芦原义信的外部空间理论

芦原义信的外部空间理论
芦原义信的外部空间理论

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

内积空间的基本概念汇总

第四章 Hilbert 空间 一 内积空间的基本概念 设H 是域K 上的线性空间,对任意H y ,x ∈,有一个中K 数 ),(y x 与之对应,使得对任意H z ,y ,x ∈;K ∈α满足 1) 0)y ,x (≥;)y ,x (=0,当且仅当 0x =; 2) )y ,x (=_ __________)x ,y (; 3) )y ,x ()y ,x (αα=; 4) )z ,y x (+=)z ,x (+)z ,y (; 称)(,是H 上的一个内积,H 上定义了内积称为内积空间。 定理1.1设H 是内积空间,则对任意H y x ∈,有: |)y ,x (|2 )y ,y )(x ,x (≤。 设H 是内积空间,对任意H x ∈,命 ),(||||x x x = 则||||?是H 上的一个范数。 例 设H 是区间],[b a 上所有复值连续函数全体构成的线性空间,对任意H y x ∈,,定义 dt t y t x y x b a ?=________ )()(),( 则与],[2b a L 类似,), (y x 是一个内积,由内积产生的范数为 2 12 ) |)(|(||||?=b a dt t x x 上一个内积介不是Hilbert 空间。

定理 1.2 设H 是内积空间,则内积),(y x 是y x ,的连续函数,即时x x n →,y y n →,),(),(y x y x n n →。 定理1.3 设H 是内积空间,对任意H y x ∈,,有以下关系式成立, 1) 平行四边形法则: 2 || ||y x ++2 || ||y x -=2)||||||(||2 2 y x +; 2) 极化恒等式: ),(y x =4 1 (2 || ||y x +- 2 || ||y x -+ 2 || ||iy x i +- )||||2 iy x i - 定理1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数。 二 正交性,正交系 1 正交性 设H 是内积空间,H y x ∈,,如果0),(=y x ,称x 与y 正交,记为y x ⊥。 设M 是H 的任意子集,如果H x ∈与M 中每一元正交,称x 与M 正交,记为M x ⊥;如果N M ,是H 中两个子集, 对于任意 ,M x ∈,N y ∈y x ⊥,称M 与 N 正交,记 N M ⊥。设M 是H 的子集,所有H 中与M 正交的元的全体

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

外部空间设计 读书报告

《外部空间设计》读书报告 书籍介绍: 名称:外部空间设计 作者:芦原义信 出版日期:1985年3月 作者简介: 日本著名建筑师芦原义信1942年毕业于东京大学,现任东京大学教授,并开设有芦原义信建筑研究所。他曾主持设计了1967年蒙特利尔国际博览会日本馆、驹泽公园奥林匹克体育馆等建筑。1960年起,他即开始研究外部空间问题,为此曾两度到意大利考察。作者在本书中通过对比,分析意大利和日本的外部空间,提出了积极空间、消极空间、加法空间、减法空间等一系列饶有兴味的概念;并结合建筑实例,对庭园、广场等外部空间的设计提出了一些独到的见解。 五十年代以来,他设计了各种类型建筑作品公达一百余例,其中不少作品具有一定的国际影响力。 译者认为:“本书既包含着空间论,也包含着方法论。作者融汇了当前世界上的空间理论,并在此基础上有创造性的提出了‘内部秩序与外部秩序’、‘N 空间与P空间’、‘逆空间’等一系列颇有启发的概念。而且,更难得的是全书所引用的建筑实例均系作者本人作品,这些作品又都是作者本人理论的产物。因此,此书不仅可供阅读,更可作为设计实践中有价值的参考。” 芦原义信的主要著作除本书外,还有《街道美学》、《建筑空间的魅力》、《续街道美学》等。 主要内容与思考: 全书分为四章,从外部空间的基本概念到要素、设计手法以及空间秩序的建立四个部分由浅入深、并附加大量实例来进行了详细的说明和讲解,通俗易懂、语言生动有趣,可读性极强,很容易让读者在初学知识概念的同时得出共识。现如下分章节具体介绍: 第一章、外部空间的基本概念: 由空间概念入手:基本上是由一个物体同感觉它的人之间产生的相互关系所形成,主要是根据视觉确定的。有此认为限定空间的三要素为:地板、墙壁、天

