外文文献Novel Laser Beam Steering Techniques(新型激光束转向技术)

外文文献Novel Laser Beam Steering Techniques(新型激光束转向技术)
外文文献Novel Laser Beam Steering Techniques(新型激光束转向技术)

Invited Paper

Novel Laser Beam Steering Techniques

Hans Dieter Tholl

Dept. of Optronics & Laser Techniques

Diehl BGT Defence

PO Box 10 11 55, 88641 überlingen, Germany

ABSTRACT

The paper summarizes laser beam steering techniques for power beaming, sensing, and communication applications. Principles and characteristics of novel mechanical, micro-mechanical and non-mechanical techniques are compiled. Micro-lens based coarse beam steering in combination with liquid crystal or electro-optical phase control for fine steering is presented in more detail. This review addresses beam steering devices which modulate the phase distribution across a laser beam and excludes intra-cavity beam steering, beam steering based on combining tuneable lasers with dispersive optical elements, active optical phased arrays, and optical waveguides.

Keywords: Laser beam steering, optical phased arrays, decentered micro-lenses, spatial light modulators

1. INTRODUCTION

The integration of laser power beaming, laser-assisted sensing, and laser communication subsystems into autonomous vehicles, airborne and space platforms demands new techniques to steer a laser beam. The new techniques should promote the realization of beam steering devices with large optical apertures which are conformally integrated into the mechanical structure of the platform. The wish list of requirements comprise well-known properties: compact, lightweight, low power, agile, multi-spectral, large field of regard.

The angular spread of a laser beam, especially for long range applications, is inherently small because of the high antenna gain of apertures at optical wavelengths. Consequently, the direction of propagation of a laser beam is generally controlled in two steps: (1) A turret with gimballed optical elements points the field-of-view of a transmitting/receiving telescope into the required direction and compensates for platform motions with moderate accuracy and speed. (2) A beam steering device steers the laser beam within the field-of-view of the telescope in order to acquire and track a target.

The subject matter of this review are novel laser beam steering techniques. Beam steering devices are capable of ?pointing a laser beam randomly within a wide field-of-regard,

?stepping the beam in small increments from one angular position to the next,

?dwelling in each position for the required time on target.

In contrast, scanning devices move the beam axis continuously and switching devices are only able to address predefined directions. Reviews of current technologies for steering, scanning, and switching of laser beams are found in references [1,2,3,4].

Correspondence. Email: hans.tholl@diehl-bgt-defence.de; Phone: +49 7551 89 4224

Technologies for Optical Countermeasures III, edited by David H. Titterton,

Proc. of SPIE Vol. 6397, 639708, (2006) · 0277-786X/06/$15 · doi: 10.1117/12.689900

In general, beam steering is accomplished by imposing a linear phase retardation profile across the aperture of the laser beam. The slope of the corresponding wavefront ramp determines the steering angle: large steering angles correspond to large slopes and vice versa. Large wavefront slopes in combination with large apertures require large optical path differences (OPD) across the aperture which have to be realized by the beam steering device.

Large wavefront slopes may be generated directly by macro-optical elements such as rotating (Risley) prisms and mirrors or decentered lenses. Compared to gimballed mirrors these steering devices are relative compact, possess low moments of inertia and do not rotate the optical axis. Recently, these macro-optical approaches gained renewed popularity.

The way for compact, lightweight, low power beam steering devices is smoothed by micro-optics technology. Single micro-optical elements such as electro-optic prisms, dual-axis scanning micro-mirrors, or micro-lenses attached to micro-actuators imitate the steering mechanism of their macro-optical counterparts. Single, small aperture micro-opto- electro-mechanical systems (MOEMS) are mounted near the focal plane of macro-optical systems and provide rapid pointing of the laser beam. These configurations combine the benefits of macro-optical beam steering devices with the high bandwidth of MEMS and are candidates for beam steering applications at low optical power levels.

In order to build large apertures with micro-optical elements, they have to be arranged in rectangular two-dimensional arrays. Promising techniques are one-dimensional arrays of electro-optic prisms or two-dimensional arrays of micro- mirrors and decentered micro-lenses. At visible and infrared wavelengths the array pitch is larger than the wavelength and the arrangement acts like a diffraction grating. Suppression of undesired diffraction orders is accomplished by actively blazing the grating structure in an appropriate way.

Micro-optical actively blazed gratings are a rudimentary form of phased arrays. A phased array is a periodic arrangement of subapertures each radiating its own pattern into space. The interference of the individual radiation patterns simulate a large coherent aperture in the far field. This review addresses only so called passive phased arrays which modulate the phase distribution across an impinging laser beam. For this purpose the phase piston of each subaperture is varied, thus creating a programmable diffractive optical element across the device aperture.

There are many more beam steering techniques described in the literature: intra-cavity beam steering, beam steering based on combining tuneable lasers with dispersive optical elements (e. g. photonic crystals), active optical phased arrays, and steering techniques associated with optical waveguides. These techniques are excluded from this review.

2. PARAMETER SPACE OF BEAM STEERING DEVICES

Functional requirements for laser beam steering devices cover the following topics:

?maximum steering angle,

?beam divergence/imaging capability,

?aperture/vignetting,

?spectral range and dispersion,

?throughput,

?control of the steering angle.

The quantitative parameters associated with each function depend strongly on the operational requirements. In general, two classes of steering devices can be distinguished: (1) Power beaming (e.g. directional optical countermeasures, transfer of power to remote devices) and free space laser communication applications require the laser beam to pass only once through the beam steering device. (2) Active sensing techniques such as laser radar transmit (Tx) the laser beam and receive (Rx) a signal through the beam steering device. Table 1 gives nominal values for functional parameters associated with the specific applications directional infrared countermeasures (DIRCM), imaging laser radar (ladar) and deep space laser communications as stated in references [6,9,10]. These examples run the gamut of system level

parameters such as maximum steering angle, aperture diameter, beam divergence, and pointing accuracy. The parameters which characterize a beam steering device independently of its location within the optical system are spectral range, time constant, angular dynamic range, and etendue.

Table 1. Compilation of nominal beam steering parameters for different applications.

FOV: Field-of-View

(2) Time required to step from one angular position to the next

(3) 10 log(2*[max steering angle]/[pointing accuracy])

(4) 2*[max steering angle]*[aperture diameter]

The etendue of the beam steering device (BSD) restricts its location within the optical system. The large etendues required for the DIRCM system demands the BSD to be placed in the exit pupil of the transmitting telescope. Moderate etendues give the opportunity to mount the BSD in the exit pupil or the entrance pupil of a beam expanding telescope depending on the technologies available. It is also possible to split the steering capability between a coarse steering element situated in the exit pupil and a fine steering element in the entrance pupil. For imaging ladar applications the division in coarse/fine beam steering is preferable if the fine beam steerer also functions as a fan out diffractive optical element (DOE). The DOE creates an array of laser spots which illuminate the footprints of the receiving FPA pixels [9]. Small etendues in combination with large apertures as for deep space lasercom require the BSD to be mounted in the entrance pupil of the telescope which expands the laser beam and reduces the steering angle.

The applications compiled in table 1 serve as a guide through the following sections although a particular beam steering technique is not unique to an application.

3. BEAM STEERING WITH MACRO-OPTICAL COMPONENTS

In a recent series of papers the application of rotating prisms and decentered lenses to wide angle beam steering for infrared countermeasures applications was reported [5,6,7]. The research was focused on macro-optical coarse beam steering devices based on rotating prisms and decentered lenses.

Macro-optical devices enable achromatic designs, avoid blind spots within the field-of-view and concentrate the steered energy into a single beam. Employing prisms and decentered lenses to deviate the chief ray of a ray bundle are standard techniques in the design of visual instruments. The design challenge of this well-known approach is the search for the right combination of opto-mechanical parameters and materials to ensure wide-angle achromatic steering in the infrared spectral range between 2-5 μm.

3.1 Risley prism beam steering device [5,6]

Principle of operation. Risley prisms are a pair of achromatic prisms cascaded along the optical axis. The rotation of the prisms in the same or the opposite directions with equal or unequal angular velocities generates a variety of scan patterns which fill a conical field-of-regard continuously. The prism configuration should be optically reciprocal in order to ensure precise beam steering along the optical axis for all wavelengths of interest. Optical reciprocity is a symmetry property: in the reference position the prism configuration remains invariant after reflections at an internal plane perpendicular to the optical axis.

Maximum steering angle. According to reference [6] a maximum steering angle of 45 deg is attainable with proper control of the dispersion.

Beam divergence. All beam steering devices which do not change the direction of the optical axis exhibit a reduction of the effective beam diameter projected perpendicular to the steering direction. Additionally, a device dependent beam compression may occur. The prism beam steerer compresses the laser beam in such a way that a circular input beam leaves the device with an elliptical shape. The compression preserves the beam’s phase space volume (etendue) and the beam power but reduces the peak irradiance in the far field because of an increase in the beam divergence along the direction of compression. This effect ultimately limits the maximum steering angle for a given upper bound of the beam divergence.

Spectral range. Risely prisms work throughout the optical spectral range (VIS to VLWIR). The operational optical bandwidth is limited by the material dispersion. Achromatism to the first order is achieved by using achromatic prism doublets. Among a wide range of material alternatives the combination LiF/ZnS leads to small secondary dispersion of 1.78 mrad within the spectral range 2-5 μm at a maximum steering angle of 45 deg [6].

Throughput. Large clear apertures and apex angles of several degrees generate long optical path lengths within the prisms which has an impact on the device transmittance due to absorption and scattering in the prism material. With proper anti-reflection coatings multiple-interference effects between the prisms are reduced and a transmittance in the order of 75-80% seems to be achievable [5].

Comments. Steering a laser beam rapidly and randomly through a wide angular range requires control over the direction of rotation, the instantaneous angular position, and the angular velocities of the prism pairs. The azimuth and elevation steering angles are complicated continuous functions of the prism rotation angles and the wavelength. For smooth steering trajectories no singularities, e.g. prism flipping, are encountered [6]. The implementation of prism drives for scanning the line of sight of passive and ladar sensors is established [9,11]. However, the realization of the control loops for random step and stare mode is not an easy and straight forward task. In a recent publication a Risley beam steering device with a maximum steering angle of 60 degrees, an aperture of 100 mm, a wavelength range of 2-5 μm, and an aiming repeatability of better than 50 μrad was announced [12].

