金属材料学复习

金属材料学复习
金属材料学复习

碳钢分类方法:

1.按钢中碳含量分类

(1)铁碳合金按Fe-Fe3C相图分类

亚共析钢:0.0218%≤wc≤0.77%

共析钢:wc =0.77%

过共析钢:0.77%<wc≤2.11%

(2)按钢中碳含量,碳钢通常可分为

低碳钢:wc ≤0.25%

中碳钢:0.25%<wc≤0.6%

高碳钢:wc>0.6%

按钢的质量(品质),碳钢可分为

(1)普通碳素钢:wS≤0.05%,wP≤0.045%

(2)优质碳素钢:wS≤0.035%,wP≤0.035%

(3)高级优质碳素钢:wS≤0.02%,wP≤0.03%

(4)特级优质碳素钢:wS≤0.015%,wP≤0.025%

3.按钢的用途分类,碳钢可分为

(1)普通碳素结构钢:主要用于各种工程构件,如桥梁、船舶、建筑构件等。也可用于不太重要的机件。

(2)优质碳素结构钢:主要用于制造各种机器零件,如轴、齿轮、弹簧、连杆等。

(3)碳素工具钢:主要用于制造各种工具,如刃具、模具、量具等。

(4)铸造碳素钢:主要用于制造形状复杂且需一定强度、塑性和韧性零件。

按钢冶炼时的脱氧程度分类,可分为

(1)沸腾钢:是指脱氧不彻底的钢,代号为F。

(2)镇静钢:是指脱氧彻底的钢,代号为Z。

(3)半镇静钢:是指脱氧程度介于沸腾钢和镇静钢之间,代号为b。

(4)特殊镇静钢:是指进行特殊脱氧的钢,代号为TZ。

合金钢分类

按钢中合金元素总质量分数,合金钢分为:

低合金钢(Me总质量分数小于5%)

中合金钢(Me总质量分数在5%~10%)

高合金钢(Me总质量分数大于10%)

间隙原子的溶解度随间隙原子尺寸的减小而增加,即按B,C,N,O,H的顺序而增加。合金元素对相区影响

γ相稳定化元素γ相稳定化元素使A3降低,A4升高,促使奥氏体形成。

启γ相区(无限扩大γ相区)Mn、Ni、Co,与γ-Fe无限固溶

扩展γ相区(有限扩大γ相区)C、N、Cu、Zn、Au,与γ-Fe有限固溶

α相稳定化元素A4降低,A3升高,促使铁素体形成。

闭γ相区(无限扩大α相区)Si、Al 和强碳化物形成元素Cr、W、Mo、V、Ti及P、Be等。含Cr量小于7%时,A3下降;含Cr量大于7%时,A3才上升。

缩小γ相区(但不能使γ相区封闭)B、Nb、Zr、Ta等。

合金元素对碳的扩散的影响

强碳化物形成元素阻碍碳的扩散,降低碳原子的扩散速度;

弱碳化物形成元素Mn以及大多数非碳化物形成元素则无此作用,甚至某些元素如Co还有增大碳原子扩散的作用。

普通碳素结构钢牌号中数字代表屈服点数值;

优质碳素结构钢中两位数字代表钢中平均碳的质量分数的万倍;

碳素工具钢中数字表示碳的质量分数的千倍。

层错能越低,钢的加工硬化趋势增大。高Ni钢易于变形加工,Ni、Cu和C等元素使奥氏体层错能提高。

高Mn钢则难于变形加工,Mn、Cr、Ru和Ir则降低奥氏体的层错能。

Me对共析转变温度的影响扩大γ相区的元素使铁碳合金相图的共析转变温度下降;

缩小γ相区的元素使铁碳合金相图的共析转变温度上升。

Me对共析点(S)和共晶点(E)成分的影响几乎所有合金元素都使共析点碳含量降低;共晶点也有类似的规律,尤其以强碳化物:

a.较高的强度与韧性

工程结构钢主要是承受各种载荷,要求有较高的强度与韧性。

工程结构钢一般在-50~100℃范围内使用,需具有较高的低温韧性。低温韧性的指标是韧-脆转化温度FATT50 (℃)。

b.良好的焊接性和成形工艺性。

c.良好的耐腐蚀性。

影响钢的冲击韧性和韧-脆转化温度的因素有含碳量,晶粒尺寸,固溶元素,弥散析出相和非金属夹杂物等。

焊接要求:焊缝与母材有牢固的结合,强度不低于母材,焊缝周围有较高的韧性,没有焊接裂纹。

焊接裂纹产生的原因:焊接是一次热处理过程,电弧移走以后,焊缝的热量被周围的母材迅速吸收,使焊缝的冷却速度很大,发生局部淬火,产生相变,产生很大的内应力。热影响区由于温度高而引起晶粒粗化。这些都促使焊接裂纹产生。

合金元素对工程结构钢焊接性的影响

合金元素增加钢的淬透性,焊后冷却时发生马氏体相变,升高内应力;

钢中的碳增高马氏体的比容和硬度,引起内应力增加;

降低Ms点,使马氏体转变温度降低,导致塑性变差;

钢中含氢量高将使钢的塑性下降,引起氢脆。

碳当量:把合金元素对焊接性的影响折合成碳的作用。用碳当量判断焊接性的好坏。

铜和磷共同作用对抗大气腐蚀最为有效。

控制轧制、控制冷却工艺的最终目的是:细化晶粒。

与相同含碳量的铁素体-珠光体组织相比,经贝氏体相变强化低碳贝氏体钢有更高的强度和良好的韧性,屈服强度490~780MPa。

显著推迟先共析铁素体和珠光体转变,而较少推迟贝氏体的转变的主要合金元素是:钼和硼。与上贝氏体相比,下贝氏体有更高的强度和低的多的FATT50(℃)。

双相钢组成:20~30%马氏体,80~70%铁素体

减少硫化物的方式:

a-减少钢液中的含硫量;

b-钢液中加入稀土金属,反应吸收S元素,形成难变形的稀土硫氧化物RE2O2S、稀土硫化物RE2S3,呈小颗粒的圆形或椭圆形。

再结晶控制轧制工艺以TiN为奥氏体晶粒粗化的阻碍物,以V(C,N)为沉淀强化相。

在弹性范围内,根据比例极限ζp来计算,称为弹性设计。若允许少量塑性变形,根据屈服

强度ζs来计算,称为塑性设计。在应力远低于屈服强度下还会发生变形和断裂。因此脆性也非常重要,要进行韧性设计。

临界直径尺寸:淬火后,圆棒达到中心50%马氏体的直径长度。

适用于淬火高温回火工艺的结构钢称为调质钢,具有良好的综合机械性能。

调质钢显微组织:回火屈氏体或回火索氏体

产生高温回火脆性的直接因素是:高温时发生杂质偏聚。

低温回火钢的显微组织:回火马氏体

马氏体时效钢空冷即可得马氏体。

马氏体时效钢的强化作用分类:固溶强化,马氏体相变冷作硬化和沉淀强化(作用效果依次增强)

