的晶片发出连续超声的。遇到活动目标(如红细胞),反射回来的超声已是改变了频率的连续超声,它被双片探头的另一片所接收并转为电信号。此信

号与仪器的高频振荡器产生的信号混频以后,经高频放大器放大,然后解调取出差频信号。此差频信号含有活动目标速度的信息。由于处理和显示方式不同,连续式多普勒仪可分为监听式、相位式、指向式和超声多普勒显像仪等。最简单的多普勒显像系统由连续波多普勒血流检测器、存贮监视器与探头位置定位器组成。定位器用机械法与血

流检测探头结合,并将信号传递至存贮监视器,在示波屏上显示出与探头位置相关的一个光点。当来自探头的超声束贯穿一条血管时,血流检测器产生一个信号至监视器并在示波屏上增辉及存贮。连续波多普勒由于采用两个(或两组)晶片,由其中一组连续地发射超声,而由另一组连续地接收回波。它具有很高的速度分辨力,能够检测到

现代光电信息处理技术样本

1、 在空域中, 如何利用d 函数进行物光场分解。( 5分) 答: 根据δ函数的筛选性质, 任何输入函数都能够表示为 ()()()ηξηξδηξd d y x f y x f 1??∞ ∞-111--=,,, 上式表明, 函数()1y x f 1, 能够分解成为在1y x 1, 平面上不同位置处无穷多个δ函数的线性组合, 系数()ηξ,f 为坐标位于()ηξ, 处的δ函数在叠加时的权重。函数()1y x f 1,经过系统后的输出为 () ()()??????--=??∞∞-112ηξηξδηξd d y x f y x g 2,,,L 根据线性系统的叠加性质, 算符{} L 与对基元函数积分的顺序能够交换, 即可将算符{} L 先作用于各基元函数, 再把各基元函数得到的响应叠加起来 ()()(){}ηξηξδηξd d y x f y x g 2??∞ ∞-112--=,, ,L ( 1.4) (){ }ηξδ--11y x ,L 的意义是物平面上位于()ηξ, 处的单位脉冲函数经过系统后的输出, 可把它定义为系统的脉冲响应函数( 图1.3) ()(){}ηξδηξ--=112y x y x h 2,,; ,L ( 1.5) 2、 卷积与相关各表示什么意义? 在运算上有什么差异? ( 5分) 答: 函数()y x g ,和()y x h ,的卷积定义为 ()()()()ηd ξd ηy ξx h ηξg y x h y x g ??∞ ∞---=*,,,, 则 ()(){}()()y x y x f f H f f G y x h y x g ,,,,F ?=* 即空间域中两个函数的卷积的傅里叶变换等于它们对应傅里叶变换的乘积。另一方面有