3.2 Decenterd lens beam steering device [5,7]

Principle of operation. Ideally, a beam steering device is an afocal optical system which transforms a plane input wavefront into a plane output wavefront. Besides prisms, lens telescopes of the Kepler or the Galileo type are candidates for macro-optical beam steering devices. The telescope comprises two lenses which are separated by the sum of their focal lengths. Steering of the chief ray and the associated ray bundle is accomplished by a lateral displacement of the exit lens with respect to the input lens.

Maximum steering angle. The maximum steering angle depends on the focal length and the distortion of the exit lens and on the maximum lateral displacement which is acceptable. In practice, the lateral displacement is limited to half the diameter of the aperture of the exit lens due to vignetting of the ray bundles. This leads to a maximum steering angle of roughly 25 degrees.

Beam divergence. The compression of the laser beam depends on the ratio of the focal lengths of the two lenses. For the Galileo type the absolute value of this ratio is always smaller than one. For the Kepler type a focal length ratio of one is possible and preferable if the beam steering device should operated in a combined transmit/receive mode. The lateral displacement of the two lens apertures relative to each other reduces the clear aperture and leads to vignetting and to an asymmetric increase in beam divergence. This effect is controlled by the introduction of a field lens. Furthermore, the beam divergence is strongly affected by optical aberrations of the lens system. The transmitted beam should only illuminate the central portion of each lens in order to stay within the divergence requirement. The received wavefront may illuminate the full aperture and suffer a higher degree of aberration than the transmitted beam.

Vignetting. Vignetting due to the lateral displacement of lenses is reduced substantially for the Kepler configuration by the introduction of a field lens in the focal plane common to both lenses. Positive and negative field lenses are possible. The positive field lens is rigidly connected to the exit lens and both are displaced together. This facilities the driving mechanism but introduces an internal focus near the field lens. For high power applications this is undesirable. A negative field lens needs an extra drive which moves the field lens and the exit lens in opposing directions in a nearly 1:2 relationship [7]. In this way, an internal focus is avoided.

Spectral range. As for prisms there is no limitation on the spectral range. Ideally, each lens of the beam steerer has to be an achromat. In reference 7 the material combination Ge/AMTIR-1 was chosen to minimize the chromatic aberrations of a Fraunhofer doublet (positive first, negative second component) over the spectral range 2-5 μm. The authors designed a Kepler telescope with a negative field lens which steers a laser beam up to 22.5 deg and a secondary dispersion of 0.65 mrad over the spectral range 2-5 μm.

Throughput. The achromatic beam steering device of reference [7] comprises 6 external and 3 internal interfaces and rougly 40 millimeters of material thickness. As for the prism beam steerer the throughput should be in the order of 75- 80%. The encircled energy within the specified divergence of 1 mrad depends on the wavelength and the steering angle. At 2 μm the encircled energy remains above 95 % for all steering angles; at 5 μm the encircled energy varies from 98% on axis to 63% at 22.5 degrees.

Comments. In order to steer a laser beam the lateral displacement of two lens groups must be controlled. Fortunately, the relationship between the displacements of the lens groups is constant. For each wavelength, the azimuth and elevation steering angles are almost linear functions of the displacements. The required maximum displacement is equal to the aperture radius of the exit lens which is approximately 35 mm. The overall dimensions are 180 mm length and a height of 135 mm at maximum lens displacement. Decentering macro-optic lenses for beam steering is a possible but, because of the complexity involved, not a practical approach compared to Risley prisms. This is in contrast to the micro-optics world where micro-optical elements are arranged in a regular array. Electro-optic prism arrays are capable of one- dimensional beam steering with small steering angles. Decentered micro-lens arrays including field lenses are an option for steering laser beams up to angles of 25 degrees in two dimensions.

3.3 Beam steering with macro-optical mirrors

Transmissive optical elements are the first choice for compact optical systems with large fields-of-view. The drawback of this approach is the wavelength dependence of the optical functions due to the refraction at the interfaces between materials of different refractive indices. Reflective optical designs offer independence on the wavelength. Both approaches which were discussed in the preceding paragraphs can be realized with mirrors. A Risley type beam steering device for mm-waves based on rotating mirrors is discussed in reference [8].

4. BEAM STEERING WITH MICRO-OPTO-ELECTRO-MECHANICAL SYSTEMS (MOEMS) Ladars find applications in targeting, missile guidance, terrain mapping and surveillance, or robotic navigation to name only a few. Short range applications of ladars (several 10 m) will rely on a flash illumination of the field-of-view and a reception of the scattered light by snapshot focal plane arrays. Intermediate and long range imaging ladars must sequentially illuminate a portion of the field-of-view because of limited laser power. These systems need a beam

steering device to step through the field-of-view and to dwell on a specific portion in order to accumulate several laser pulses reflected from the scene.

The next generation intermediate range (several 100 m) 3-D imaging ladars will operate in a time-of-flight mode and integrate lasers, optical, electrical, and mechanical devices into micro-opto-electro-mechanical-systems (MOEMS) [4]. Currently, the development of MOEMS technologies is driven by fiber-optics communication with the focus on optical switches and wavelength multiplexers/demultiplexers. Most of the MOEMS switching devices are either digital (e.g. DLP technology introduced by Texas Instruments) or scan in an open loop mode without sensing the actual beam direction. According to the definition given in the introduction, these devices do not steer a laser beam (they are unable to point randomly or dwell on a particular direction). Nevertheless, scanning micro-mirrors are shortly reviewed because they pave the way for micro-optical phased arrays.

Two-axis scanning micro-mirrors

Principle of operation: Gimballed micro-mirrors reflect a laser beam in the same way as the large-scale counterparts. MOEMS offer advantages with respect to mass, volume, and electrical power consumption. The design challenge of these micro-systems lies in the fact that the macro-forces do not scale linearly with size. New design approaches to mount, drive, and control the tilt of the micro-mirrors are necessary. The micro-mirrors are fabricated on silicon wafers and are then bonded to another chip which contains the electrode structure to electro-statically drive the mirror motion. Mirror diameters are in the order of several millimeters. The first generation of these devices flipped back and forth between two positions, the newer versions are capable of performing a controlled continuous scanning in two dimensions [4].

Maximum tilt angles of up to (±)15 degrees are reported in the literature [13]. Depending on the optical layout this gives a maximum scan angle of (±)30 degrees which may be magnified optically with a negative lens.

Beam divergence: The diffraction limited beam divergence is limited by the diameter of the micro-mirror. For a wavelength of 1μm the divergence of a laser beam reflected off a mirror of 6 mm is about 330 μrad. With large scanning angles the beam is compressed in one direction.

Spectral range: The reflection law is independent of wavelength. Dispersion is introduced through the packaging of the mirrors which are usually sealed behind windows. These windows limit the spectral range and introduce chromatic aberrations.

Throughput is limited by the reflective coating of the mirrors (aluminium for the visible, gold for the IR spectral range), by reflections at the window interfaces, and by diffraction effects at the edges of the micro-mirrors. The throughput should be in the order of 85%.

Comments. To provide real steering capability the gimballed micro-mirror must be tilted in a step-and-stare fashion. Currently, this mode of operation is not on the research agenda because the areas of application of mirror devices are either switching or scanning of laser beams. Another interesting approach which is more relevant to beam steering is the flexure beam micromechanical spatial light modulator [21]. In this device the micro-mirrors are suspended with four hinges which results in a piston-like motion. This mode of operation brings about phase modulation of the reflected laser beam which may be relevant for fine beam steering with phased arrays.

5. BLAZED GRATING BEAM STEERING

Blazed grating beam steering utilizes an array of micro-optical elements (micro-telescopes, micro-mirrors, micro- prisms) with a fixed pitch. Each micro-optical element samples the incoming laser beam and radiates a beamlet into space. The beamlets interfere coherently and form a diffraction pattern which comprises several main lobes (grating lobes) surrounded by side-lobes. The directions of propagation of the main lobes are governed by the grating equation. The periods of the micro-optical grating are actively blazed in order to steer a laser beam. The most promising two-

dimensional blazed grating beam steering approach is based on decentered micro-lens arrays. Other techniques such as tilting micro-mirror or (electro-optical) prism arrays are too limited with respect to deflection angles.

Decentred micro-lens arrays

Principle of operation. An array of micro-telescopes comprises a two-dimensional regular arrangement of telescopes of the Kepler or Galileo type. The lens trains which form the micro-telecopes are distributed among two planar substrates which hold mircro-lens arrays on their surfaces. Micro-lens arrays were realized as refractive and diffractive elements in glass for the visible spectral range and in silicon and other materials with high format (up to 512 x 512) and high fill- factors for mid IR applications [14,15,16,17]. Active blazing of the telescope array is realized by translating one mirco- lens substrate laterally with respect to the other. This is similar to the operation of the macroscopic arrangement. The difference lies in the fact that the amount of wavefront aberration scales with the size of the aperture and the field size. Therefore, the micro-optical realization of the principle of decentered lenses requires fewer optical surfaces than the macro-optical counterpart.

Maximum steering angle. The maximum lateral displacement of one half of the array pitch restricts the maximum steering angle to roughly 25 degrees. The maximum steering angle depends on the telescope type and the refractive index of the lens material (see table 2) [14]. The maximum value can only be reached with acceptable performance with a Kepler telescope and a field lens array (see Fig. 1).

Beam divergence. The far field of the decentred micro-lens beam steering device is composed of main lobes (called grating lobes) and sidelobes determined by the grating structure. The angular width of the grating lobes depends on the size of and the coherence length across the array aperture. In silicon, arrays with diameters of up to 6 inches should be possible. A major factor which determines the beam divergence is the spatial coherence across the array. Variations of the geometric-optical parameters due to imperfections of the fabrication process reduce the spatial coherence of the beamlets [18,19] and broadens the grating lobes. The non-uniformity of the optical parameters of the arrays should be well below 3% in order to attain good performance with respect to beam width, steering angle and diffraction efficiency. Beam compression is an issue for the Galileo and the simple Kepler type because of the different focal lengths involved and the vignetting induced by the lateral displacement.