空间几何体基本概念

空间几何体 一、由实际物体抽象出来的空间图形叫空间几何体。 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面。相邻两个面的公共边叫做多面体的棱。棱与棱的公共点叫做多面体的顶点。 把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。如:圆柱、圆锥、球形等。 这条定直线叫做旋转体的轴。 1. 棱柱 一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 棱柱中互相平行的两个面叫做棱柱的底面,简称底。 其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱。侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形等的棱柱分别叫做三棱柱、四棱柱、五棱柱等。用表示底面各顶点的字母表示棱柱。 2.棱锥 一般地,有一个面是多边形,其余各面都是有一个公共点的三角形,由这些面所围成的多面体叫做棱锥。这个多边形面叫做棱锥的底面或底。有公共顶点的各个三角形面叫做棱锥的侧面。各侧面的公共顶点叫做棱锥的顶点。相邻侧面的公共边叫做棱锥的侧棱。底面是三角形、四边形、五边形等的棱锥分别叫三棱柱、四棱柱、五棱柱等。三棱柱又叫四面体。棱锥用表示顶点和底面的字母来表示。如用S—ABCD表示四棱柱。 3. 棱台 用一个平行与棱锥底面的平面去截棱锥,底面与截面之间的部分表示的多面体叫做棱台。原棱锥的底面和截面分别叫做棱台的下底面和上底面。同样有侧面、侧棱、顶点,三棱台、四棱台、五棱台等,同棱柱一样也用字母表示。 4. 圆柱 以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面。平行与轴的边旋转而成的曲面叫做圆柱的侧面。不垂直于轴的边都叫做圆柱侧面的母线(指垂直于底面的边)。 圆柱和棱柱统称为柱体。 5. 圆锥 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。有轴,底面、侧面、母线(指旋转的直角三角形的斜边)。圆锥用字母表示顶点字母和底面圆心字母。圆锥和棱锥统称为椎体。 6. 圆台 用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,有轴、底面、侧面、母线。用字母表示(上底面和下底面的两个圆心字母表示)。 棱台与圆台统称为台体。 7. 球 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球的球心。半圆的半径叫做球的半径,半圆的直径叫做球的直径。用球心字母O 表示球,一般为“球O”。

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

芦原义信《外部空间设计》读书报告完

芦原义信《外部空间设计》读书报告完 | |外层空间设计| 甚至在日常生活中也会无意识地创造空间 建筑者在地面、墙壁和天花板上使用各种材料来创造建筑空间 ?外部空间:外部空间从定义自然开始外层空间是由 的框架定义的,不同于无限的自然。外部空间是人类创造的有目的的外部环境,比自然更有意义。因此,外部空间的设计也是创造这种有意义空间的技术。由于被框架所包围,外部空间从框架建立了一个向内的向心秩序,在框架中创造了一个积极的空间,满足人们的意图和功能相反,自然是一个无限延伸的离心空间,可以看作是一个负空间。 通常,建筑师非常关心他们设计的建筑所占据的空间,这是自然的,但即使是没有被建筑占据的反向空间也应该同样关注。换句话说,当

建筑的周围被设计成一个活动空间时,或者换句话说,当整个土地被认为是一个建筑时,这可以说是外部空间设计的开始。 空间倡议:空间满足人们的意图或计划对于空间理论来说,所谓的计划是首先确定外围边界,然后将顺序调整到内部观点(融合) 空间的负面性:空间是自然的、无计划的对于空间理论来说,所谓的无计划,就是增加从内部到外部的扩散(扩散率) 日本:传统木结构房屋,庭院属于房屋的内部秩序,内外边界都在墙的位置。美国:独立的郊区住宅,内外边界在住宅和庭院的交界处。意大利:没有庭院,建筑直接靠马路建造,所以内外边界明显在厚石墙的位置 第2章外部空间元素 1。尺度