脉冲多普勒超声

脉冲多普勒超声 1.脉冲式多普勒超声仪的工作原理 脉冲式多普勒超声仪发射的是脉冲波,每秒发射超声脉冲的个数称脉冲重复频率(PRF),一般为5~10kHz。目前常用的距离选通式脉冲多普勒超声仪由换能器、高频脉冲发生器、主控振荡器、分频器、取样脉冲发生器、接收放大器、鉴相器、低通滤波器和f-v变换器等部件组成。换能器(探头)采用发、收分开型,发射压电晶体受持续时间极短的高频脉冲激励,发射超声脉冲。接收压电晶体收到由红细胞后散射的高频回波,经放大后输入鉴相器进行解调,低通滤波器滤去高载波,让不同深度的多普勒回波信号通过。调节取样脉冲与高频发射脉冲之间的延迟时间,就可以对来自某一深度的回波信号进行选通取样,从而检测到那一深度血管中的血流。按照取样定理,取样脉冲的重复频率必须大于最大多普勒频移的2倍。取样脉冲与发射脉冲之间的延迟时间,可用简单的单稳态延迟电路产生。标明选通距离的度盘直接装在调节延迟时间的电位器的轴上,延迟时间每改变13μs,距离度盘上的距离标度正好改变1cm。经取样保持电路输出的信号中含有控制脉冲信号成分,经过低通滤波器滤除后,送f-v变换成电压输出。 2.脉冲波多普勒和连续波多普勒超声的特点与限度 脉冲波多普勒是由同一个(或一组)晶片发射并接收超声波的。它用较少的时间发射,而用更多的时间接收。由于采用深度选通(或距离选通)技术,可进行定点血流测定,因而具有很高的距离分辨力,也可对喧点血流的性质做出准确的分析。由于脉冲波多普勒的最大显示频率受到脉冲重复频率的限制,在检测高速血流时容易出现混叠。这对像二尖瓣狭窄、主动脉瓣狭窄等这类疾病的检查十分不利。 美国TRITON(CBI)公司生产的300-100型三通道脉冲多普勒血流计主要用于测量主动脉或冠状动脉等大血管(非毛细血管)内的血液流速流量。配置N个(不超过3)插件即可同时测量N根血管的血流量。根据被测血管粗细使用不同规格探头,探头直径范围0.8-20mm。软性探头贴合较好并可随血管运动,不易脱落,清洁方便。另有6通道和8通道两种规格的脉冲多普勒血流计,最多可以同时测量8处血管的血流量。系统价格较低,性价比好。技术参数发射脉冲宽度:0.4微秒接收脉冲宽度:0.2微秒超声波带宽:100Hz-15KHz,200Hz-25KHz 速度输出:0.25V/KHz 速度范围:2-800cm/秒最小可测2mm 直径血管,最大血管直径20mm

模拟电路数字电路的脉冲电路信号处理

如何看懂脉冲电路 2010-06-2215:28:07作者:来源:21IC电子网 脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变换和整形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以及电子医疗器具等,都要用到脉冲电路。 在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号。电子电路中另一大类电路的数字电子电路。它加工和处理的对象是不连续变化的数字信号。数字电子电路又可分成脉冲电路和数字逻辑电路,它们处理的都是不连续的脉冲信号。 电脉冲有各式各样的形状,有矩形、三角形、锯齿形、钟形、阶梯形和尖顶形的,最具有代表性的是矩形脉冲。要说明一个矩形脉冲的特性可以用脉冲幅度Um、脉冲周期T或频率f、脉冲前沿t r、脉冲后沿t f和脉冲宽度t k来表示。如果一个脉冲的宽度t k=1/2T,它就是一个方波。 脉冲电路和放大振荡电路最大的不同点,或者说脉冲电路的特点是:脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或截止区的,所以脉冲电路有时也叫开关电路。从所用的晶体管也可以看出来,在工作频率较高时都采用专用的开关管,如2AK、2CK、DK、3AK 型管,只有在工作频率较低时才使用一般的晶体管。 就拿脉冲电路中最常用的反相器电路(图1)来说,从电路形式上看,它和放大电路中的共发射极电路很相似。在放大电路中,基极电阻R b2是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止,R b2是接到一个负电源上的,而且R b1和R b2的数值是按晶体管能可靠地进入饱和区或止区的要求计算出来的。不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容C,在脉前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是一个特点。

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、 适用范围 脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、 PD 雷达的定义及其特征 (1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观 测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF 很高,通常对所观测的目标产生距离模糊。 3、 PD 雷达的分类 图1 PD 雷达的分类图 ① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰 4、 机载下视PD 雷达的杂波谱分析 机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 表 1

5、PRF的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线;