对轴承钢的基本质量要求是纯净和组织均匀。

渗碳钢都是低碳钢。

坦克履带板的材料是:高锰钢。

碳化物的均匀分布程度是考核高速钢的主要技术指标之一。

不均匀碳化物的影响:

a-淬火加热时,碳化物稀少区奥氏体晶粒易粗化,淬火开裂倾向大;碳化物密集区脆性大,易引起崩刃。

b-粗大碳化物在淬火加热时溶解少,使附近奥氏体合金度低,热处理后刃具的硬度、热硬性和耐磨性都降低,抗弯强度,韧性因碳化物不均匀而降低。

碳化物是高速钢的主要合金相。

钨和钼是高速钢获得热硬性的主要元素。

在腐蚀过程中,阳极和阴极均产生极化作用。阳极极化引起阳极电位由负向正方向升高,主要是由于阳极表面形成保护膜,阻碍阳极金属离子进入溶液,降低了阳极表面电荷密度。阴极极化是由于消耗电子的阴极过程的速度低于阳极流来的电子,造成阴极电子堆积,阴极表面电荷密度升高,导致阴极电位降低。

阳极和阴极极化曲线的交点相当于短路状态,即阳极与阴极间电阻趋于零,此时阳极与阴极间的最大电流Imax,就是腐蚀电流。

阳极极化曲线有三个电化学区:活化区(A),钝化区(P),过钝化区(T)

纯铁在浓硝酸中就会处于钝化状态

铬是提高钢钝化膜稳定性的必要元素。

镍:提高铁的耐蚀性,特别是在非氧化性的硫酸中。

锰:也能提高铬不锈钢在有机酸中的耐蚀性,而且比Ni更有效。

钼能防止氯离子对膜的破坏,抵抗点腐蚀。

不锈钢受张应力时,在某些介质中很快就会发生破坏。

氯离子Cl-对应力腐蚀危害最大。只要含25×10-6质量浓度的Cl- ,甚至浓度更低,都会引起应力腐蚀。

耐热钢和耐热合金钢的基本要求:良好的高温强度、塑性和足够高的化学稳定性

高温强度高温强度三种指标:蠕变强度,持久强度和持久寿命。

当FeO出现时,钢的氧化速度剧增

铬是提高抗氧化的主要元素

镍基耐热合金采用金属间化合物作为沉淀强化相,主要采用的是γ’-Ni3(TiAl)相。

硼:偏聚于晶界,提高低熔点合金在晶界的扩散激活能。

铸铁是Fe、C、Si元素为主的铁基材料

白口铸铁-渗碳体灰口铸铁-片状石墨灰口铸铁-渗碳体+游离态石墨蠕墨铸铁-蠕虫状石墨

球墨铸铁-球状石墨可锻铸铁-絮状石墨灰口铸铁-片状石墨

展性铸铁由含碳和硅不高的白口铸铁经石墨化退火而成。

铝合金分类:

铝合金分为铸造铝合金与变形铝合金两大类。变形铝合金按照性能特点和用途分为防锈铝、硬铝、超硬铝和锻铝四种。防锈铝属于不能热处理强化的铝合金。硬铝、超硬铝、锻铝属于可热处理强化的铝合金。

铸造铝硅合金一般需要采用变质处理,达到细化晶粒的目的。常用的变质剂为钠盐。

镁合金是一种轻合金,镁是最轻的工程金属。

铜是人类最早使用的金属。工业中广泛应用的铜和铜合金有:工业纯铜(紫铜)、黄铜、青铜和白铜。

电工白铜包括:康铜,考铜和B0.6白铜。

目前,生产金属钛都采用钛的氯化物热还原法。

铝是最常见的、最有效的α强化元素。能有效提高低温和高温(550℃以下)的强度,同时铝的密度小,因此铝是钛合金中的一个基本合金元素。

铁,钴和镍是室温下具有强磁性的单质。

材料具有超导性,是因为其中的传导电子借助于与晶格的交互作用,形成了较低能量的电子对。只有温度T,承载的电流密度j及所处的磁场H均不超过临界值,材料才处于超导态。超导两大特性:完全抗磁性和电阻为零。

银,铜和铝是导电率最好的三种金属。

目前人们所发现的形状记忆合金,多数发生热弹性马氏体相变。

金属钯分离氢效率最高。

简答题;

合金元素对铁素体-珠光体钢的强化作用:

(1)固溶强化

加入合金元素形成固溶体,提高强度。

常用的合金元素有Mn、Si、Cu、P、C。合金元素在提高强度的同时降低韧性。

(2)细晶强化

晶粒细化可以提高强度和韧性。细化晶粒的重要途径是用铝脱氧、合金化。用铝脱氧生成细小弥散的AlN颗粒,用钛、铌、钒的合金化可以生成弥散的碳化物、氮化物、碳氮化物。这些弥散相都能钉扎晶界,阻碍奥氏体晶粒长大,转变后细化铁素体-珠光体晶粒。

(3)弥散强化(沉淀强化)铌、钛、钒的合金化,使过冷奥氏体发生相间沉淀,并从铁素体中析出碳化物、氮化物、碳氮化物,钉扎晶粒移动,起弥散强化作用。氮化物最稳定,一般在奥氏体中沉淀。碳化物、碳氮化物一般在奥氏体转变中产生相间沉淀和从铁素体中析出。沉淀强化相的尺寸2~10nm。

微合金元素在控制轧制和控制冷却工艺过程中,对微合金钢的组织和性能有很大的影响:(1)抑制奥氏体形变再结晶

在热加工过程中,通过应变诱导析出Nb、Ti、V的氮化物,沉淀在晶界、位错上,起钉扎作用,有效的阻止奥氏体再结晶时晶界和位错的运动,抑制再结晶过程的进行。

(2)阻止奥氏体晶粒长大在锻造和轧制过程中,会发生晶粒长大现象

TiN或Nb(C,N)高温的稳定性好,其弥散分布对控制高温下的晶粒有强烈的抑制作用(3)沉淀强化

微合金钢中的沉淀强化相主要是低温下析出的Nb(C、N)和VC。

(4)改变钢的显微组织

在轧制加热过程中,溶于奥氏体的微合金元素提高了过冷奥氏体的稳定性,降低了发生先共析铁素体和珠光体的温度范围,低温下形成的先共析铁素体和珠光体组织更细小,并使相间沉淀Nb(C、N)和V(C、N)的粒子更细小。