建筑间相互作用的有效值为D/H小于3(D为间距,H为建筑高度)。当正方形中的D/H在1和2之间时,空间相对平衡且紧凑。当D/H 小于1时,建筑物之间的干扰太强。当D/H大于2时,建筑物过于分离 外层空间的第一个假设: 外层空间可以采用8-10倍内部空间大小的尺度,这被称为“十分之一理论” 80座房间(7.2*18米)或100座房间(9*18米)是日本宴会厅的俗称。这种空间的宽度被认为是根据人们相互聚在一起,作为一致的内部空间限制和传统。如果我们把这个尺寸增加到8倍,我们可以把外部空间计算为 ,这就成为一个统一的大的外部空间。它大致相当于海特提到的欧洲大广场的平均尺寸190英尺*465英尺(57.5*140.9米)。外部空间设计的第二个假设: 外部空间可以采用一个20-25m的模块,称为“外部模块理论” 关于外在的孔子,从实际的行走和观察就可以清楚。每隔20-25米,就有一个重复的节奏,或者是材料的变化,或者是地面上的高层次变化。然后,即使在一个很大的空间里,单调也可以被打破,有时它可以立刻变得生动。这个模块太小走不动,太大也不行一般而言70-80

空间句法基础概念

连接值、控制值、深度值和局部集成度为局部变量——描述局部空间的结构特征; 整体集成度和全局深度是整体变量——描述整体空间的结构特征; 可理解度则是描述局部变量与整体变量之间相关度的变量 连接值(connectivity value) 系统中与某一个节点直接相连的节点个数为该节点的连接值。某个空间的连接值越高,则说明此空间与周围空间联系密切,对周围空间的影响力越强,空间渗透性越好。 控制值(control value) 假设系统中每个节点的权重都是1,那么a节点从相邻b节点分配到权重为 [1/(b的连接值)],即与a相连的节点的连接值倒数的和就是a节点的控制值; 反映空间与空间之间的相互控制关系。 连接值与控制值都是表示某一空间和与之直接相连空间的关系:连接值是该节点本身有多少其他节点与之相连接,而控制值是与节点相连的其他节点的连接值的倒数和; 所以连接值高的节点,其控制值不一定高。因为有的节点可能本身连接值较高,但与其连接的节点的连接值也很高,必然会导致其控制值较低。 深度值(depth value) 表述的是从一个空间到达另一个空间的便捷程度;句法中规定两个相邻节点之间的拓扑距离为一步; 任意两个节点之间的最短与拓扑距离,即空间转换的次数表示为两个节点之间的深度值; 深度值表达的是节点在拓扑意义上的可达性,而不是指实际距离,即节点在空间系统中的便捷程度。 平均深度值 系统中某个节点到其他所有节点的最少步数的平均值,即为该,公式为[MD=(∑深度*该深度上的节点个数)/(节点总数-1)]; 全局深度值 各节点的平均深度值之和,通常全局深度值越小表示该空间位于系统中较便捷的位置,数值越高代表空间越深邃。 局部深度值 通常局部深度值是指三步范围内的深度值,表示系统中的某个节点到达相邻的三步空间节点的便捷程度。与此相对的是平均深度值与全局深度值——整体深度值。