Vignetting. Vignetting is introduced by the lateral displacement of the micro-lenses and depends on the type of micro- telescope. The performance of the Galileo and the simple Kepler type is strongly influenced by vignetting. Introduction of a positive field lens in the Kepler telescope eliminates vignetting at the cost of a reduced laser damage threshold. Fig. 2 illustrates the gain in uniformity of the Strehl ratio across the addressable grating lobes. Introduction of a negative field lens is not suitable because of the increased complexity of the driving mechanism.

Spectral range. Beam steering with decentered micro-lens arrays works over the entire optical waveband (UV to VLWIR, see table 2). Dispersion is caused by the materials involved and is induced by the grating structure of the arrays.

Table 2. Comparison of materials for decentered micro-lens arrays (adapted from ref. [14])

S

t

r

e

h

l

R

a

t

i

o

Galileo micro-telescope array Kepler micro-telescope array with field lens array Figure 1. Ray tracing through decentered micro-lens arrays with the same pitch and maximum steering angle.

Galileo Telescope

1

0,8

0,6

0,4

Kepler Telescope0

0 2 4 6 8 10

Diffraction Order

Figure 2. Calculated Strehl ratio of the addressed grating lobe (diffraction order) for a decentered micro-lens array beam steerer with 3% non-uniformity of the focal length across each lens surface. Both telescope arrays have identical pitch and maximum steering angle.

Throughput. Several loss mechanisms reduce the intensity in the addressed diffraction order for the Kepler type arrangement with field lens: Fresnel losses at the AR coated interfaces, losses due to non-ideal aperture ratios (the ratio of the width of the clear aperture to the grating pitch), reduced diffraction efficiency due to insufficient blazing, and extinction in the lens material. For lenses fabricated in silicon the energy balance predicts a minimum throughput of 65% of the incident power.

Comments. Micro-lens-arrays of large formats are well suited for agile steering with demonstrated high rates (up to kHz) and moderate accuracy (typical about 0.3% of micro-lens aperture). Piezoelectric transducers are the appropriate choice for driving the lenslets arrangements. Fig. 3 shows the second generation prototype of a broadband decentered micro-lens image steering device for the spectral range 3-5 μm [20].

Figure 3. Prototype imaging steering device for the spectral range 3-5μm.

Blazed grating beam steerers exhibit two disadvantages: (i) Due to the grating nature only discrete angular positions (the grating lobes) can be addressed. (ii) The non-uniformity of the optical parameters across the array leads to a reduction of the spatial coherence between the interfering beamlets and an increase in the beam divergence. These disadvantages can be resolved. (i) The angular positions between the grating lobes are accessible with a fine beam steering device in front of the blazed grating. The fine beam steerer imposes a local phase ramp across each grating period and steers the laser beam between adjacent grating lobes for a fixed blaze angle [14]. Alternatively, the blazed grating beam steerer is combined with a phased array which modulates the incident wavefront. In lowest order, the phase piston of each grating period is varied. In this way, a global phase ramp across the grating is approximated by a phase staircase. The blaze angle of the grating must be adjusted to the slope of the global phase ramp to retain maximum diffraction efficiency because each grating period only exhibits a variation in phase piston. (ii) The non-uniformity in optical thickness due to fabrication and alignment errors can be compensated and the spatial coherence across the grating aperture may be improved with sufficient dynamic range of the phase pistons (see Fig. 4). In addition, if the number of pixels of the phased array is sufficiently large, several pixels may cover one period of the blazed grating and higher wavefront errors (tip/tilt, defocus) may be corrected. In the VIS and NIR spectral range liquid crystal phased arrays are available for adaptive correction of the blazed grating beam steerer. Phased arrays based on micro-mirrors or electro-optical ceramics which cover a broader spectral range are under development [21,28].

6. PHASED ARRAY BEAM STEERING

Free-space optical communications between ground, airborne, and satellite platforms attracts increasing attention due to the evolution towards rugged lasers and compact optical systems. In this context non-mechanical laser beam steering provides technical means to realize cost-effective communication links. The system level functions of the beam steering device comprise (i) coarse steering for pointing the laser beam and active tracking of the receiver/retro-reflector, and (ii) fine steering to compensate for line-of-sight fluctuations due to small movements of the receiver, atmospheric turbulence and platform vibrations.

Optical phased arrays (OPAs) emerged as an attractive approach for these tasks. OPAs impose a phase delay ramp across a laser beam by controlling the spatial variation of the refractive index or the geometrical ray path across the device aperture. Currently, three techniques are under investigation: (i) spatial modulation of the refractive index of thin liquid crystal (LC) films and (ii) electro-optics ceramics (EOC) and (iii) spatially resolved alteration of the geometrical path with arrays of micro-mechanical (MEMS) mirrors. LC technology is mature and commercially available. EO ceramics and MEMS phased arrays with piston-like motion of the micro-mirrors are in their infancy [21,28].

Blazed Wavefront Output Blazed Wavefront Output

Blazed Grating Beam Steerer

Phase Piston Phased Array

Plane Wave Input (a)

Plane Wave Input

(b)

Blazed Wavefront Output

Phase Piston + Fine Steering Ramp Phased Array Figure 4. Illustration of the compensation of array non-uniformity and interpolation between grating lobes using a phased array in front of the blazed grating beam steerer. One pixel of the phased array corresponds to one period of the grating. (a) Phased array is absent. (b) Correction of phase piston error. (c) Correction of phase piston error and interpolation between grating lobes. If several pixels of the phased array cover one grating period the wavefront curvature can also be corrected.

Plane Wave Input

(c)

Liquid crystal spatial light modulators (LC SLM)

LC SLMs have been evaluated for laser beam steering and shaping since more than a decade [22]. Gradually, SLMs suitable for high-quality phase modulation of up to 2π at VIS and NIR wavelengths, with a large number of individually addressable resolution cells in a two-dimensional array, and with acceptable frame rates appear on the market [23].

Principle of operation . The detailed structure of a LC SLM depends on the type of liquid crystal (nematic, ferroelectric, or polymer dispersed), the addressing scheme (electrical or optical), and the mode of operation (transmissive or reflective). Most LC SLM which are available commercially consist of nematic LC. Schematically, the nematic LC layer is sandwiched between plane substrates which are coated with electrodes. The LC molecules are pre-aligned parallel to the electrodes. A voltage applied between the electrodes generates an electrical field which is mainly perpendicular to the electrodes and which controls the orientation of the LC directors in the layer: the LC directors line up with the electric field lines. From an optical point of view this arrangement is birefringent and the change in optical path length induced by the reorientation of the LC directors depends on the polarisation of the incident light beam. Most LC SLM operate in a reflective mode. In comparison with the transmissive mode the layer thickness is reduced and the modulation bandwidth is increased for a required depth of optical phase modulation. The reflective mode of operation also eases the addressing of the resolution cells of the LC layer.

An electrically addressed LC SLM (EA-SLM) comprise a patterned electrode (line pattern for 1D, pixelated for 2D beam steering) with highly reflective pads which are bonded to a silicion backplane and a transparent electrode which is antireflection coated. The gaps which define the pattern on the backplane electrode distort the electric field distribution and give rise to fringing fields. The fringing fields separate the EA-SLM in optically active and inactive regions. Due to fabrication limitations a gap of at least 0.5 μm is required in order to prevent dielectric break down between electrodes. Together with the requirement of having a high aperture ratio this results in a minimum width of a resolution cell of 1.5 μm [24]. For VIS and NIR wavelength the pixel structure acts like a diffraction grating causing diffraction into several orders in the far field independently of the imposed phase profile [25].

The disturbing diffraction effect of the electrode structure is prevented by the use of optically addressed LC SLM (OA- SLM). Instead of a patterned backplane electrode a reflective OA-SLM comprises a large-area photoconductor, an absorbing light-blocking layer, and a high reflective dielectric mirror. In operation, the photoconductor is electrically biased relative to the transparent electrode and irradiated with patterned light. The irradiance distribution determines the local electric field which controls the orientation of the LC director. The OA-SLM exhibits reduced diffraction artefacts because of the absence of a pixelated electrode structure and is scaleable to large apertures [26].

Maximum steering angle. Commercially available LC SLM have a size up to 20 mm and 8 bit phase dynamic range [23]. Depending on the wavelength (0.5 to 1.5 μm) this results in maximum steering angles between 25 to 75 μrad with tenth of nanoradians resolution. These small steering angles are ideal for ultra fine beam steering. Larger steering angles are realized through the implementation of diffractive optical elements (DOE), i.e. diffraction gratings. The phase profile of a DOE is limited to a phase range between 0 and 2 πradians. As a rule of thumb, high diffraction efficiency (>95%) in the first diffraction order is attained for a minimum of 8 phase steps per grating period with the appropriate blazing of the unit cell. This technique results in a maximum steering angle between 6 and 18 mrad for a pixel pitch of 8 to 40 μm and wavelengths between 0,5 and 1,5 μm. Extension of the steering angle is possible with macro-optical components known from fish-eye and projection lens designs, with decentered micro-lens blazed gratings (as explained above), or with multiple exposure volume (Bragg) gratings [27].

Beam divergence. In general, the far field energy distribution of a DOE comprises the desired first diffraction order, unwanted grating lobes, and diffraction artefacts due to the underlying pixelation and quantization of the phase profile [25]. The beam divergence is determined by the diameter of the clear aperture of the LC SLM and the exit pupil of the optical system. Compression effects are not an issue.

Vignetting. The pixelation of the phase profile due to the addressing of individual resolution cells divides the SLM into active and inactive regions. Aperture ratios of 60 - 70% are reported [25,26] regardless of the addressing scheme.