针状铁素体钢与低碳贝氏体钢的异同点:

相同点:a-组织是贝氏体

b-微合金元素Nb、Ti、V起细化晶粒与沉淀强化作用

c-加入钼、锰推迟铁素体和珠光体转变。

不同点:a-碳含量<0.1%,为了改善韧性。

b-显微组织为针状铁素体,具有高位错密度。

c-更好的低温韧性,更好的焊接性。

典型钢种Mn-Mo-Nb钢,成分w(C)≤0.1%,w(Mn)=0.6~2.0%,w(Mo)=0.2~0.6%, w(Nb)=0.04~0.06%, w(V)=0.06%或w(Ti)=0.01%

高温回火脆性的两个异常表现:

在高温回火后的冷却速度严重的影响到钢的韧-脆转化温度,冷却速度愈慢,室温冲击韧性愈低,韧-脆转化温度愈高。

在350~600 ℃范围等温回火保持时间愈长,不管回火后冷却快慢,其在室温的冲击韧性愈恶化,韧-脆转化温度愈高。

低温回火脆性产生原因:

a-发生回火转变(分解),存在ε-Fe2.4C,并且向Fe3C转变,在马氏体晶界处析出薄片状的铁碳化合物,在冲击下沿马氏体板条裂开,产生穿晶断裂。

b-杂质元素P、Sn、锑在淬火加热时偏聚在奥氏体晶界处,淬火后被冻结在原来的位置。同时,在此处还会形成Fe3C连续薄膜,使晶界处脆性极大,容易造成沿晶脆断。

γ’-Ni3(TiAl)相对合金的强化表现在两方面,一是共格强化,二是反相畴界强化。

共格强化:

γ’相与镍基固溶体有相同的点阵类型、相近的点阵常数,析出的γ’相与固溶体形成共格。但γ’相的点阵常数稍大于γ固溶体,形成共格界面时存在匹配差,因而在界面周围的γ固溶体中产生畸变应力。畸变应力场阻碍位错运动,提高了屈服强度。

反相畴界强化:

在高Al/Ti比的镍基合金中,γ’相的体积分数可高到60~70%。其沉淀强化主要靠γ’相在位错切割时形成反相畴界强化。

当位错切割γ’相时,使滑移面上下的原子改变了原来有序的相邻关系,形成了新的高能量的反相畴界,位错的移动需要更大的外力。

防止淬火钢的低温回火脆性的措施:

a-避免在250~350℃温度范围回火

b-生产高纯钢,降低P、Sn、锑等杂质元素含量

c-加入硅推迟脆化温度范围,使钢的回火温度可提高到320 ℃

改善碳化物不均匀性的措施:

a-采用200~300kg小锭型,使钢锭凝固快,减少结晶时宏观偏析,莱氏体共晶也细小

b-采用扁锭加快凝固,一般用630kg型,减少集中偏析,使莱氏体共晶细小

c-锻轧破碎碳化物;增大钢锭锻压比,反复拉拔和镦粗

d-大尺寸钢材可采用电渣重熔,钢液在水冷结晶器中径向结晶,莱氏体共晶细小

双相钢性能特点:

a-低屈服强度,一般不超过350MPa

b-钢的应力-应变曲线是光滑连续的,没有屈服平台,没有锯齿形屈服现象

c-高的伸长率,总生长率>24%

d-高的塑性应变比γ>1,εw-宽度应变,εb-厚度应变冲压件厚度保持均匀。

e-高的加工硬化指数n>0.24应力应变关系低应变之后达到高的屈服强度增量。

组织特点:

析出铁素体时,碳集中在奥氏体中,最后奥氏体转变为中高碳马氏体,而铁素体间隙碳原子贫化。马氏体的转变引起体积效应,在基体铁素体中激发出许多位错。这些位错是可动的,未被碳、氮间隙原子钉扎。双相钢中存在强韧的马氏体岛或纤维,结合牢固的马氏体/铁素体界面,铁素体中又有大量可动的位错,使加工硬化率增大。

铝合金沉淀强化相应满足以下的基本条件:

1)硬度高的质点;

2)在铝基固溶体中高温下有较大的溶解度;随温度降低,溶解度急剧减小,能析出较大体积分数的沉淀相;

3)在时效过程中,沉淀相具有一系列介稳相,并且是弥散分布,与基体形成共格,在周围基体中产生较大的共格应变区。

共晶中的第二相不溶于铝基固溶体,又称为过剩相,其数量达到一定量时可提高合金的强度和硬度,过高会降低韧性。

锡青铜铸造的优点是(1)铸件收缩率小,适于铸造形状复杂、壁厚变化大的零件;(2)锡青铜存在枝晶间的分散缩孔,致密性差,(3)铸件凝固时含锡高的低熔点液相易从中部向表面渗出,出现反偏析。(4)锡固溶于α固溶体,有强的固溶强化作用。锡青铜的强度和延长率随锡含量升高而增加。(5)锡青铜在大气、海水和碱性溶液中有良好耐蚀性,用于海上船舶、矿山机械零件。

氮化处理提高疲劳强度和耐磨性的原因

a-表面形成高硬度的γ’-Fe4N和ε-Fe3-2N

b-氮原子与合金元素形成氮化物,弥散强化作用,提高强度、硬度

c-表面渗入氮原子后体积膨胀,表面产生了压应力,能抵消外力作用产生的张应力,减少表面疲劳裂纹的产生。

论述题

合金元素对钢的过冷奥氏体分解转变的影响

主要表现在合金元素可以使钢的CCT图,具体可以分为以下几个方面:

对高温转变(珠光体转变)的影响;除Co外,几乎所有的合金元素使C曲线右移(即增大过冷奥氏体的稳定性,推迟珠光体型的转变)。C曲线右移的结果,降低了钢的临界冷却速度,提高了钢的淬透性。合金元素对淬透性影响的大小取决于该元素的作用强度及其可能的溶解量。