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

外部空间设计读书笔记

外部空间设计读书笔记 《外部空间设计》是日本著名建筑师芦原义信的作品。1960年起,他即开始研究外部空间问题,为此曾两度到意大利考察。作者在书中通过对比,分析了意大利和日本的外部空间的异同,比如意大利的建筑偏于外向型的空间,而日本的建筑比较注重内部空间。芦原信义还提出了积极空间、消极空间、加法空间、减法空间等一系列饶有兴味的概念;并结合建筑实例,对庭园、广场等外部空间的设计提出了一些独到的见解。他所举的例子多数来自于他曾经亲自参与的工程,实例结合通俗的语言,十分通俗易懂。尤其是当我在街道上观察其理论时,发现其确实有其现实意义。详讲第三章跟第四章。 第三章则介绍了外部空间设计的具体手法。 首先关于外部空间的布局,空间可分为只限于人的领域和也包括交通工具的领域。在具体设计时要注意两点:一个是外部空间设计要尽可能赋予该空间以明确的用途,根据这一前提来确定空间的大小、铺装的质感、墙壁的造型、地面的高差等等。毕竟我们都知道,任何一个空间的生成都有其存在的意义,它的意义绝对不可能是凭空强加的,而且牵强地强加意义最终出来的结果也一定缺少美学效果,关键是可能不具有使用功能,以至于被废弃。曾经达芬奇在制作发明

时制造了一个供议会投票的机器,但是因缺乏实用性而被废弃,由此他感慨到科学家应该从人们需求出发制作实际有用的产品,建筑也是供人们使用的产品,道理大概也是如此。另外在外部空间布局上带有方向性时,希望在尽端配置具有某种吸引力的内容。他还谈到了空间的封闭问题,当进行外部空间布局时,有一种为各个空间带来一定程度封闭性,向心性地整顿空间秩序的方法。为此,就应当注意墙的配置及其造型。关于外部空间的层次,设计重点在于充分克服和利用一切地理条件,适应该空间所要求的功能种类和深度,创造出空间秩序富于变化的空间。还有一些其他手法,例如利用地面的高差。安排高差就是明确地划定领域的境界,而高差可以自由地切断或结合几个空间。甚至水的不同处理也会有非常有趣的效果。例如在空间布局时说过的那种不希望人进入的地方,以水面来处理,可以相当自由地促进或是组织外部空间的人的活动。可见空间设计师就像一个导演一样,在把剧本安排好了以后,人们只需按着剧本来游走,从始到末,一切自然水到渠成 第四章为空间秩序的建立。 这章分为加法空间与减法空间和内部秩序与外部秩序两个部分。加法空间就是把重点放在从内部建立秩序离心式地修建建筑。代表人物为芬兰建筑师阿尔瓦·阿尔托,作品如奥库森尼斯主教堂、赫尔辛基文化会馆等,其作品十分注

第一章、生活空间的基本概念及发展

第一章生活空间的基本概念及发展 生活空间和人们的生活联系紧密,是人们基本生活要素之一。随社会经济的发展,生活空间由最原始的天然岩洞演变到现在种类繁多的住宅样式。无论生活空间的形式将怎样的变化和发展,它的基本内涵是不变的:它是人类的住所。 第一节生活空间的基本概念 一、生活空间的定义: 1、定义:生活空间是一种以家庭为对象的居住活动为中心的建筑环境。 (1)、狭义地说,它是家庭生活方式的体现。 案例A:农村生活下的生活空间: a、生产方式:农业,养殖业 b、生活空间特点:农村用地状况决定其相对宽敞,自给自足的生产方式决定其周边环境可以相对封闭。 案例B:游牧生活下的生活空间: a、生产方式:畜牧业 b、生活空间特点:畜牧业生产决定其应具有活动性以便于追随牧草, 活动性决定其应结构简单,拆装方便,材料轻便。 案例C:城市生活下的生活空间: a、生产方式:工业或商业 b、生活空间特点:城市用地状况决定其相对密集,生产方式要求其交通发达并信息畅通。 (2)、广义地说,它是社会文明的表现。 案例A:封建社会时期的生活空间: a、封闭:独门独院,→封建意识形态的体现 b、等级分明:正房与厢房,→封建伦理道德思想的体现 案例B:生活空间的层级关系: 家庭(单个生活空间)→小区(生活空间的集合)→社区(小区的组团)→城市(社区的串联)