Spectral range. The liquid crystal currently in use work best for the VIS and NIR spectral range. Some LC material exhibit small transmission windows in the 3-5 μm range [28]. Ultra fine beam steering without diffractive structures suffer the normal material dispersion. Larger steering angles which require the implementation of DOE are subject to structural dispersion. Methods to cope with this type of dispersion are currently under investigation [29].

Throughput. With 8 phase levels the maximum diffraction efficiency (energy in the first diffraction order divided by the energy in all diffraction orders) is 95%. The net optical reflectivity of an OA-SLM was measured to be 93% [26]. Multiplying the diffraction efficiency, the net reflectivity, and the aperture ratio of 70% (1D grating) gives a total maximum throughput of roughly 60%.

Comments. OPAs are programmable diffractive optical elements based on an array of phase shifting pixels. Thus, different optical functions in addition to beam steering such as fanouts and focusing may be realized. OPAs based on LC are a very promising approach for laser beam steering backed up by applications with high market volumes such as micro-displays and projection devices. Challenges to be resolved are: reduction of the response time, reduction of the polarization dependence, reduction of the pixel size below the application wavelength, extension of the spectral range up to 5 μm. New liquid crystal composites such as polymer dispersed liquid crystal materials (PDLC) can overcome part of these problems [28]. A PDLC comprises a polymer matrix with embedded LC domains (droplets). It is possible to form domains of few tens of nanometers, the so-called nano-droplet regime (Fig. 5). Each individual droplet of LC can

Nano-droplet liquid crystal

Phoconductor

be considered as an uniaxial birefringent medium whose optical axis is controlled by an externally applied electric field.

A laser beam propagating through a LC droplet experiences no phase shift if the optical axis is orientated in such a way that the ordinary index of the droplet matches the index of the polymer matrix. Otherwise, the PDLC film imposes a phase shift onto the laser beam due to the refractive index mismatch between the LC droplets and the polymer matrix. The orientation of the LC droplets and the resulting phase shift is controlled by driving the PDLC film either by an array of electrodes or by analogue optical addressing with a photoconductive layer.

Nano-droplet

liquid crystal

Phoconductor

Figure 5. Structure of an optically addressed PDLC device (left) and photographs of the structure of a PDLC nano-droplet composite film (graphic and photographs provided by Thales Research and Technology [28]).

7. PROGRAMS

Novel laser beam steering techniques for achieving significant reduction in size, weight, power, and cost over conventional gimballed mirror systems are topics of several research projects worldwide. Two programs established in the military research arena are ATLAS in Europe and STAB in the US.

7.1 Advanced Techniques for Laser Beam Steering (ATLAS)

The European Defence Agency (EDA) is funding a program to develop component technologies for advanced laser beam steering. The program addresses innovative concepts for non-mechanical beam steering and beam shaping for DIRCM, active imaging, designation, tracking and ranging systems in a multi-target context. The following techniques are investigated:

?e lectro-optics ceramics and polymer-dispersed liquid crystal spatial light modulators for fine beam steering and wavefront correction,

?decentered micro-lens arrays for extended field of view beam steering,

?optically addressed liquid crystal spatial light modulators for laser beam shaping,

?intra-cavity beam steering.

The consortium comprises the European defence corporations Thales Optronique SA (consortium leader), Thales Research and Technology, Galileo Avionica, and Diehl BGT Defence.

7.2 Steered Agile Beams (STAB)

The STAB program is funded by the US Defense Advanced Research Projects Agency (DARPA) with the objective “to develop and demonstrate novel chip-scale laser beam steering technologies for military applications” [30]. The STAB program comprises several projects which focus on optical MEMS, diffractive and micro-optics, liquid and photonic crystals technologies for free space laser communications and electro-optical countermeasures applications. The program team consists of major US defence corporations and universities such as Raytheon, BAE Systems, Hughes

Research Lab, Rockwell Scientific Company, Honeywell, University of California at Berkley, Kent University, UCLA, UCSD, and USC.

8. CONCLUSION

Table 3 serves as a guide to the performance of the most promising beam steering techniques reviewed in this paper. The numbers form a coarse parameter grid to ease the association of beam steering technologies and applications. For broadband wide-angle beam steering Risley prisms are the first choice although they do not comply with the requirements of low weight and power. Blazed gratings offer a broadband solution with moderate angular coverage, but they need additional optical devices to close the angular gaps between grating lobes. Optical phased arrays are a promising technique for small angle beam steering in the lasercom wavebands (LC) and beyond (MEMS, EOC) if coarse beam steering is provided by other means, for example by blazed gratings. Such a combined coarse/fine beam steering device may exhibits large apertures with a throughput of roughly 40% with an update rate in the order of kHz.

Table 3. Guide to the performance of different beam steering techniques.

(2) programmable diffractive optical element

(3) LC: liquid crystal, MEMS: micro-electro-mechanical systems, EOC: electro-optical ceramics

ACKNOWLEDGEMENTS

The author takes this opportunity to acknowledge several people who support the ATLAS program. At the very beginning, Anne-Marie Bouchardy (TOSA), David Titterton (DSTL), and Giorgio Leonardi (GA) initiated the formation of an industry consortium. ATLAS is funded by the French, German, and Italian MODs and supervised by a Management Group comprising Julie Poupard (DGA), Gerhard Traeger (BWB/WTD 81), and Giuseppe Licciardello (IT MOD DGAT). The industry consortium is managed by Nathalie Gerbelot-Barrillon (TOSA).

Brigitte Loiseaux, Patrick Feneyrou, Jér?me Bourderionnet (TRT), and Matthias Rungenhagen (DBD) supplied valuable information and viewgraphs for this paper concerning PDLC, EO ceramics and decentered micro-lens arrays. Their contribution is gratefully acknowledged.

REFERENCES

1. J. Montagu and H. DeWeerd, "Optomechanical scanning applications, techniques. and devices," SPIE Infrared &

Electro-Optical Systems Handbook, Vol. 3, Ch. 3. (1996).

2. J. D. Zook, “L ight deflector perform ance,” A ppl. Opt., Vol 13, 875-887 (1974).

3. V. Hinkov, “Beam steering without moving parts,” Proc. SPIE, Vol. 2783, 126-134 (1996).

4. W. C. Stone et al., “Performance analysis of next-generation LADAR for manufacturing, construction, and

mobility,” NISTIR 7117 (2004).

5. J. Gibson, B. Duncan, P. Bos, and V. Sergan, “Wide-angle beam steering for infrared countermeasures

application s,” Proc. SPIE, Vol. 4723, 100–111 (2002).

6. B. Duncan, P. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure

application s,” Opt. Eng., Vol. 42, 1038-1047 (2003).

7. J. Gibson, B. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared

countermeasure applications,” Opt. Eng., Vol. 43, 2312-2321 (2004).

8. A. H. Lettington et al., “Desi gn and development of a high-performance passive millimeter-wave imager for

aeronautical application s,” Opt. En g., Vol. 44, 093202 (2005).

9. R. M. Marino and W. R. Davis, Jr., “J igsaw: A Foliage-Penetrating 3D Imaging Laser Radar System,“Lincoln

Laboratory Journal, Vol. 15, 23-36 (2005).

10. S. Lee, J. W. Alexander, and G. G. Oritz, “Sub-microradian pointing system design for deep space optical

communication s,” Pr oc. SPIE, Vol. 4272, 104-111 (2001).

11. H. M. A. Schleijpen, W. D. Caplan, S. R. Carpenter, …Ima ging seeker surrogate for IRCM evaluation“, Military

Sensing Symposium, Dresden 2004, Paper NL-069 (2004).

12. C. Sch warze, “A look at Risley prism s,” Phot onics Spectra, June 2006, 67-70 (2006).

13. J. P. Siepmann, “Real t ime comes to three-dimensional lada r,” Laser Focus World July 2006, S9-S11 (2006).

14. G. F. McDearmon, K. Flood, and J. M. Finlan, “C omparison of conventional and micro-lens array agile beam

steer ers,” Pr oc. SPIE, Vol. 2383, 167-178 (1995).

15. H. D. Tholl, D. Krogmann, O. Giesenberg, …New Infrared Seeker Technology“, Proc. SPIE, Vol. 3436, 484-493

(1998).

16. D. Krogmann, H. D. Tholl, “I nfrared Micro-Optics Technologies,” Proc. SPIE, Vol. 5406, 121–132 (2004)

17. J. Duparre, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting micro-lens array

telescopes,” Appl. Opt., Vol. 43, 4854-4861 (2004).

18. S. Gl?ckner and R. G?ring, …I nvestigation of statistical variations between lenslets of micro-lens array s,“Appl.

Opt., Vol. 36, 4438-4445 (1997).

19. E. A. Watson et al., “Implementing optical phased array beam steering with cascaded micro-lens arrays,”2002

IEEE Aerospace Conference Proceedings, Vol. 3, 1429-1436 (2002).

20. D. Krogmann, H. D. Tholl, P. Schreiber, A. Krehl, R. G?ring, B. G?tz, T. Martin, …I mage multiplexing system on

the base of piezoelectrically driven silicon microlens ar rays”, 3rd International Conference on Micro Opto Electro Mechanical Systems, MOEMS 1999, 178-185 (1999).

21. M. Hacker “Micr omirror SLM for femtosecond pulse shaping in the ultravio let,” Applied Physics B: Lasers and

Optics 76 (6), 711-714 (2003)

22. P. F. McManamon et al., "Optical phased array technology," Proc. IEEE, Vol. 84, 268-298 (1996).

23. https://www.360docs.net/doc/3716772716.html,, https://www.360docs.net/doc/3716772716.html,, https://www.360docs.net/doc/3716772716.html,.

24. X. Wang et al., "Spatial resolution limitation of liquid crystal spatial light modulator," Proc. SPIE, Vol. 5553, 46-

57 (2004).

25. E. Hallstig, L. Sjoqvist, and M. Lindgren, "Intensity variations using a quantized spatial light modulator for non-

mechanical beam steering," Opt. Eng., Vol. 42, 613-619 (2003).