(2)对中温转变(贝氏体转变)的影响;合金元素对贝氏体转变的作用是通过对γ→α转变和碳原子扩散的影响而起作用。

首先表现在对贝氏体转变上限温度BS点的影响。碳、锰、镍、铬、钼、钒、钛等元素都降低BS点,使得在贝氏体和珠光体转变温度之间出现过冷奥氏体的中温稳定区,形成两个转变的C曲线。合金元素还改变贝氏体转变动力学过程,增长转变孕育期,减慢长大速度。碳、硅、锰、镍、铬的作用较强钨、钼、钒、钛的作用较小

(3)对低温转变(马氏体转变)的影响。合金元素的作用表现在对马氏体点Ms~Mf温度的影响,并影响钢中残留奥氏体含量及马氏体的精细结构。除Co、Al以外,绝大多数合金元素都使Ms和Mf下降。Ms和Mf点的下降,使得室温下将保留更多的残留奥氏体量。合金元素还影响马氏体的形态和马氏体的亚结构。当Ms点温度较高时,形成位错结构的马氏体;

在Ms点温度较低时,形成孪晶结构的马氏体。

常用铸铁的石墨形状及主要力学特点:1.灰口铸铁片状石墨。

机械性能低,其抗拉强度和塑性、韧性都远远低于钢。耐磨性与消震性好。

工艺性能好。灰口铸铁的可切削加工性优于钢。

2.球墨铸铁球状石墨球墨铸铁的力学性能主要取决于基体类型与灰口铸铁相比,球墨铸铁具有较高的抗拉强度和弯曲疲劳极限、良好的塑性及韧性。球墨铸铁的刚性比灰口铸铁好

球墨铸铁的消震能力比灰口铸铁低很多。

3. 蠕墨铸铁当K<0.15时属于片状石墨;0.15<K<0.8属于蠕虫状石墨;K>0.8属于球状石墨。(2)蠕墨铸铁的性能特点蠕墨铸铁的性能介于灰口铸铁与球墨铸铁之间。即强度和韧性高于灰口铸铁,但不如球墨铸铁。蠕墨铸铁的耐磨性较好

导热性比球墨铸铁要高得多,几乎接近于灰口铸铁

高温强度、热疲劳性能大大优于灰口铸铁,适用于制造承受交变热负荷的零件

减震能力优于球墨铸铁

铸造性能接近于灰口铸铁,铸造工艺简便,成品率高

4.可锻铸铁(展性铸铁)铁素体基体加团絮状石墨或珠光体基体加团絮状石墨。铁素体基体+团絮状石墨的可锻铸铁断口呈黑灰色,俗称黑心可锻铸铁。最为常用的一种可锻铸铁。珠光体基体+团絮状石墨的可锻铸铁件断口呈白色俗称白心可锻铸铁,这种可锻铸铁应用不多。(2)可锻铸铁的性能特点可锻铸铁不能用锻造方法制成零件。因为石墨的形态改造为团絮状,不如灰口铸铁的石墨片分割基体严重,因而强度与韧性比灰口铸铁高。

可锻铸铁的机械性能介于灰口铸铁与球墨铸铁之间,有较好的耐蚀性。

由于退火时间长,生产效率极低,使用受到限制。

灰口铸铁每次热循环体积膨胀的原因:第一次加热时的膨胀是渗碳体分解为石墨所造成。第二次以后主要是共析转变引起的膨胀,它又引起微裂纹,进而微裂纹内又发生氧化,产生附加的体积膨胀。

极极化电位与阴极极化电位的相对位置有四种情况:(论述题)

a- ε阳与ε阴仅有一个交点A,有一个稳定的εA,它不超过钝化电位εP,此时合金处于活化状态,有较大的腐蚀电流,合金的腐蚀速度大。

b- ε阳与ε阴有三个交点B、C、D。C 点是不稳定的,B与D是相对稳定的,即合金可以处在钝化状态,也可以处在活化状态。这种钝化状态可以因为其他偶然因素而受到破坏,使合金处于活化状态。

c- ε阳与ε阴相交于E,仅有一个钝化稳定电位,合金钝化状态是稳定的,具有很小腐蚀速度。

d- ε阳与ε阴相交于F,εF超过了过钝化电位εT,合金处于过钝化状态,有较高的腐蚀速度。

三种腐蚀对应的原因及预防措施:1.奥氏体不锈钢的晶间腐蚀

(1)产生原因

a-晶界上析出富铬的连续网状Cr23C6,引起晶界周围基体产生贫铬区,宽度约10-5cm,

w(Cr)<12%。碳是析出Cr23C6的主要原因,碳含量越高,晶间腐蚀越严重。

b-晶界上析出ζ相,产生贫铬区,特别是含钼钢,能促进ζ相在晶界析出。

c-氮含量高,w(N)高于0.16%,沿晶界析出Cr2N,增加腐蚀倾向。

d-固溶处理后也会发生晶间腐蚀,原因是杂质元素P、Si的晶界偏聚。

(2)预防与解决方法

a-最有效方法,降低碳含量,生产超低碳不锈钢,w(C)≦0.03%。当w(C)≦0.03%,无Cr23C6析出。

b-加入碳化物形成元素Ti、Nb,固定碳,形成稳定的TiC、NbC,与TiC相平衡,奥氏体固溶碳仅有0.01%以下。

c-10%~50%体积的δ铁素体,可以改善晶间腐蚀倾向。由于δ铁素体在500~800 ℃间发生相间沉淀,Cr23C6在δ/γ相界δ相一侧呈点状析出,排除了在奥氏体晶界析出Cr23C6,且δ相内铬的扩散系数比γ相内高103倍,不致产生贫铬区。

d-在敏感温度范围长期加热,通过铬的扩散消除贫铬区。

e-降低N含量,当w(N)低于0.16%,抵制Cr23C6在晶界析出。

不锈钢的应力腐蚀

应力腐蚀机制:应力腐蚀是应力和电化学腐蚀共同作用的结果,是滑移-溶解机制。

预防措施

a-向奥氏体不锈钢添加2%~4%的Si或2%的铜

b-提高钢的纯度,将含氮量降低到0.04%以下,并降低磷、砷、锑、铋等杂质含量。

c-采用高纯度铁素体不锈钢

d-采用奥氏体-铁素体复相钢,铁素体体积含量控制在50%~70%。

3.不锈钢的点腐蚀(1)点腐蚀原因:如果不锈钢表面钝化膜的均匀性受到破坏,使得Cl-易于穿透这些脆弱的钝化膜,并与钢基体发生作用,从而破坏了钝化膜。

(2)预防措施

a-击穿电位εB ,εB越正,越抗点腐蚀

b-介质中含有Fe3+、Cu2+等去极化作用的阳离子时,加速点腐蚀。

c-不锈钢中的夹杂物、晶界析出相、晶界等是点腐蚀容易发生的地点。如MnS,易在无机酸中溶解,造成点腐蚀源。晶界碳化物或ζ相析出造成晶界贫铬,也是点腐蚀源。

d-提高铬含量,添加钼。

e-提高氮含量。含氮不锈钢的εB 值较正,当w(N)>0.3%,不发生点腐蚀。

钛的基本性质

1、钛存在两种同素异构体α及β。

α-Ti在882℃以下稳定,具有h.c.p.结构。

β-Ti稳定于882℃~熔点1678℃,具有体心立方结构。

铝的熔点660℃,镁651℃,铁1535℃,镍1445℃。

2、钛的密度小(4.51g/cm3),比强度高,熔点高,塑性好,虽然其强度随温度升高而下降,但其比强度高的特性仍可保持到550-600℃。与高强合金相比,相同强度水平可降低重量40%以上,因此在宇航上有巨大应用潜力。