二、人们对生活空间的认识: 1、中国古代人们认为: “君子之营宫室,宗庙为先,廊库次之,居室为后”。 说明中国古代对生活空间以宗法为重心,以农耕为根本的社会居住法则,兼顾精神与物质要素。 2、西方古罗马帝国建筑家波里奥认为: “所有生活皆需具备实用、坚固、愉快三个要素。” 两千年前就已在实质上把握了功能、结构和精神价值。 3、现代建筑设计家赖特认为: “功能决定形式”,生活空间的实质存在于内部空间,它的外观形式也应由内部空间来决定。 生活空间的结构方法是表现美的基础。 生活空间建地的地形特色是生活本身特色的起点。 生活空间的实用目标与设计形式的统一,方能导致和谐。 4、勒?柯布西耶则认为: “居室是居住的机器,”生活空间设计需像机器设计一样精密正确。 生活空间设计不仅需考虑生活上的直接实际需要,且需从更广泛的角度去研究和解决人的各种需求,生活空间的美植根在人类的需要之中。 第二节生活空间的发展历程 室内设计是人类创造并美化自己生存环境的活动之一。确切地讲,应称之为室内环境设计。生活空间室内设计的发展大致可以分为早期、中期和当前三个阶段。 一、早期阶段(原始社会至奴隶社会中期) 早期阶段人类赖以遮风蔽雨的居住空间大都是天然山洞、坑穴或者是借自然林木搭起来的“窝棚”。这些天然形成的内部空间毕竟太不舒适,人们总是想把环境改造一番,以利于生存。人类早期作品与后来的某些矫揉造作的设计相比,其单纯、朴实的艺术形象反倒有一种魅力,并不时激发起我们创作的灵感。 该时期特点如下: 生产技术落后→解决技术能力有限→技术相对简陋↘↗穴居窑洞及山洞生产能力不足→物质财富有限→满足基本功能要求→形式→巢居干栏

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

空间向量

学校:年级:教学课题:空间向量 学员姓名:辅导科目:数学学科教师: 教学目标掌握空间向量的基本概念及应用 教学内容 空间向量及其运算 一、学习目标 1. 理解空间向量的概念,掌握其表示方法; 2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 复习1:平面向量基本概念: 具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量. 叫相反向量,a的相反向量记着. 叫相等向量. 向量的表示方法有,, 和共三种方法. 复习2:平面向量有加减以及数乘向量运算: 1. 向量的加法和减法的运算法则有法则和法则. 2. 实数与向量的积: 实数λ与向量a的积是一个量,记作,其长度和方向规定如下: (1)|λa|= . (2)当λ>0时,λa与A. ; 当λ<0时,λa与A. ; 当λ=0时,λa=. 3. 向量加法和数乘向量,以下运算律成立吗? 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb

二、知识点讲解 探究任务一:空间向量的相关概念 问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示? 新知:空间向量的加法和减法运算: 空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = , 试试:1. 分别用平行四边形法则和三角形法则求 ,. a b a b +-a . b 2. 点C 在线段AB 上,且 5 2 AC CB =,则 AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗? ⑴加法交换律:A. + B. = B. + a ; ⑵加法结合律:(A. + b ) + C. =A. + (B. + c ); ⑶数乘分配律:λ(A. + b ) =λA. +λb . 典型例题 例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵;1 '2 AB AD CC ++⑶ 1 (')2 AB AD AA ++⑷. 变式:在上图中,用',,AB AD AA 表示' ',AC BD 和'DB .