26. M. T. Gruneisen et al., "Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-

crystal spatial light modulators," Opt. Eng., Vol. 43, 1387-1993 (2004).

27. L. B. Glebov et al., "New approach to robust optics for HEL systems," Proc. SPIE, Vol. 4724, 101-109 (2002).

28. B. Loiseaux, P. Feneyrou, and J. Bourderionnet, Thales Research and Technology, private communication (2006).

29. P. F. McManamon et al., "Broadband optical phased-array beam steering," Opt. Eng., Vol. 44, 128004 (2005).

30. https://www.360docs.net/doc/3716772716.html,/mto/stab.

中文翻译:

特邀论文

新型激光束转向技术

汉斯·戴特tholl

光电子与激光技术系

迪尔BGT防务

邮政信箱101155,88641ü贝尔林根,德国

文摘

本文总结了大功率激光光束转向技术和通信应用。编制原则和新型机械,微型机械和非机械的技术特点。基于微透镜的粗波束或细转向液晶的电光相位控制相结合,提出更多的细节。这项检讨涉及调节通过激光束的相位分布的光束转向装置和排除腔内的波束,波束在色散光学元件,光有源相控阵,光波导相结合的可调谐激光器的基础上。

关键词:激光束转向,光学相控阵,偏心微型透镜,空间光调制器

1引言

激光功率的整合,激光辅助传感和激光通信子系统到自主车辆、航空和太空平台需要新的技术来引导雷射光束。新技术应该促进实现大光孔径的光束转向装置融入的机械结构平台。愿询价单包括著名的特性:结构紧凑、重量轻、低功耗、灵活、多光谱、大的方面领域。

角传播的激光束,特别是远距离应用,本质上是由于光波长的高孔径天线增益小。因此,激光束的传播方向一般控制在两个步骤:(1)与万向光学元件的炮塔指向发射/接收到所需的方向望远镜的视场和平台运动补偿中度精度和速度。(2)光束转向装置,转向在望远镜的视场的激光束,以获取和跟踪目标。

本次审查的标的物是一种新的激光束转向技术。光束转向装置能够

?指向激光束,在广泛的领域方面的随机,

?步进梁从一个角度位置到下一个小增量,

?居住在每个位置上的目标所需的时间。

相反,在扫描装置移动光轴不断开关设备是唯一能够解决预定的方向。评论目前的技术指导,扫描,激光束的切换在引用[1,2,3,4]。

在一般情况下,波束完成整个激光束的孔径施加一个线性相位延迟配置文件。相应的波前斜坡的斜率决定转向角:大转向角对应大斜坡,反之亦然。结合大光圈大波前的斜坡需要大光路的光圈上的差异(OPD),其中由光束转向装置实现。

大波前的斜坡可直接生成宏观光学元件,如旋转(里斯利)棱镜和反射镜或偏心镜片。这些转向装置是相对紧凑的万向镜子相比,具有低惯量矩和不旋转光轴。最近,这些宏光学方法获得了新的流行。

结构紧凑,重量轻,低功耗波束设备的方式进行平滑微光学技术。单一的微型光学元素,如电光棱镜,双轴扫描微镜,或连接到微执行器的微镜片模仿转向宏观光机制。宏观光学系统焦平面附近安装单,小孔径的微型光机电系统(MOEMS的),并提供快速的激光束的指向。这些配置结合起来,高带宽的MEMS宏光束转向装置的好处是在低光功率水平波束应用的候选。

为了建立与微光学元件的大光圈,他们被安排在矩形二维阵列。有前途的技术,是电光棱镜或二维微镜和偏心微透镜阵列的一维数组。在可见光和红外波段的阵列间距大于波长的安排,像一个衍射光栅的作用。抑制中衍射命令了积极炽热的光栅结构以适当的方式。

积极开辟微型光学光栅的相控阵的基本形式。相控阵是定期安排一个子孔径每一个进入太空的辐射其自己的模式。干涉个人的辐射模式模拟在远场的连贯的大光圈。这种审查涉及所谓的被动相控阵调节整个撞击的激光束的相位分布。为了这个目的,每个子孔径相活塞是多种多样的,从而创造一个可编程的跨设备的光圈衍射光学元件。

有更多的波束技术在文学描述:腔内波束,波束在色散光学元件(如光子晶体),主动光学相控阵,光波导转向技术相结合的可调谐激光器的基础上。这些技术被排除在这次审查。

2光束转向装置的参数空间

激光束转向装置的功能要求包括以下主题:

?最大转向角,

?光束发散/成像能力,

?光圈/暗角,

?光谱范围和分散,

?吞吐量,

?控制转向角

每个功能相关的定量参数,很大程度上取决于业务需求。在一般情况下,可以区分两类转向装置(1)电源整经(如定向光的对策,将权力移交给远程设备)和自由空间激光通信的应用程序需要通过激光束光束转向装置只有一次。(2)有源传感技术,如激光雷达激光束发射(Tx)和接收(Rx)信号,通过波束装置。表1给出了具体应用定向红外对抗(DIRCM系统),激光成像雷达(激光雷达)和深空激光通信中引用相关的功能参数的标称值[6,9,10]。这些例子运行的系统级域参数,如最大转向角,孔径,光束发散角,指向精度。表征光束转向装置,独立的光学系统内的位置参数的光谱范围,时间常数,棱角分明的动态范围,并扩展光束。

(2)所需的时间从一个角度位置到下一个步骤

(3)10日志(2 *[最大转向角] / [定位精度])

(4)2*[最大转向角] *[孔径]

光束转向装置(BSD)光束扩展限制其在光学系统中的位置。所需的的大光束扩展要求的DIRCM系统的BSD被放置在发射望远镜的出瞳。温和光束扩展给有利的环境的BSD安装在出瞳光束扩展技术取决于望远镜的入口瞳孔。这也是可能的分裂粗转向位于出瞳元素和精细入口瞳孔转向元素之间的转向能力。为成像激光雷达应用中的粗/细的光束转向分工是可取的,如果精细光束辅助镜也作为一个风扇出衍射光学元件(DOE)的功能。能源部建立一个激光点的数组,它照亮接收焦平面像素[9]的足迹。深空激光通信的需要结合大光圈小光束扩展的BSD安装在入瞳的望远镜,它扩大了激光束,并减少转向角。

表1中编译应用程序通过以下各节的指南作为一个特定的波束技术虽然不是唯一的应用程序。

3光束转向宏观光学元件

在最近的一系列文件,应用红外对抗应用旋转棱镜和偏心镜片广角波束报道[5,6,7]。这项研究是侧重于宏观光学粗光束旋转棱镜和偏心镜头转向装置。

宏观光学器件使消色差设计,避免盲点领域内的视图,并集中到一个单一的光束转向能源。用人棱镜和偏心镜片偏离射线束的主要射线是在可视化工具的设计技术标准。这个著名的设计挑战是光电力学参数和材料,以确保在2-5微米之间的红外光谱范围内的消色差转向广角正确组合搜索。

3.1里斯利棱镜光束转向装置[5,6]

工作原理:里斯利棱镜是一对沿光轴级联的消色差棱镜。在相同的角速度相等或者不相等的棱镜或相反的方向旋转,产生多种扫描模式,填补一个圆锥形的方面领域不断。棱镜的配置应该是光学互惠,以确保所有感兴趣的波长沿光轴精确的波束。光学互惠是一个对称属性:在基准位置后,在内部的平面垂直于光轴的反射棱镜的配置仍然不变。

最大转向角:根据参考[6]的最大转向角45度,是实现与适当的分散控制。

光束发散。所有光束转向装置不改变光轴的方向,表现出有效的光束直径减少预计垂直转向方向。此外,设备依赖光束压缩可能会发生。棱镜光束辅助镜压缩在这样一种方式,一个圆形的输入光束留下一个椭圆形的设备的激光束。压缩保存梁的相空间体积(光束扩展)和激光功率,但减少了在远场的高峰,因为在沿压缩方向的光束发散角增加辐射。这种效应最终限制了光束发散角的约束给定上最大转向角。

光谱范围: risely棱镜光的光谱范围(可见光VLWIR)整个工作。业务的光纤带宽是有限的材料色散。无色第一顺序是通过使用消色差棱镜双峰。其中的物质替代品的广泛结合LIF /硫化锌导致小型二次分散1.78 mrad的2-5微米的光谱范围内的最大转向角度在450[6]。

吞吐量:清澈的大光圈和顶点的角度几度产生长期内设备透过率的影响,由于吸收和散射棱镜材料的棱镜光学路径长度。适当的防反射涂层的多棱镜之间的干扰影响降低,透光率在75-80%的情况似乎是可以实现的[5]。

评论:快速随机转向激光束,通过广泛的角度范围,需要控制旋转方向,瞬时角位置,和棱镜对角速度。复杂的方位角和仰角转向角度棱镜旋转角度和波长的连续函数。对于平稳的转向轨迹无奇,如棱镜翻转,遇到[6]。棱镜驱动器的扫描线被动和激光雷达传感器的视线的实施,建立[9,11]。然而,随机步骤和盯模式控制回路的实现不是一个简单的直线前进的任务。在最近出版的1的里斯利光束转向设备最大转向角60度,口径为100毫米,2-5微米的波长范围内,针对重复性优于50微弧度公布[12]。

3.2 Decenterd镜头的光束转向装置[5,7]

工作原理:理想的情况下,光束转向装置是一个无焦光学系统转换成一个平面输入波前平面输出波前。除了棱镜,镜头的开普勒或伽利略式望远镜是宏观光束转向装置的候选人。该望远镜由两个分离的镜头焦段的总和。完成由出口镜头侧向位移与输入镜头转向行政射线和相关的射线束。

最大转向角:最大转向角度取决于退出镜头的焦距和失真,这是可以接受的最大侧向位移。在实践中,侧向位移是由于暗角的射线束,退出镜头的光圈直径的一半。这导致了大约25度的最大转向角。