高纯度钛:ζb=300 MPa,δ=40 %;工业纯钛:ζb =550MPa,δ=20%;3、具有优良的耐蚀性,在室温下就能很快生成一层具有极好保护性的钝化层(TiO2),仅有纳米尺度,室温下长大极慢。

在中性、氧化性介质、海水、HNO3, Cr酸、有机酸中,钛的耐蚀性极高;

在还原性介质中稍差一些;

在HF、H2SO4、HCl、热有机酸中不耐蚀,但可以通过合金化改善。

4、钛的低温性能很好,在液氮温度下仍有良好的机械性能,强度高,而仍保持有良好的塑性及韧性;

5、弹性模量较低(120GPa),约为铁的54%;

6、导热系数及线胀系数均较低。导热系数比铁低4.5倍,使用时易产生温度梯度及热应力,不过,线胀系数低可补偿因导热系数低带来的热应力问题;

《金属材料学》课程教学大纲

《金属材料学》课程教学大纲 以下是为大家整理的《金属材料学》课程教学大纲的相关范文,本文关键词为金属材料学,课程,教学大纲,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教师教学中查看更多范文。 《金属材料学》课程教学大纲 一、课程说明 (一)课程名称:金属材料学所属专业:材料物理专业课程性质:专业基础课学分:3 (二)课程简介:《金属材料学》是一门综合性和应用性较强的专业必修课。根据材料物理专业先修课程和教学内容,本课程包括金属学和金属材料两大部分,其中金属学的内容作为《材料科学基础》课程的补充和深入,金属材料部分在《材料科学基础》、《材料力学性能》等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。课程的学习,使学生系

统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 目标与任务;通过本课程的学习主要掌握:1.金属材料的成份、组织结构及性能三者间的关系,金属的基本理论和知识。2.合金元素在钢中的作用、原理和规律;3.钢的热处理原理以及其与合金化的配合;4.掌握各类铸铁的成分组织和性能特点;5.常用有色金属及其合金的成分、性能和热处理特点. (三)先修课程:《材料科学基础》、《材料力学性能》等。 (四)教材与主要参考书。 教材:《金属学与热处理》第二版,崔忠圻主编,哈尔滨工业大学出版社。参考书: 《金属材料学》第二版,吴承建陈国良强文江等编著,冶金工业出版社。《金属材料学》第二版,戴起勋主编程晓农主审,化学工业出版社。《材料科学基础》,胡赓祥、蔡荀主编,上海交通大学出版《材料科学基础》,潘金生等编,清华大学出版社 二、课程内容与安排绪论 (一)讲授,2学时(二)内容及基本要求1.金属材料的发展概况。 2.了解金属材料在国民经济中的地位与作用。 3.本课程的性质、

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

金属材料重点 复试

金属材料重点 题型:填空(30-40%),选择(20%,有多选),简答(10%+10%),问答(10%+10%+20%) 一、钢的物理冶金基础(15%) 1、钢的分类(填空、多选) 结构钢: 工程结构钢:铁素体-珠光体钢、低碳贝氏体钢、马氏体钢 机械制造结构钢:渗碳钢、调质钢、轴承钢、高合金超高强度结构钢、弹簧钢等工具钢:碳素工具钢、低合金工具钢、高速工具钢、冷作模具钢、热作模具钢等 不锈耐蚀钢 耐热钢 2、铁碳相图中的反应及平衡温度: 包晶转变:LB+δH→γJ(1495℃,单相A) 共晶转变:LC→γB+Fe3C(1148℃,A体+Fe3C:Ld ) 共析转变:γS→αP+Fe3C(727 ℃,F体+Fe3C:P) 3、退火的定义、目的及得到的组织: 退火:将钢加热到奥氏体化温度Ac1(727℃)以上或以下温度,保温,炉冷以获得平衡状态组织(扩散型相变,加热速度为0.125℃/分时A1的温度为Ac1)。 目的:稳定组织,成分和组织均匀,细化晶粒,调整硬度,消除内应力和加工硬化,改善成形和加工性能。 4、马氏体(M)转变特点(简答):

1) 无扩散:Fe 和C 原子都不进行扩散,M是体心正方的C过饱和的F,固溶强化显著。 2) 瞬时性:M 的形成速度很快,106mm/s。温度↓则转变量↑。 3) 不彻底:M 转变总要残留少量A,A中的C%↑则MS、Mf ↓,残余A含量↑ 4) M形成时体积↑,造成很大内应力。 5)切变共格性:表面产生浮凸。 ☆5、钢中杂质的种类(填空): 常存杂质:Mn、Si、Al、S、P等 由脱氧剂带入(Mn、Si、Al)的或矿石中存在的(S、P) 隐存杂质:O、H、N,极其微量,有溶解度 偶存杂质:Cu、Sn、Pb、Ni、Cr等,与矿石和废钢有关 ☆6、合金元素在钢中的分布/存在方式/状态: 溶解于固溶体中,置换和间隙固溶体; 溶于渗碳体中形成合金渗碳体或单独与碳、氮等作用形成碳、氮化合物; 形成金属间化合物; 形成氧化物、硫化物等夹杂物; 以纯金属相存在,如Cu、Pb等; 偏聚 7、什么叫奥氏体形成元素、铁素体形成元素? 在γ-Fe中有较大溶解度并能稳定γ-Fe的元素称为奥氏体形成元素; 而在α-Fe中有较大溶解度并使γ-Fe不稳定的元素,称为铁素体形成元素。 △8、金属间化合物的种类(填空,掌握重要类型): 合金钢中比较重要的金属间化合物有σ相、AB2相(laves拉维斯相)及AB3相(有序相)。 9、合金钢的回火脆性,原因及解决办法: 提高韧性、降低脆性、稳定组织,但200~350 ℃,450~650℃之间回火,冲击韧性出现两个低谷,称为回火脆性。 (a)第一类回火脆性/低温回火脆性(200~350 ℃) 原因:Fe3C薄膜在原A或M晶界形成,降低晶界强度;P、S、Bi等元素偏聚于晶界合金元素作用:Mn、Cr、Ni促进,Mo、Ti、V等改善,Si推迟脆性温度区。 (b)第二类回火脆性/高温回火脆性(450~650 ℃) 原因:Sb、S、As、P、O、N等杂质元素偏聚于晶界,或形成网状化合物,高于回火温