外周动脉脉冲多普勒频谱采集规范

外周动脉脉冲多普勒频谱采集 字号: 小中大| 打印发布: 2009-4-18 19:42 作者: webmaster 来源: 本站原创查看: 152次 附录 外周动脉脉冲多普勒频谱采集 多普勒频谱包括脉冲和连续多普勒频谱,外周动脉超声检查中主要应用脉冲多普勒频谱。外周动脉超声检查时,通过采集脉冲多普勒频谱,分析、测量并结合临床进行定性判断和定量诊断,是超声诊断外周动脉疾病的关键技术,是诊断外周动脉狭窄最重要的方法之一。 然而,如果脉冲多普勒检查时角度和取样容积大小等设置不当,将严重影响检查的准确性。因此有必要对其进行相应阐述。 一、多普勒频谱概念 频谱(spectrum)一词来源于拉丁文,是图像(image)的意思。可以把多普勒频谱(Doppler spectrum)看作是血管中红细胞运动所产生的多普勒频移(Doppler shift)图像,横轴代表时间,纵轴显示各个时间点取样容积(Doppler sample volume)内众多红细胞运动产生的多普勒频移的叠加。 二、多普勒频谱采集 1. 多普勒取样容积概念多普勒频谱所显示的血流信息来自一个特定的立体空间范围,称为取样容积(图1)。取样容积是三维立体的,但我们工作中能调节(或控制)的仅是一维,其它二维取决于声束的宽度和形状。脉冲多普勒是通过时间来选择性接收相应深度的多普勒信号,称为多普勒距离选通(range-gate),有的学者将其翻译为取样门。 图1 脉冲多普勒取样线、取样容积和多普勒角度校正 B图为A图上半部分的放大图。箭头1所指为多普勒取样线;箭头2和箭头3所示指的两条平行线之间的距离表示取样容积的长度,也称为取样门宽度;血管中心的短线(4)代表血流的方向,它与脉冲多普勒取样线之间的夹角(朝向探头方向)即为多普勒角度θ 多普勒取样容积有以下特征:①取样容积是三维立体的。取样容积的三维形状取决于超声声束的形状。各超声仪厂家的成束技术有所不同,很难讲标准的取样容积形状。同时,取样容积形状也会随聚焦点位置变化而变化。用水中听音器(Hydrophone)在水箱中可以测出每种超声仪取样容积的实际形状。水中听音器是一种声波传感器,信号输出可以用简单的示波器采集;②多普勒超声二维图像并未显示取样容积的实际形状和大小,仅显示了取样容积的