光束发散:激光束的压缩取决于两个镜头的焦段比。伽利略类型的,这个比例的绝对值总是比一个小。对于开普勒类型的焦距比是可能的,最好的光束转向装置应在联合发送/接收模式运作。彼此相对的两个镜头光圈的侧向位移,减少了明确的光圈和暗角和光束发散角的不对称增加。这种效果是通过引进一个场镜头控制。此外,强烈的光束发散透镜系统的光学像差的影响。传输的光束应该只照亮了每个镜头的中央部分,以保持在分歧的要求。接收到的波前可以照亮全口径和遭受传输光束的像差高于程度。

暗角:减少侧向位移的镜头暗角由于为开普勒配置大幅引进一个现场镜头中常见的两个镜头焦平面。正面和负面的现场镜头是可能的。阳性场镜头是硬性退出镜头,并连接到都流离失所一起。这个设施的驱动机制,但内部重点介绍了近场镜头。对于高功率的应用,这是不可取的。负场镜头需要一个额外的驱动器移动相反方向在近场镜头和退出镜头1:2的关系[7]。这样,避免内部的焦点。

光谱范围。棱镜光谱范围没有限制。理想的情况下,每个镜头的光束辅助镜是一个消色:透镜。在参考文献7的材料组合Ge/AMTIR-1选择在2-5微米光谱范围的弗劳恩霍夫双峰(积极的,消极的第二部分),以尽量减少色差。 1开普勒望远镜的设计与负场镜头转向激光束可达22.5度和0.65 mrad的多光谱范围2-5微米的二次分散。

吞吐量:无色梁文献[7]转向装置包括6个外部和3个内部接口和rougly材料厚度40毫米。为棱镜辅助镜的吞吐量应该在75% - 80%。围内指定1 mrad的发散能源取决于波长和转向角度。在2微米的包围能源仍高于95%,为所有的转向角度;在5微米的包围能量从98%上

轴22.5度至63%不等。

评论:为了引导激光束的两个镜头组的横向位移,必须加以控制。幸运的是,镜头组的位移之间的关系是恒定的。每个波长的方位角和仰角转向角位移几乎线性函数。所需的最大位移是等于退出镜头,这是约35毫米的孔径半径。整体尺寸为长180毫米和135毫米的高度最大的镜头位移。偏心光束转向宏观光学镜片是可能的,但由于所涉及的复杂性,而不是一个实用的方法相比,里斯利棱镜。这是被安排在一个普通的数组微光学元件的微型光学世界的对比。电光棱镜阵列是一维小角度转向波束。偏心微透镜阵列,包括场镜头转向激光束可达25度角在两个方面的选项。

3.3波束与宏观光学镜

透射光学元件的大领域的看法紧凑型光学系统的第一选择。这种方法的缺点是由于在不同折射率的材料之间的界面的折射光功能的波长依赖。反射光学设计提供了独立的波长上。在前款讨论的两个方法可以实现用镜子。一的里斯利型梁毫米波基于旋转的镜子转向装置进行了讨论,在文献[8]。

4波束与光电微机电系统(MOEMS的)

ladars发现目标,导弹制导,地形测绘和监视,或命名只有少数的机器人导航应用。ladars(数10米)的短距离应用将依靠闪光灯照明的视场和接待的由快照焦平面阵列的散射光。,中级远距离成像ladars,必须按顺序照亮的,因为有限的激光功率视场的一部分。这些系统需要加强通过现场视图和住在一个特定的部分,以积累几个激光脉冲从现场反映的光束转向装置。

下一代中程(几个100米)的3-D的成像ladars将在一段时间的飞行模式操作,并融入激光器,光学,电学,机械设备,微型光机电系统(MOEMS的)[4]。目前,微光机电系统技术的发展是由光纤光学通信与光开关和波长复用器/解复用器的焦点。开关设备的微光机电系统,大多是数字(如由德州仪器推出的DLP技术),或无传感的实际光束方向在开环模式下的扫描。据介绍给出的定义,这些设备没有引导激光束(他们无法指出随机或停留在一个特定的方向)。然而,扫描微反射镜是在短期内检讨,因为他们铺平了微光学相控阵的方式。

两轴扫描微镜

工作原理:万向微反射镜反射激光束在同样的方式作为大型同行。微光机电系统提供与质量,体积和耗电量方面的优势。这些微系统设计的挑战在于,在事实上,宏力不缩放大小线性。新的设计方法,安装,驱动器和控制微镜倾斜是必要的。微镜制作在硅片上,然后粘贴到另一个芯片,其中包含了电极结构电静态驱动镜议案。镜直径几毫米为了这些设备的第一代两个位置之间来回翻转,较新的版本是在两个层面进行控制的连续扫描能力[4]。

最大倾斜角度可达(±)15度,在文献[13]报道。根据光学的布局,这给了可能用负透镜的光学放大(±)30度,最大扫描角。

光束发散衍射极限的光束发散的微反射镜的直径是有限的。为1微米波长的激光束的发散反映了6毫米的镜子,是约330微弧度。具有大扫描角度的光束被压缩在一个方向。

光谱范围:反射法是独立的波长。介绍了弥散通过包装的镜子,通常是密封窗户后面。这些窗户限制光谱范围及介绍色差。

吞吐量是有限的,由反射涂料镜(铝为可见,金红外光谱覆盖范围),反射在窗口界面,通过衍射效应在微反射镜的边缘。吞吐量应在85%。

评论:提供真正的转向能力万向微镜必须在一步步盯时尚倾斜。目前,这种运作模式的研

究议程上,不因为镜装置的应用领域是开关或激光束扫描。另一个有趣的方法,这是有关波束的弯光束微机械的空间光调制器[21]。在这个装置的微反射镜暂停有四个铰链,像活塞运动的结果。这种运作模式带来了相位调制反射的激光束,这可能是有关精细相控阵波束。

5。闪耀光栅波束

闪耀光栅的光束转向利用微光学元件阵列的固定摊位(微型望远镜,微反射镜,微棱镜)。每个微光学元件样品传入的激光束,并辐射到空间小波束。的相干干扰波束形成的衍射图,其中包括几个主要的叶栅瓣,旁瓣包围。主瓣的传播方向是由光栅方程。微光栅期间积极开辟以引导激光束。最有前途的二维闪耀光栅波束的方法是基于偏心微透镜阵列。其他技术,如倾斜微反射镜(光电)棱镜阵列是太有限了偏转角。

decentred微透镜阵列

工作原理:一个微型望远镜阵列包括两维规则排列的开普勒或伽利略式望远镜。形成微telecopes镜头列车分布在两个平面的基板上,保持其表面mircro透镜阵列。微透镜阵列,实现了可见光谱范围内的玻璃折射和衍射光学元件和高格式(512×512)和高填充因子为中红外应用[14,15,16硅和其他材料, 17]。积极炽烈的望远镜阵列实现横向翻译与其他方面的一个mirco镜头基板。这是类似的宏观安排的运作。不同之处在于一个事实,即光圈大小和字段大小像差尺度。因此,偏心镜片的原则,微光学的实现需要比宏观光学对应较少的光学表面。

最大转向角:阵列间距的二分之一的最大侧向位移最大转向角约25度的限制。最大转向角度取决于望远镜的类型和镜片材料的折射率(见表2)[14]。只能达到最大值,与开普勒望远镜和场透镜阵列(见图1)与可接受的性能。

光束发散:远场偏心微透镜的光束转向装置由主瓣(称为栅瓣)和光栅结构所决定的旁瓣。栅瓣角宽度取决于整个阵列孔径的大小和相干长度。在硅,直径6英寸的阵列应该是可能的。这决定了光束发散的一个主要因素是整个阵列的空间相干性。由于在制造过程中的缺陷的几何光学参数的变化减少的beamlets的空间相干性[18,19]和拓宽了栅瓣。非均匀阵列的光学参数应该远低于3%,以实现波束宽度性能良好,转向角和衍射效率。束压缩为伽利略的问题,因为不同焦距长度和侧向位移引起的暗角简单的开普勒型。

暗角:暗角介绍了微透镜的横向位移和依赖型微型望远镜。伽利略的性能和简单的开普勒型的强烈影响暗角。在开普勒望远镜的积极场透镜的引入消除成本降低激光损伤阈值的暗角。图2说明了在整个寻址栅瓣Strehl比均匀的增益。引入一个负场镜头是不适合的,因为日益复杂的动力机制。

光谱范围:梁偏心微透镜阵列的指导工作在整个光波段(紫外到VLWIR,见表2)。色散是由所涉及的材料和光栅结构的阵列诱导。

企业物流外包外文翻译文献

企业物流外包外文翻译文献 (文档含英文原文和中文翻译) 物流外包——确保一个组织竞争优势的一种手段 摘要 物流方式表明将交付供应链中的独立单位整合成一个统一的系统的目标,完成结果所需的时间和资源的损失降到最小的材料和信息流动的直接管理。 一个最新方法的实施为公司的物流管理提供更多的成效,这个方法就是外包。物流外包带来诸多好处,如:减少库存、减少订单的交货时间、提高运输质