最新金属材料学课后习题总结

习题 第一章 1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化? 答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。 2、C是扩大还是缩小奥氏体相区元素? 答:扩大。 3、Me对S、E点的影响? 答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。 S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。 4、合金钢加热均匀化与碳钢相比有什么区别? 答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。 5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么? 答:M量少,Ar量多,影响强度。 6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解? 答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。 W,Mo: 1)推迟K形核与长大。 2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。 3)减缓C的扩散。 对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。 7、淬硬性和淬透性 答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。 淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。 8、C在γ-Fe与α-Fe中溶解度不同,那个大? 答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。 9、C、N原子在α-Fe中溶解度不同,那个大? 答:N大,因为N的半径比C小。 10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。 答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。 复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。 11、如何理解二次硬化与二次淬火? 答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。 二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

金属材料考试复习资料

1.工程材料的主要性能分为(1)使用性能和(2)工艺性能。(1)又包括力学性能、物理性能和化学性能等。 2.金属的变形包括弹性变形和塑性变形。 3.通过拉伸试验可测得的强度指标主要有屈服强度和抗拉强度;可测得的塑性指标有延伸率和断面收缩率。 4.常见的金属晶格类型有体心立方晶格、面心立方晶格和密排六方晶格三种类型。α–Fe 属于体心立方晶格,γ–Fe属于面心立方晶格,δ–Fe属于体心立方晶格。 5.实际金属的晶体缺陷有点缺陷(空位或间隙原子)、线缺陷(位错)和面缺陷(晶界)。 6.金属的理论结晶温度与实际结晶温度之差称为过冷度。金属的冷却速度越快,过冷度越大,获得的晶粒越细。 7.细化金属材料的晶粒,可使金属的强度、硬度提高,塑性、韧性提高;在生产中常用的细化晶粒的方法有增大过冷度、变质处理、机械搅拌和振动;压力加工再结晶;热处理。 8.合金的晶体结构有固溶体和金属化合物,其中固溶体具有良好的塑性,金属化合物具有高的硬度和脆性。 9.在铁碳合金的基本组织中,珠光体属于复相结构,它由铁素体和渗碳体按一定比例组成,珠光体用符号P表示。 10.铁碳合金相结构中,属于固溶体的有铁素体和奥氏体;其中铁素体是碳在α–Fe中形成的固溶体。 11.铁碳合金的力学性能随含碳量的增加,其强度和硬度增高,而塑性和韧性降低。但当w C>1.0%时,强度随其含碳量的增加而降低。 12.铁碳合金中,共析钢w C为0.77%,室温平衡组织为P;亚共析钢w C为<0.77%,室温平衡组织为P+F;过共析钢w C为>0.77%,室温平衡组织为P+Fe3C;共晶白口生铁w C为4.3%,室温平衡组织为Ld';亚共晶白口生铁w C为<4.3%,室温平衡组织为P+Fe3C II+Ld';过共晶白口生铁w C为>4.3%,室温平衡组织为Fe3C I+Ld'。 13.按碳的质量分数的不同.碳素钢可分为高碳钢、中碳钢和低碳钢三类;钢硫、磷杂质质量分数的不同,钢可分为普通钢、优质钢、高级优质钢和特级优质钢三类。 二、简答题与应用题 1.材料的常用力学性能指标有那些?若某种材料的零件在使用过程中突然发生断裂,是由于那些力学性能指标不足所造成的? (1)常用力学性能指标有: 强度、塑性、刚度、硬度、冲击韧性、疲劳强度。 (2) 零件在使用过程中突然发生断裂,是由于强度、塑性、冲击韧性、疲劳强度等力学性能指标不足所造成的。 2.画出低碳钢的应力-应变曲线,并简述拉伸变形的几个阶段。 oe段:弹性变形

金属材料学考试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么

答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料化学考试重点整理

第一章 1、材料的基本概念 材料是人类赖以生存的基础,材料的发展和进步伴随着人类文明发展和进步的全过程。材料是国民经济建设,国防建设和人民生活不可缺少的重要组成部分,是社会现代化的物质基础与先导。 材料,尤其是新材料的研究、开发与应用反映着一个国家的科学技术与工业水平。 材料特别是新材料与社会现代化及现代文明的关系十分密切,新材料对提高人民生活,增加国家安全,提高工业生产率与经济增长提供了物质基础,因此新材料的发展十分重要。 材料是一切科学技术的物质基础,而各种材料的起点主要来源于材料的化学制备和化学改性。 2、什么是材料科学工程 具有物理学、化学、冶金学、金属学、陶瓷学、计算数学等多学科交叉与结合的特点,并且具有鲜明的工程性。 3、什么是材料化学 材料化学在研究开发新材料中的作用,就是用化学理论和方法来研究功能分子以及由功能分子构筑的材料的结构与功能关系,使人们能够设计新型材料,提供的各种化学合成反应和方法使人们可以获得具有所设计结构的材料。 采用新技术和新工艺方法,合成新物质和新材料,通过化学反应实现各组分在原子或分子水平上的相互转换过程。涉及材料的制备、组成、结构、性质及其应用的一门科学。 材料化学既是材料科学的一个重要分支,也是材料科学的核心内容。同时又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。是材料学专业学生的一门重要的专业基础知识课程。 4、材料的分类 (1)按照材料的使用性能:可分为结构材料与功能材料两类 结构材料的使用性能主要是力学性能; 功能材料的使用性能主要是光、电、磁、热、声等功能性能。 (2)以材料所含的化学物质的不同将材料分为四类:金属材料、非金属材料、高分子材料及由此三类材料相互组合而成的复合材料。 第二章 1、原子结合---键合 两种主要类型的原子键:一次键和二次键。 (1)一次键的三个主要类型:离子键、共价键和金属键。(一次键都涉及电子的转移,或者是电子的共用。)一次键通常比二次键强一个数量级以上。 ①金属键:自由电子和正离子组成的晶体格子之间的相互作用就是金属键。没有方向性和饱和性的。 ②离子键:包含正电性和负电性两种元素的化合物最通常的键类型为离子键。阴阳离子的电子云通常都是球形对称的,故离子键没有方向性和饱和性。 ③共价键:由两个原子共有最外层电子的键合,使每个原子都达到稳定的饱和电子层。共价键具有方向性和饱和性。 (2)二次键:范德华键(二次键既不涉及电子的转移,也不涉及电子的共用。) 以弱静电吸引的方式使分子或原子团连接在一起的,比前3种键合力要弱得多。包含色散效应、分子极化、氢键。 ①色散效应:对称的分子和惰性气体原子,由于电子运动的结果,有时分子或原子的内部会发生电子的偏离而引起瞬时的极化,形成诱导瞬间电偶极子,就会产生很弱的吸引力,这样的吸引力在其它力不存在时能使分子间产生结合。 ②分子极化:原子、离子及分子的电荷并不是固定在一定部位上,它们在相互靠近时,电荷会发生偏移,形成