脉冲多普勒雷达信号处理技术研究

脉冲多普勒雷达信号处理技术研究 发表时间:2019-08-20T08:43:14.537Z 来源:《防护工程》2019年10期作者:张炯[导读] 结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 浙江 摘要:经济在快速的发展,社会在不断的进步,脉冲多普勒(PD)雷达是一种依靠多普勒效应提高目标检测能力的全相参体制的雷达,它利用多普勒效应对目标信息进行提取和处理,具有较高的速度分辨率,可以有效的抑制强地杂波的干扰,完成相应的探测功能。论文首先研究了脉冲多普勒雷达测速测距原理,并从PD雷达模糊函数出发,以各个信号的模糊函数仿真为依据,讨论了如何设计波形以获得较高的分辨率。依据线性调频信号处理相关研究成果,结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 关键词:脉冲多普勒雷达;模糊函数;脉冲压缩 引言 本论文研究的是脉冲多普勒雷达信号处理关键技术,重点研究了脉冲多普勒雷达解距离模糊,地杂波特性以及地杂波抑制算法。简要介绍了海杂波特性,海杂波的抑制技术和发展方向,以及脉冲多普勒雷达抗干扰技术。首先简要介绍了脉冲多普勒雷达的发展概况,以及信号处理系统的基本构成和各部分的主要功能。其次,本文研究了脉冲多普勒雷达解距离模糊的问题。脉冲多普勒雷达存在距离或速度模糊,本文介绍了几种消除距离模糊的方法,并对这几种方法的优劣进行了比较。再次,本文研究了脉冲多普勒雷达杂波以及杂波抑制算法。分析了地杂波统计特性,研究了相关雷达杂波功率谱特性的AR模型及其模拟方法。介绍了几种典型的杂波抑制算法,对此几种方法进行了比较,并用LMS算法进行抑制。简要介绍了海杂波特性,海杂波的抑制技术及其发展方向。最后,本文研究了脉冲多普勒雷达的抗干扰性能。对脉冲多普勒雷达反电子侦察、抗噪声干扰能力、抗欺骗干扰能力等进行了分析。并给出几种抗干扰措施。 1 我国雷达的发展历程 现代雷达门类多,其发展历程也不尽相同,起步有早有晚,仿制和自行设计互有交叉。我国的雷达工业是在新中国成立后根据国防需要形成和发展起来的新型工业。在党和国家的支持下,经过广大科研人员的不懈努力,经历了从小到大,从维修、仿制到自发研制的发展历程。从我国雷达技术发展总体来说,大致可分为修配、仿制、自行研发和发展提高这四个阶段。(1)修配阶段这一阶段主要以修配美、口等强国的旧雷达为标志。1949年,我军接管了国民党雷达研究所,这标志着我国从此揭开了雷达工业发展的序幕。新中国成立以后,国家对雷达研究所从人力、物力等各个方面大力支持,对缴获的雷达器材和美、口在二战中遗留下的旧雷达进行维修和补缺,而这些修复的雷达大多都是警戒雷达。(2)仿制阶段这一阶段以建立雷达基地并仿制苏式雷达为主要标志。新中国成立后,在前苏联的帮助下,我国开始仿制苏式的雷达产品,包括炮瞄雷达、机载雷达、舰用雷达、警戒雷达和指导雷达等。1954年仿制的警戒雷达是我国的第一批国产雷达,而19_56年仿制出我国第一部采用微波对海技术的远程警戒雷达。此外,我国仿制的海用雷达包括搜索攻击专用雷达、海军警戒专用雷达、鱼雷快艇专用雷达、导弹制导雷达等。这一阶段仿制的雷达大部分都相当于前苏联四五十年代的水平,仿制的成功使得我国的雷达产品得到了扩展,也使我国基本掌握了雷达生产的基本过程。(3)自行设计1960年中央军委提出了以两弹为主,努力发展电子技术的方针,为我国雷达工业明确了方向。在弹道导弹预警系统方面,我国成功研制了大型的远程跟踪雷达,超视距试验雷达和大型相控阵雷达。与此同时,我国还自行研制出了一批与武器配套的雷达,包括机载火控雷达、轰炸瞄准雷达、测距雷达、多普勒导航雷达、导弹制导雷达等。除了军用雷达,我国还自行研制出了民用的气象雷达、空中交通管制雷达等。这一阶段我国脱离了国外产品的图纸和资料,自行研制和开发新雷达,所需原材料、元器件都立足于国内。并且开始大量生产,向国外出口。 2 脉冲多普勒雷达信号处理技术研究 2.1 脉冲多普勒雷达反电子侦察能力 电子干扰的针对性很强,有效的电子干扰需要知道雷达工作的时间、空间、频率等信息,所以现代电子干扰设备都有侦察功能。用侦察设备引导干扰机,使干扰机能把有限的干扰功率投向需要干扰的目标。干扰设备的工作过程大致可分为三个阶段:截获雷达信号;分选识别威胁源;组织实施干扰。如果破坏或延误其中的任何一步,都会降低干扰机的作战效能。如果使干扰机收不到雷达信号,雷达肯定不会受到敌意的干扰。即使雷达信号不能躲过干扰机的侦察,但能使干扰机无法确定所截获的信号是否值得干扰,使干扰机要么在干扰与不干扰之间犹豫不决而错过良机,要么不能采取有效的干扰样式或合适的干扰参数而达不到预期的干扰效果,同样能收到抗侦察的效果。 2.2 脉冲多普勒雷达抗箔条干扰能力分析 箔条使用简单、造价低,容易覆盖较宽的频带。在过去的较大战争中,都使用了箔条干扰。大面积的箔条云形成类似于地杂波的分布式干扰背景,雷达在这种干扰中检测目标类似于在高斯噪声背景中的日标检测。小面积的箔条云可形成假目标,起欺骗干扰作用。总之,对于只从时域检测目标的普通脉冲雷达,箔条有较好的干扰效果。PD雷达从频域检测目标,目标的多普勒频率由它的运动速度确定,箔条能否干扰PD雷达由箔条具有的速度确定。箔条通常是从具有一定初速度的载体上投放出来的,刚投放时具有载体的速度。箔条散开到有干扰作用需要一定时间。虽然刚投放的箔条有大的速度,但反射面积小。相反,反射面积大时,速度又小。箔条从载机投放后只需几秒钟,其速度就降为当时的风速。如此大的加速度,使其反射信号在每个多普勒滤波器中的停留时间太短。来不及建立起足以和目标信号相对抗的幅度。所以箔条的初速度对PD雷达的干扰作用很小。 2.3 PD雷达保护喇叭抗来自旁瓣的干扰 PD雷达中重复频率工作模式,目标检测是在旁瓣杂波中进行的。为防止地面大建筑物及类似反射体的强反射信号从天线旁瓣进入雷达,造成虚警干扰,PD雷达应有保护喇叭。干扰机可通过雷达天线旁瓣对雷达实施干扰。对此雷达可用保护喇叭对干扰信号进行对消或匿隐。主天线和保护喇叭的相对增益。若要对来自旁瓣的干扰匿隐,保护喇叭的增益应比天线主瓣的增益小,比天线旁瓣的增益大。因此经旁瓣进入雷达的干扰信号将在保护通道某个距离多普勒单元产生一个比主通道对应单元中更大的幅度响应。当主通道信号与保护通道信号之比较小时,表明该信号是自旁瓣进入的,比较器产生一个匿隐门来抑制主通道对该信号的检测。反之则认为信号来自天线主瓣,主通道对信号进行检测。利用对消的方法也可以抑制来自旁瓣的干扰。