量、扩大生产的灵活性、降低生产成本和加速资金周转等。这保证了较低的生产成本和更好的质量交付,这是一个决定性的竞争优势。物流外包的应用有利于资源的合理配置,这是公司拥有的独特的竞争优势。 因此,物流外包将作为一种手段应用于公司的物流运输中,以确保一个组织的竞争优势。 关键词:外包,物流,供应商 1.简介 竞争优势,与不断增长的全球化和创新,开始逐渐失去其创意和新的竞争优势,在前端的灵活性,订单到交货时间减少,可靠的高质量的交付,和选择的机会。在竞争领域,厂家的能力加入其生产过程和系统的规划与个人消费者的喜好,将是一个的决定性的因素。只有通过建立灵活的生产管理系统,与个别客户订单问题的解决方案才是可能的。企业为什么要搞物流外包?它的紧迫性在哪里?物流外包与传统意义上的外委、外协有何本质区别?我们的企业离物流外包还远吗?这不仅是理论界要回答的问题,更是企业界应认真思考的问题。谈到物流外包必定涉及供应链和第三方的发展,涉及到现代物流的发展方向,更涉及企业的核心竞争力。理论界对这一点的认识显得有些浮躁,而企业对此的认识比较滞后。目前大多数企业守候在自营物流那片天地,真正搞物流外包的不到20%,并且不规范、不系统。尽管现在物流炒得很热,但企业对物流外包重要性的认识依然很浅。调查表明,湖南有82%的企业对现代物流的认识模糊,大多把货物运输或货代等同于现代物流;有54%的企业至今未有发展物流的计划或设想,更没有把重构内部供应链和发展物流外包提上议事日程,看来还需要更多的示范、引导,更多的宣传、培训和更多的市场培育。 首先,它需要的新的或最新的概念,如CFM(以客户为中心的制造),SCM(供应链管理),基于相同的概念作为企业资源规划(ERP),客户关系管理技术,生产管理的实施(客户关系管理)等,也将要求供应处理,物流中介机构的互动为基础的生产和有效的分配同步。 其次,它在微观和宏观层面上是一个必要的优化运输系统。复杂的运输基础设施的发展是基于标准化的商品,货物,运输方式,装卸货物,交货速度,拓宽道路和铁路网络,完善的售后服务维修。 第三,信息交流起着越来越重要的作用。工业企业在信息领域的互动,使信息可以以正确的形式被查阅,在合适的时间,通过正确的当局和真实类型,防止

企业创新战略外文翻译文献

企业创新战略外文翻译文献(文档含中英文对照即英文原文和中文翻译) 翻译之一: Choosing an innovation strategy: theory and practice Author:Joseph T. Gilbert Nationality:America Derivation:Business Horizons, Nov-Dec, 1994 Innovations come as both inventions and adoptions. They come in many types and vary greatly in complexity and scope. Companies attempting to

make a profit cannot continue for long periods without innovating. If they try, their customers will leave them for firms with more up-to-date products or services. It is an observed fact that different companies take different approaches to the use of innovation in attempting to improve their performance. Both academic and practitioner publications in recent years have contained a great deal of writing about innovation, the subjects of which have ranged from comparisons of national patterns of innovation to studies of individual innovations. However, little has been published regarding one issue of both theoretical and practical importance: the innovation policy or strategy of individual firms. Business strategy as a field of study is concerned with how a company competes in its chosen business. It deals with the analysis of a firm's strengths and weaknesses and the opportunities and threats presented by the firm's environment. Strategy looks toward consistent execution of broad plans to achieve certain levels of performance. Innovation strategy determines to what degree and in what way a firm attempts to use innovation to execute its business strategy and improve its performance. To choose an innovation strategy, managers might logically start by thinking about various kinds of innovations and their requirements. We shall discuss three major features of innovation, and analyze each in terms of distinct opposites, even though innovations found in the real world more often appear at various points between these opposites. Innovation is sometimes used in a limited sense to refer only to inventions (products, services, or administrative procedures that no other firm has introduced). More often, however, it applies in a more general sense that includes both invention as described above and imitation (adoption by a firm of a product, service, or administrative procedure that is not an invention but is new to that firm). We use the term in this second sense. Innovations can be characterized in a variety of ways. In the following

毕业论文外文文献翻译-数据库管理系统的介绍

数据库管理系统的介绍 Raghu Ramakrishnan1 数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。数据库的结构是专门设计的,在各种数据处理操作命令的支持下,可以简化数据的存储,检索,修改和删除。数据库可以存储在磁盘,磁带,光盘或其他辅助存储设备上。 数据库由一个或一套文件组成,其中的信息可以分解为记录,每一记录又包含一个或多个字段(或称为域)。字段是数据存取的基本单位。数据库用于描述实体,其中的一个字段通常表示与实体的某一属性相关的信息。通过关键字以及各种分类(排序)命令,用户可以对多条记录的字段进行查询,重新整理,分组或选择,以实体对某一类数据的检索,也可以生成报表。 所有数据库(最简单的除外)中都有复杂的数据关系及其链接。处理与创建,访问以及维护数据库记录有关的复杂任务的系统软件包叫做数据库管理系统(DBMS)。DBMS软件包中的程序在数据库与其用户间建立接口。(这些用户可以是应用程序员,管理员及其他需要信息的人员和各种操作系统程序)。 DBMS可组织,处理和表示从数据库中选出的数据元。该功能使决策者能搜索,探查和查询数据库的内容,从而对在正规报告中没有的,不再出现的且无法预料的问题做出回答。这些问题最初可能是模糊的并且(或者)是定义不恰当的,但是人们可以浏览数据库直到获得所需的信息。简言之,DBMS将“管理”存储的数据项,并从公共数据库中汇集所需的数据项以回答非程序员的询问。 DBMS由3个主要部分组成:(1)存储子系统,用来存储和检索文件中的数据;(2)建模和操作子系统,提供组织数据以及添加,删除,维护,更新数据的方法;(3)用户和DBMS之间的接口。在提高数据库管理系统的价值和有效性方面正在展现以下一些重要发展趋势; 1.管理人员需要最新的信息以做出有效的决策。 2.客户需要越来越复杂的信息服务以及更多的有关其订单,发票和账号的当前信息。 3.用户发现他们可以使用传统的程序设计语言,在很短的一段时间内用数据1Database Management Systems( 3th Edition ),Wiley ,2004, 5-12

你应该知道的外文文献查阅方法

外文文献查阅方法[转载] 来源:王安升的日志 NO.1中科院大博士是如何进行文献检索和阅读的(好习惯受益终生) 1.如何进行文献检索 我是学自然科学的,平时确实需要不少外文文献,对于自然科学来讲英文文献检索首推Elsevier,Springer 等。虽然这些数据库里面文献已经不算少了。但是有时还会碰到查不到的文献,而这些文献的数据库我们所在研究所或大学又没有买,怎么办?我基本通过以下向个途径来得到文献。 1.首先在Google 学术搜索里进行搜索,里面一般会搜出来你要找的文献,在Google学术搜索里通常情况会出现“每组几个”等字样,然后进入后,分别点击,里面的其中一个就有可能会下到全文,当然这只是碰运气,不是万能的,因为我常常碰到这种情况,所以也算是得到全文文献的一条途径吧。可以试一下。同时,大家有没有发现,从Google学术搜索中,还可以得到一些信息,Google学术搜索中会显示出你搜索文章的引用次数,不过这个引用次数不准确,但是从侧面反应了这篇文章的质量,经典文章的引用次数绝对很高的. 同时如果你用作者进行搜索时,会按引用次数出现他写的全部的文章,就可以知道作者的哪些文章比较经典,在没有太多时间的情况下,就可以只看经典的. 2.如果上面的方法找不到全文,就把文章作者的名字或者文章的title在Google 里搜索(不是Google 学术搜索),用作者的名字来搜索,是因为我发现很多国外作者都喜欢把文章的全文(PDF)直接挂在网上,一般情况下他们会把自己的文章挂在自己的个人主页(home page)上,这样可能也是为了让别的研究者更加了解自己的学术领域,顺便推销自己吧。这样你就有可能下到你想要的文献的全文了。甚至可以下到那个作者相近的内容的其它文章。如果文献是由多个作者写的,第一作者查不到个人主页,就接上面的方法查第二作者,以此类推。用文章的title来搜索,是因为在国外有的网站上,例如有的国外大学的图书馆可能会把本校一年或近几年的学术成果的Publication的PDF全文献挂在网上,或者在这个大学的ftp上也有可能会有这样类似的全文.这样就很可能会免费下到你想要的全文了. 3.如果上面两个方法都没有查到你要的文献,那你就直接写邮件向作者要。一般情况下作者都喜欢把自己的文献给别人,因为他把这些文献给别人,也相当于在传播他自己的学术思想。下面是本人向老外作者要文献的一个常用的模板: Dear Professor ××× I am in ××× Institute of ×××, Chinese Academy of Sciences.I am writing to request your assistance. I search one of your papers: 。。。。。。。。。。。。。。。。。(你的文献题目) but I can not read full-text content, would you mind sending your papers by E-mail? Thank you for your assistance. Best wishes !(or best regards) ××× 本人的经验是讲英语的国家的作者给文章的机率会大,一般你要就会给,其它不讲英语的国家,如德国,法国,日本等国家的作者可能不会给。出于礼貌,如果你要的文献作者E-mail给你了,千万别忘记回信致谢. 4.最后一种方法其实大家都熟悉,就是发贴在小木虫上求助。我还用另一种方法,就是直接让我所在的研究所图书馆的管理员帮我从外面的图书馆文献传递。不过有的文献可能是要钱的。一页0.3元,由于我们看文献的钱都是由课题出,所以也就不太考虑钱的问题了。 2.如何快速而准确地获得最新的科研信息.