(完整版)金属材料学复习答案(完整)

第一章答案 1、为什么说钢中的S、P杂质元素总是有害的? 答:S容易和Fe结合成熔点为989℃的FeS相,会使钢产生热脆性;P和Fe结合形成硬脆的Fe3P相使钢在冷加工过程中产生冷脆性。 2、合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:凡是扩大γ相区的元素均使S、E点向左下方移动,如Mn、Ni; 凡是封闭γ相区的元素均使S、E点向左上方移动,如Cr、Si、Mo。E点左移意味着出现莱氏体的碳含量减小;S点左移意味着共析碳含量减小。 3、那些合金元素能够显著提高钢的淬透性?提高钢的淬透性有什么作用? 答:B、Mn、Mo、Cr、Si、Ni等元素能够显著提高钢的淬透性。提高钢的淬透性一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面在淬火时,可以选用比较缓和的冷却介质以减小零件的变形和开裂的倾向。 4、为什么说合金化的基本原则是“复合加入”?举二例说明合金复合作用的机 理。 答:1.提高性能,如淬透性;2.扬长避短,合金元素能对某些方面起积极作用,但往往还有些副作用,为了克服不足,可以加入另一些合金元素弥补,如Si-Mn,Mn-V;3.改善碳化物的类型和分布,某些合金元素改变钢中碳化物的类型和分布或改变其他元素的存在形式和位置,从而提高钢的性能,如耐热钢中Cr-Mo-V,高速钢中V-Cr-W。 5、合金元素提高钢的韧度主要有哪些途径? 答:1.细化A晶粒;2.提高钢的回火稳定性;3.改善机体韧度;4.细化碳化物;5.降低或消除钢的回火脆性;6.在保证强度水平下适当降低碳含量;7.提高冶金质量;8.通过合金化形成一定量的残余A,利用稳定的残余A提高钢的韧度。 6、钢的强化机制有那些?为什么一般的强化工艺都采用淬火-回火? 答:固溶强化、细晶强化、位错强化、第二相强化。因为一般的钢的强化都要求它有一定的强度的同时又要保持一定的任性,淬火后钢中能够形成M,这给了钢足够的强度,但是带来的后果就是韧度不够,而回火能够在强度降低不大的情况下给淬火钢以足够的韧性,这样能够得到综合力学性能比较优良的材料,所以一般钢的强化工艺都采用淬火加回火。 7、铁置换固溶体的影响因素? 答:1.溶剂与溶质的点阵结构;2.原子尺寸因素;3.电子结构。 第二章 1、叙述构件用钢一般的服役条件、加工特点、性能要求? 答:服役条件:工程结构件长期受静载荷;互相无相对运动;受大气(海水)侵蚀;

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

金属材料学(戴起勋版)第4章整理答案

4-1 在使用性能和工艺性能的要求上,工具钢和机器零件用钢有什么不同? 工具钢使用性能: (1)硬度。工具钢制成工具经热处理后具有足够高的硬度。工具在高的切削速度和加工硬材料所产生高温的受热条件下,仍能保持高的硬度和良好的红硬性。 (2)耐磨性。工具钢具有良好的耐磨性,即抵抗磨损的能力。工具在承受相当大的压力和摩擦力的条件下,仍能保持其形状和尺寸不变。 (3)强度和韧性。工具钢具有一定的强度和韧性,使工具在工作中能够承受负荷、冲击、震动和弯曲等复杂的应力,以保证工具的正常使用。 (4)其他性能。由于各种工具的工作条件不同,工具用钢还具有一些其他性能,如模具用钢还应具有一定的高温力学性能、热疲劳性、导热性和耐磨腐蚀性能等。 工艺性能: (1)加工性.工具钢应具有良好的热压力加工性能和机械加工性能,才能保证工具的制造和使用。钢的加工性取决于化学成分、组织的质量。 (2)淬火温度范围.工具钢的淬火温度应足够宽,以减少过热的可能性。 (3)淬硬性和淬透性. 淬硬性是钢在淬火后所能达到最高硬度的性能。淬硬性主要与钢的化学成分特别是碳含量有关,碳含量越高,则钢的淬硬性越高。淬透性表示钢在淬火后从表面到内部的硬度分布状况。淬透性的高低与钢的化学成分、纯洁度、晶粒度有关。根据用于制造不同的工具,对这两种性能各有一定的要求。 (4)脱碳敏感性. 工具表面发生脱碳,将使表面层硬度降低,因此要求工具钢的脱碳敏感性低。在相同的加条件下,钢的脱碳敏感性取决于其化学成分。 (5)热处理变形性. 工具在热处理时,要求其尺寸和外形稳定。 (6)耐削性.对很制造刀具和量具用钢。要求具有良好的磨削性。钢的磨削性与其化学成分有关,特别是钒含量,如果钒质量分数不小于0.50%则磨削性变坏。 机器零件用钢使用性能: (1)较高的疲劳强度和耐久强度。 (2)高的屈服强、抗拉强度以及较高的断裂抗力。 (3)良好的耐磨性和接触疲劳强度。 (4)较高的韧性,以降低缺口敏感性。 工艺性能: 通常机器零件的生产工艺:型材→改锻→毛坯热处理→切削加工→最终热处理→磨削 以切削加工性能和热处理工艺性能为机器零件用钢的主要工艺性能。 4-2工具钢常要做那些力学性能试验?测定哪些性能指标?为什么? 强度、塑性:静弯或扭转试验→弯曲强度、挠度和扭转强度、扭转角; 韧度:一般采用无缺口式样; 硬度:一般硬度60HRC以上,钢中存在的大量碳化物可提高2~3HRC; 淬透性:断口法→碳素工具钢和低合金工具钢;端淬法→合金工具钢,以端淬曲线上60HRC 处距水冷端距离表示。淬透性作用强弱顺序: Si、Mn、Mo、Cr、Ni 热稳定性:(钢在较高温度下保持一定强度的性质)对高速钢,通常是红硬性;