经典雷达资料-第17章--脉冲多普勒(PD)雷达

第17章脉冲多普勒(PD)雷达 William H.Long David H.Mooney William A.Skillman 17.1 特性和应用 术语 在本章中,脉冲多普勒(PD)一词适用于下列雷达: (1)雷达采用相参发射和接收,即发射脉冲和接收机本振信号都与一个高稳定的自激振荡器信号同步; (2)雷达的PRF足够高,距离是模糊的; (3)雷达采用相参处理来抑制主瓣杂波,以提高目标的检测能力和辅助进行目标识别或分类。 应用 PD主要应用于那些需要在强杂波背景下检测动目标的雷达系统。表17.1列出了PD的典型应用[1]~[10]和要求。虽然PD的基本原理也可应用于地面雷达,但本章主要讨论PD在机载雷达中的应用。 表17.1 PD的典型应用和要求 脉冲重复频率 PD雷达通常可分为两大类,即中PRF和高PRF的PD雷达[11]。在中PRF的PD雷达[12]~[14]中,我们所关心的目标距离、杂波距离和速度通常都是模糊的。但在高PRF的PD雷达中[15],

只有距离是模糊的,而速度是不模糊的(或如后面所讨论的最多只有一阶速度模糊)。 在通常被称为动目标显示器(MTI)[16]的低PRF雷达中,人们所关心的距离是不模糊的,但速度通常是模糊的。尽管MTI雷达和PD雷达的工作原理是相同的,但通常并不把它也列入PD雷达。表17.2给出了MTI和PD雷达的比较。 表17.2 MTI雷达和PD雷达的比较 优点缺点 MTI 雷达低PRF 1.根据距离可区分目标和杂波; 2.无距离模糊; 3.前端STC抑制了副瓣检测和降低对动态范围的要求。 1.由于多重盲速,多普勒能见度低; 2.对慢目标抑制能力低; 3.不能测量目标的径向速度。 PD雷达 中PRF 1.在目标的各个视角都有良好的性能; 2.有良好的慢速目标抑制能力; 3.可以测量目标的径向速度; 4.距离遮挡比高PRF时小。 1.有距离幻影; 2.副瓣杂波限制了雷达性能; 3.由于有距离重叠,导致稳定性要求高。 PD雷达 高PRF 1.在目标的某些视角上可以无副瓣杂波干扰; 2.惟一的多普勒盲区在零速; 3.有良好的慢速目标抑制能力; 4.可以测量目标的径向速度; 5.仅检测速度可提高探测距离。 1.副瓣杂波限制了雷达性能; 2.有距离遮挡; 3.有距离幻影; 4.由于有距离重叠,因此导致稳定性要求高。脉冲多普勒频谱 PD雷达的发射频谱由位于载频f0和边带频率f0 i f R上的若干离散谱线组成。其中,f R 为PRF;i为整数。频谱的包络由脉冲的形状决定。对常用的矩形脉冲而言,其频谱的包络是(sin x)/x。 固定目标的接收频谱谱线有正比于雷达平台和目标之间视线或径向速度的多普勒频移。电磁波往返的多普勒频移为f d = (2V R/)cos0。式中,为雷达波长;V R为雷达平台的速度;0为速度矢量和目标视线之间的夹角。图17.1给出的是来自连续杂波(诸如地物回波或云雨杂波)和离散目标(诸如飞机、汽车、坦克等)回波的频谱。 图17.1 水平运动平台的杂波和目标频谱 图17.2给出了当雷达平台以速度V R水平移动时的无折叠频谱,即没有邻近脉冲重复频率谱线的频谱折叠。无杂波区是指那些不存在地物杂波的频谱区(中PRF通常不存在无杂波区)。宽度为4V R/的副瓣杂波区包含由天线副瓣进入的地杂波功率,在某些区域其杂波功 663 / 43