距离空间初探

距离空间初探 1 引言 “距离空间”是分析数学中的一个非常重要的概念,它的理论是实变函数、泛函分析、拓扑学等课程的重要组成部分,同时也是其它许多学科讨论问题的平台.距离空间在数学以及物理等各学科都得到了广泛的应用,例如:微积分中的极限连续、拓扑学中的距离空间等诸多数学概念与分支的引入,都与之相关.已有不少学者对距离空间以及其应用做了一些总结,本文着重讨论在泛函分析方面距离空间的一些基本知识. 2 定义及预备知识 2.1 距离空间的相关定义 定义1)4](1[P 设X 为一非空集合,如果对于X 中的任何两个元素y x ,,均有一个确定的实数,记为),(y x d ,与它们对应且满足下面三个条件: (ⅰ)非负性:0),(≥y x d ,而且0),(=y x d 的充分必要条件是y x =; (ⅱ)对称性:),(),(x y d y x d =; (ⅲ)三角不等式性:),(),(),(y z d z x d y x d +≤,这里z 也是X 中任意一个元素, 则称d 是X 上的一个距离,而称X 是以d 为距离的距离空间,记为),(d X ,简记为X .条件(i )-(ⅲ)称为距离公理. 注 对任何一个非空集合,我们都可以定义距离,但定义距离的方式一般来说是不唯一的,并且非空集合按照不同的距离形成的距离空间是不同的. 定义2) 17](1[P 设A ,B 均为距离空间X 的子集,如果A B ?__ ,则称B 在A 中稠密. 定义2 ') 17](1[P 对于任意的A x ∈以及任意的0>ε,存在B 中的点y 使ε<),(y x d ,则称B 在 A 中稠密. 定义3) 18](1[P 距离空间X 称为可分的,是指在X 中存在一个稠密的可列子集. 定义4 ) 23](1[P 距离空间X 中的点列}{n x 叫做基本点列,是指对任给的0>ε,存在0>N ,使 得当N n m >,时,ε<),(n m x x d .

距离空间 泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18) 1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。 而?x , y , z ∈ 1, ρ2(x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离. 2. 设(X , ρ)是距离空间,令ρ1(x , y ) = n y x ),(ρ,?x , y ∈X .证明(X , ρ1)也是距离空 间. [证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上?x , y , z ∈X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤ ),(),(),(),(11y z z x y z z x n n ρρρρ+=+=. 3. 设(X , ρ)是距离空间,证明 | ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),?x , y , z ∈X ; | ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),?x , y , z , w ∈X . [证明] ?x , y , z , w ∈X ,由三角不等式有 - ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式: | ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ). 4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,?i = 1, 2, ..., n 即可. 5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做. 6. 设(X , d )是距离空间,A ? X ,int(A )表示A 的全体内点所组成的集合.证明int(A ) 是开集. [证明] 若A = ?,则int(A ) = ?,结论显然成立. 若A ≠ ?,则?x ∈ A ,?r > 0使得S (x , r ) ? A . 对?y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ? S (x , r ) ? A ; 所以y ∈ int(A ).故S (x , r ) ? int(A ),从而int(A )是开集. 7. 设(X , d )是距离空间,A ? X ,A ≠ ?.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.

芦原义信《外部空间设计》读书报告完

《外部空间设计》读书报告

第一部分:文章主要内容 第一章外部空间的基本概念 1.1外部空间的形成 空间基本上是由一个物体同感觉它的人之间产生的相互关系所形成的。 即便在日常生活中,也无意识的在创造空间。 建筑家,就是在地面、墙壁、天花板上使用各种材料去具体创造建筑空间。 外部空间:外部空间首先是从在自然当中限定自然开始的。外部空间是从自然当中由框框所划定的空间,与无限伸展的自然是不同的。外部空间是由人创造的有目的的外部环境,是比自然更有意义的空间。所以,外部空间设计,也就是创造这种有意义的空间的技术。由于被框框所包围,外部空间建立起从框框向内的向心秩序,在该框框中创造出满足人的意图和功能的积极空间。 相对的,自然是无限延伸的离心空间,可以把它认为是消极空间。

往往,建筑师对自己设计的建筑所占据的空间十分关心,这是自然的,可是,就连就连建筑没有占据的逆空间,也要同样程度的关心。换句话说,把建筑周围作为积极空间设计时,或再换句话说,把整个用地作为一幢建筑来考虑设计时,可以说这才是外部空间设计的开始。 空间的积极性:空间满足人的意图或计划性。所谓计划,对空间论来说,那就是首先确定外围边框并向内侧去整顿秩序的观点。(收敛性) 空间的消极性:空间是自然发生的,无计划性的。所谓无计划性,对空间论来说,那就是从内侧想外增加扩散性。(扩散性) 日本:传统木结构住宅,庭院属于家的内部秩序,内外界限处于围墙的位置 美国:独立式郊区住宅,内外界限在房屋与庭院的衔接处 意大利:没有庭院,建筑直接靠着道路修建,所以内外的界限是明显地处于厚重的石墙位置。