金属材料学重点

1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?有什么特点?简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?A形成元素均使S、E点向左下方移动,F形成元素使S、E点向左上方移动。S点左移意味着共析碳量减小,E点左移意味着出现莱氏体的碳量降低。 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。优先形成碳化物,余量溶入基体。淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处?Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用?在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?Cr、Mn、Ni、Mo、W、V、Si作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。 9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?如何减轻和消除?第一类回火脆性:脆性特征:①不可逆;②与回火后冷速无关;③断口为晶界脆断。产生原因:钢在200-350℃回火时,Fe3C 薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。防止措施:①降低钢中杂质元素的含量;②用Al脱氧或加入Nb(铌)、V、Ti等合金元素细化奥氏体晶粒;③加入Cr、Si调整温度范围;④采用等温淬火代替淬火回火工艺。第二类回火脆性:脆性特征:①可逆;②回火后满冷产生,快冷抑制;③断口为晶界脆断。产生原因:钢在450-650℃回火时,杂质元素Sb、S、As或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。防止措施:①降低钢中的杂质元素;②加入能细化A晶粒的元素(Nb、V、Ti)③加入适量的Mo、W元素;④避免在第二类回火脆性温度范围回火 14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。钒在钢中主要以碳化物的形式存在。其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。 19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。②Cr使E点左移,意味着出现莱氏体的碳含量减小。在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。但是如果加入了12%

服装材料学考试重点

一、名词解释 1.机织物:用两组纱线(经纱和纬纱)在织机上按照一定规律相互垂直交织成的片状纺织品。 2.针织物:用一组或多组纱线通过线圈相互串套的方法勾连成片的织物。 3.非织造布:以纺织纤维为原料经过粘合、溶合或其他化学、机械方法加工而成的薄皮或毛毡状制品。 4.毛皮:又称裘皮,是经过鞣制的动物毛皮,由皮板和毛被组成。 5.皮革:经过加工处理的光面或绒面动物皮板。 6.衬料:介于面料与里料之间起支撑作用的服装材料 7.纤维:把长度比直径大千倍以上且具有一定柔韧性和强力的纤细物质统称为纤维。 8.纤维的体积质量:单位体积纤维的质量,影响植物的覆盖性 9.纤维的疲劳:纤维因蠕变也会逐渐损伤,以致断裂,这种现象称为疲劳 10.热定型:利用纤维的热塑性进行的加工处理 11.抗熔孔性:在穿着过程中,织物某个局部受到或接触到温度超过熔点的火花或热体时候,接触部位会形成熔孔,抵抗熔孔称为抗熔孔性 12.纤维的吸湿性:纤维能吸收空气中气相水分 13.纤维的吸水性:从水溶液中吸收液相水分的能力 14.丝光:棉纤维耐碱性较好,在常温或低温下浸入浓度为18%-25%的烧碱溶液中,纤维的直径膨胀、长度缩短,此时若施加外力,限制收缩,则可提高光泽度,易于印花染色 15.混纺纱线:是由两种或两种以上的纤维混合纺成的纱线 16.线密度:指1000m长的纱线,在公定回潮率时的重量克数 17.旦数:指9000m长的纱线在公定回潮率时的重量克数 18.公制支数:在公定回潮率时,1g重的纱线所具有的长度米数 19.花式纱线:通过各种加工方法而获得的具有特殊外观、手感、结构和质地的纱线 20.织物:由纺织纤维和纱线按照一定方法制成的柔软且有一定的力学性能的片状物,分为机织物、针织物、编织物和非织造布四大类 21.印花织物:经印花加工后表面有花纹图案的织物 22.色织物:将纱线全部或部分染色,再织成各种不同色的条、格及小提花织物 23.织物组织:机织物中,经纬纱线相互交错、上下沉浮的规律 24.非织造布:不经过传统纺纱、机织或针织的工艺过程 25.树脂整理:以单体、聚合物或交联剂对纤维素纤维及其混纺织物进行处理,使其具有防皱性能的整理方法 26.毡缩:毛织物在洗涤过程中,除了内应力松弛而产生的缩水现象外,还会因为羊毛纤维的弹性特点尤其是定向摩擦效应而引起纤维之间发生缩绒,即毡缩 27.洗可穿性能:织物洗涤后不经熨烫或稍加熨烫就达到平整的性能 28.织物手感:用手触摸、撰握织物时,织物的某些物理机械性能作用于人手并通过人脑产生的对织物特性的综合判断 29.织物的成衣加工性能:指面料在服装加工中形成优良的服装外观的难易程度 30.织物悬垂性:在自然悬垂状态下呈波浪屈曲的特性称为织物的静态悬垂性 31.天然毛皮是动物毛皮经过加工而制成。天然毛皮是有皮板和毛被组成 32.服装辅料包括里料、絮料、衬料、垫料、线料、扣紧材料、商标标志 33.衬料:是介于服装面料和里料之间的材料,它是服装的骨骼 34.粘合衬:是以机织物、针织物、非织造布为基布,以一定方式涂热熔胶而制成,因此粘合衬得基本性能主要取决于基布、热熔胶盒涂层方式。 35.纽扣分为:合成材料纽扣、金属材料纽扣、天然材料纽扣、复合纽扣 36.拉链按使用功能分为:开尾型、闭尾型和隐形拉链拉链按材质可分:金属类拉链和非金属拉链 37.编织花边:以棉纱为经纱,以棉纱、粘胶丝或金银丝等为纬纱,编织成各种各样色彩鲜艳的花边 38.机织花边:由提花织机织成,花边质地紧密,立体感强,色彩丰富,图案多样 39.刺绣花边:由手工或电脑绣花机按设计图案直接绣在服装所需的部位,形成花边 40.用于服装的标志有:品质标志、规格标志、产地标志、使用标志、质量标志 41.标志:用于说明服装原料、性能、使用及保养方法、洗涤及熨烫方法等的一种标牌 42.服装的外观和性能是由纤维、纱线、织物结构和后整理四个方面共同决定的

相关文档
最新文档