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

光电信号处理习题答案模板

光电信号处理习题 1 光电探测器按物理原理分为哪两类,各有何特点? 一类是利用各种光子效应的光子探测器,特点是入射光子直接和材料中的电子发生相互作用,即光电子效应;一类是利用温度变化效应的热探测器,特点是基于材料吸收光辐射能量以后温度升高的现象,即光热效应。 2 分别画出主动、被动光电探测系统的结构框图,说明各部分的作用。 被动式: 主动式:需要有光源照射目标。 3 什么是噪声?噪声与干扰有何不同?光电探测系统有哪些噪声?光电探测器有哪些噪声? 噪声:由于元器件内微观粒子随即的无规则运动产生的有害信号,称为噪声。 不同:噪声是来自元器件内部粒子;而干扰是指其他的有害信号,有系统外部的,也可以有内部的。 光电探测系统的噪声:光子噪声,探测器噪声,电路噪声。 光电探测器的噪声:热噪声,散粒噪声,产生-复合噪声,1/f 噪声,温度噪声。 4 等效噪声带宽表示什么意义?与系统的频率带宽有何不同? 将噪声功率谱图按照面积相等变换成矩形,以最大噪声功率为高,则宽就是等效噪声带宽。 系统的频率带宽指在幅频特性曲线中高度为0.707倍峰值的两频率之差。 5 放大器的En-In 噪声模型并说明意义。 放大器的内部噪声可以用串联在输入端的零阻抗电压发生器En 和并联在输入端具有无穷大阻抗的电流发生器In 来表示。两者相关系数为r 。这种模型叫En-In 噪声模型。 意义:可将放大器看作无噪声,对放大器噪声的研究归结为分析En 、In 在电路中的作用。简化了电路系统的噪声计算。 6 什么是噪声系数,证明放大器的噪声系数NF ≧1。 噪声系数:输入端信噪比与输出端信噪比的比值。 //si si ni ni si no no so so no ni so so ni no si P P P P P P P NF P P P P P P P P P ?==== ?? ??? , no ni p P NF P A =? (A p 为放大器功率增益) 放大器的输出噪声功率P no 由两部分组成,一部分为P ni (信号源内阻热噪声)×A p ;另一部分为放大器本身产生的噪声在输出端呈现的噪声P n ; 1no p ni n no n P A P P P P =+=+, 所以噪声系数又为:11p ni n no n n ni p p ni ni p p ni A P P P P P NF P A A P P A A P += ==+=+ 一般情况下,实际Pn 不会为零,所以NF >1;理想情况下NF=1。得证。 7 证明最佳源电阻R sopt =E n /I n 噪声系数有表示式:2222222222 1ns n n s n n s ns ns ns E E I R E I R N F E E E ++==++ (等效输入噪声比信号源噪声)

相关文档
最新文档