第二章外部空间的要素1.尺度

芦原义信与黑川纪章的城市空间理论

艺文丛谈 芦原义信与黑川纪章的城市空间理论 谷溢,陈天 (天津大学建筑学院,天津300072) 摘 要: 芦原义信与黑川纪章是著名的日本现代建筑师,在世界建筑与城市规划领域享有较高声誉。在大 量从事城市实体空间营建的实践中他们形成了各具特色的城市空间理论,由于他们分别处在现代主义建筑理论的高潮期和后现代主义思潮的旺盛期,二人的理论具有一定的比较价值和时间指导意义。从科学观基础、空间尺度和各种空间关系的存在秩序等方面对其理论进行比较,以期在接近城市空间本质的层面,对其理论进一步研究。 关键词: 芦原义信;黑川纪章;城市空间;建筑学 中图分类号:TU-02 文献标识码:A 文章编号:1672-3910(2006)03-0071-03 收稿日期: 2005-12-04 作者简介: 谷溢(1979-),男,河南洛阳人,硕士生;陈天(1958-),男,天津人,副教授。 芦原义信(1918 )1942年毕业于东京大学建筑系,1953年毕业于哈佛大学研究生院,曾在马歇 布劳耶事务所工作,1956年在东京创建芦原义信建筑设计研究所。黑川纪章(1934 )1957年京都大学建筑系毕业,1964年在该校研究生院完成博士课程;他提倡从机械原理时代到生命原理时代的转变,成为20世纪60年代新陈代谢运动的发起人之一。芦原义信和黑川纪章在实践中逐渐形成了各自的城市空间理论,这些理论带有鲜明的时代烙印,具有很强的代表性。 一、科学观:布鲁巴基体系与非布 鲁巴基体系 现代科学观是在人们对科学的总体认识,是影响人类各种科学活动的决定性因素。人们把芦原义信和黑川纪章所处时代的主流科学观分为 布鲁巴基 (B ourbaki)与 非布鲁巴基 两个存在巨大差别的体系,二人城市空间理论所反映的科学观正是这两个体系的具体表现。 所谓 布鲁巴基体系 ,即基于二元论客观主义、合理主义概念,将能够证明和无法证明的事物区分开来的科学实证主义,是人们印象中的传统 经典科学观。 非布鲁巴基体系 则包括莱布尼兹和斯宾诺沙德巴洛克自然科学、戴卫 博姆德内藏秩序、大卫 彼得的共时性、黎曼空间、凯斯特勒得整体协调、曼戴布罗特得佛拉塔尔几何学以及普 里果金的耗散结构理论等。 [1]12-13 芦原义信的理论成熟于现代主义思想最有影响的年代,他提出的城市空间理论在非此即彼的对立主客体立场中带有深刻的现代主义二元论烙印,属于布鲁巴基体系。外部空间理论基于三次元的欧几里德空间而研究其存在形式,直到现在还在影响着这个世界,同时也是当今城市规划和建筑设计领域的主流思想。黑川纪章认为,人类社会不断向着多样化的方向扩展,其尽头是无秩序的、各种城市要素相互对立的状态。建筑师与规划师所做的原本是创造秩序,但结果却常常是破坏了平衡;但是,一旦由此而使秩序保持高度的平衡,结果将使秩序化的世界向着更加复杂化的方向发展下去。所以,他希望从新科学、新哲学所构建的非布鲁巴基体系中找到解决的方法。他称之为新陈代谢和共生。新陈代谢的过程和循环反映了变化、生长和生命形式的平衡,意味着可持续发展的城市和城市空间。 第24卷第3期2006年6月 河南科技大学学报(社会科学版) JOU R NAL OF HENA N UN IV ERS ITY OF S CIENC E A ND TECH NOLOGY (SOC IA L S CIENC E)Vol.24 No.3 Jun.2006

相关文档
最新文档