物流规划中英文对照外文翻译文献

物流规划中英文对照外文翻译文献(文档含英文原文和中文翻译)

设施规划 引言 设施规划在过去的十年间已经被赋予了全新的意义。在过去,设施规划一般被认为是一门科学。而在当今竞争激烈的全球市场,设施规划成为了一种策略。政府、教育机构和企业已经不再单独相互竞争,现在这些实体或企业将彼此联合为合作企业、组织协会,并最终合成为供应链,将客户纳入到整个供应链过程以保持竞争力。 这些年来设施规划问题一直是一个热门话题。尽管它已拥有很悠久的历史,但在目前的出版物、会议以及研究中,设施规划仍是最受欢迎的科目之一。设施规划的处理已经从清单式或者菜单式的方法发展到了高度复杂的数学建模。在本文中,我们使用了一个实用的设施规划方法,其利用了实证以及同时包含传统和现代概念的分析方法。值得提及的是,在本文中拥有很广泛的设施规划应用示例。例如,这本书的内容可以适用于一个新医院,一个装配部门,一个已有的仓库,或者一个机场的行李部的规划。无论问题是发生在医院、生产工厂、配送中心、机场、零售商店、学校、银行、还是办公室或者这些设施的任何部分;无论是在一个发达国家的现代化设施还是在一个发展中国家的过时设施中,本文给出的材料在进行规划时都非常有用。重要的是要认识到现代设施规划中将设施当作是一个动态的实体,一个成功的设施规划方案的关键因素是其适应性以及适合全新应用的能力。 设施规划的定义 当今的设施规划必须能够帮助组织实现供应链的优越性。实现供应链的优越性是一个有六个步骤、或者说六个等级的过程。一如既往,这些步骤与优越性、可见性、协同性、综合性、敏捷性等联系在一起。 当一家公司最大化供应链的各个功能(采购-制造-运输-储存-销售),个体部门(如金融、市场营销、销售、采购、信息技术、研发、生产、分配和人力资源等部门)的目标就是要成为公司最好的部门。组织的有效性不是重点,每个组

营销策略外文翻译文献

营销策略外文翻译文献 (文档含中英文对照即英文原文和中文翻译)

译文: 营销策略 内容提要:为了组织的销售能是成功的,它需要根据一个营销策略计划来帮助保证其努力的目标和宗旨与市场的需要想吻合。营销策略审查市场以确定潜在顾客的需要,竞争者的战略和市场地位,并且尝试制定出一套能使组织在市场上获取或维护竞争优势的相关战略。有一些因素会对营销策略计划的发展造成冲击性的影响,它包括内部因素例如组织的财产、技能和组织文化,外在因素例如各种各样的市场驱动者、市场或产业运作方式、战略窗口和竞争的本质。一个优选的营销策略计划也需具备一套意外情况防备策略以应对市场治理及组织生产能力的不确定性。 关键词:竞争优势竞争策略市场地位市场份额营销销售计划组织文化营销策略 营销策略简述 无论组织的产品或服务多么好,除非它们的价值能被传达给潜在的顾客,否则组织依然无法实现它的使命。这种传达和交流是组织内市场营销功能的职责。根据美国市场协会,营销是“一个组织效能和一套创造过程、交流和传达产品价值给顾客、处理与顾客关系的有益于组织和它的利益共享者的方式”。营销作用包括相辅相成的两方面。营销策略在市场上审查市场来确定潜在顾客和竞争者本质的需要,并且试图开发

出在市场上将使组织获取或维护竞争优势的战略。操作的营销被建立在营销策略作用和贯彻各种各样的计划和策略(包括适当的混合营销的发展)吸引顾客和促进顾客忠实的基础之上的。 产品和服务营销的方法 有很多的方式能用来销售你的产品或服务包括做广告,直接响应、推销活动和宣传。然而,除非你能了解顾客、市场和产业的需要并且竞争的优势和劣势,否则这些方法是不太可能成功的。营销策略帮助一个组织尖化它的焦点和在市场顺利地竞争。营销策略与二个组分有关:目标市场和用最佳的方式传达你的产品价值或服务到那个市场。一个可实行的销售方针的发展取决于几个关键维度。首先,与组织之内的所有全球性战略一样,一个成功的销售方针需要由在组织之内的最高管理层签名。销售方针本质上也具有政治性的色彩:在组织之内的强有力的单位在最佳的销售方针也许不同意,并且协议也许需要谈判达成。销售方针也许受组织文化的也影响,并且那得假定这发生。例如,如果组织总是销售它的装饰物给商业主管,它也许就看不到组织之内的低层人员甚至是成人或少年的个人消费潜力。 实施战略销售计划发展的因素 存在一些能冲击战略销售计划发展的因素,这些因素首先包括组织已经拥有或它可能欣然获取的财产和技能。例如,如果组织拥有一个重大编程的部门,就为它能做和销售应用软件提供了可行性的条件。然而,如果这些人员已经在其他工作介入并且不能自由研究一个新的软件项目,并且组织没能力聘用另外的程序员,起始一条新的软件线是不妥当

第三方物流问题战略外文翻译文献

第三方物流问题战略外文翻译文献 (文档含英文原文和中文翻译) 我国第三方物流中存在的问题、原因及战略选择 【摘要】我国物流业发展刚刚起步,第三方物流的理论和实践等方面都比较薄弱。本文指出我国第三方物流存在的问题在于国内外第三方物流企业差距、物流效率不高、缺乏系统性管理、物流平台构筑滞后、物流管理观念落后等。分析了产生上述问题的原因,并提出了精益物流、中小型第三方物流企业价值链联盟、大型第三方物流企业虚拟化战等三种可供选择的第三方物流企业发展战略。【关键词】第三方物流;精益物流战略;价值链联盟;虚拟化战略 1引言 长期以来,我国国内企业对采购、运输、仓储、代理、包装、加工、配送等

环节控制能力不强,在“采购黑洞”、“物流陷井”中造成的损失浪费难以计算。因此,对第三方物流的研究,对于促进我国经济整体效益的提高有着非常重要的理论和实践意义。本文试图对我国策三方物流存在的问题及原因进行分析探讨,并提出第三方物流几种可行的战略选择。 2 我国第三方物流业存在的主要问题 (一)我国策三方物流企业与国外第三方物流企业的差距较大,具体表现在以下几个方面: 1、规模经济及资本差距明显。由于国外的大型第三方物流企业从全球经营的战略出发,其规模和资本优势是毫无疑问的,尤其初创时期的我国策三方物流业,本身的规模就很小,国外巨头雄厚的资本令国内企业相形见绌。 2、我国策三方物流业企业提供的物流服务水准及质量控制远不如国外同行。当国内一些企业还在把物流理解成“卡车加仓库“的时候,国外的物流企业早已完成了一系列标准化的改造。同时,国外的物流组织能力非常强大,例如德国一家第三方物流公司,公司各方面的物流专家遍布欧洲各地。如果有客户的货物需要经达不同的国家,那么欧洲各地的这些专家就在网上设计出一个最佳的物流解决方案。这种提供解决方案的能力就是这第三方物流公司的核心能力,而不像国内公司号称拥有多少条船,多少辆车。 3、我国加入 WTO 后物流产业的门槛降低。在物流服务业方面:我国承诺所有的服务行业,在经过合理过渡期后,取消大部分外国股权限制,不限制外国服务供应商进入目前的市场,不限制所有服务行业的现有市场准入和活动。同时在辅助分销的服务方面也作出了类似的承诺。这些方面的限制将在以后 3—4 年内逐步取消,在此期间,国外的服务供应商可以建立百分之百的全资拥有的分支机构或经营机构,国内物流服务业将直面国际竞争。 (二)资源浪费严重,第三方物流效率不高。 从微观上看,由于受计划经济体制的影响,长期以来许多企业,尤其是国有企业走的是“大而全”、“小而全”的路子,它们拥有自己的仓库、车队、甚至远洋船队,造成物流过程的大量浪费,具体表现为仓库的闲置,物流业经营分散,组织化程度低,横向联合薄弱。而能够提供一体化、现代化、专业化、准时化、高效服务的第三方物流企业则很少。从宏观上看第三方物流未能跟上经

战略管理参考文献

战略管理研究参考文献 (总目录) 项保华2003-5-31 重要说明:本目录经过多届博士生的共同努力,于2003年5月整理完成,主要提供本人指导的战略管理研究方向的博士生学习参考之用。可以认为,只要通读了本目录的大部分文献,必将能够对战略管理领域的当前及经典理论、方法有比较系统的把握。若能在此基础上潜心感悟,加强与同行的交流探索,定可具备解决具体战略理论与实践问题的创新思路与实用技能,从而顺利完成博士学位论文的选题与撰写。作为战略管理研究方向博士生培养的业务目标定位为,通过对战略理论与实践的系统学习,达到胜任国内重点高等院校战略领域的教学、研究、咨询工作之要求。所以,对于硕士生以及非战略管理研究方向的博士生而言,不作全面通读本目录文献之要求,各位可以根据自己的兴趣,从本目录中选取部分文献阅读,以作为参与战略课程学习之补充。 学习建议:以具体老师为师的范围终有限,而以文献为师则可延请古今中外名家赐教,广泛借鉴吸收多方面的见解。多读、多思、多写,书山无路勤为径,以学为乐恒则成!谨以此与各位共勉! 1、中文部分 为人经世 ?孔子, 论语(网上下载) ?老子, 道德经(网上下载) ?孙子, 孙子兵法(网上下载) ?马基雅维里(1469-1527), 君主论, 中国社会出版社, 1999 ?葛拉西安(1601-1658), 智慧书——永恒的处世经典(网上下载) ?何兆武, 西方哲学精神, 清华大学出版社, 2002 ?墨顿·亨特, 心理学的故事, 海南人民出版社, 1999 ?维克托·E.弗兰克尔, 人生的真谛, 中国对外翻译出版公司, 1994

? E. 迈尔, 生物学思想发展的历史, 四川教育人民出版社, 1990(网上下载) ?威尔逊, 新的综合:社会生物学(李昆峰编译), 四川人民出版社, 1985(网上下载) 战略总论 ?项保华, 战略管理——艺术与实务(第3版), 华夏出版社, 2003 ?明茨伯格等, 战略历程:纵览战略管理学派, 机械工业出版社, 2002 ?拜瑞·J·内勒巴夫;亚当·M·布兰登勃格, 合作竞争(Co-Opetition), 安徽人民出版社, 2000 ?迈克尔·波特, 竞争战略(原著1980年出版), 华夏出版社, 2003 ?迈克尔·波特, 竞争优势(原著1985年出版), 华夏出版社, 2003 ?迈克尔·波特, 国家竞争优势(原著1990年出版), 华夏出版社, 2002 ?迈克尔·波特等, 未来的战略, 四川人民出版社, 2000 ?格里·约翰逊;凯万·斯科尔斯, 公司战略教程, 华夏出版社, 1998 ?小乔治·斯托尔克等, 企业成长战略, 中国人民大学出版社、哈佛商学院出版社, 1999 专题探讨 ?保罗·索尔曼、托马斯·弗利德曼, 企业竞争战略, 中国友谊出版公司, 1985 ?罗伯特·艾克斯罗德, 对策中的制胜之道:合作的进化, 上海人民出版社, 1996 ?约瑟夫·巴达拉克, 界定时刻——两难境地的选择, 经济日报出版社、哈佛商学院出版社, 1998 ?芝加哥大学商学院、欧洲管理学院、密歇根大学商学院、牛津大学赛德商学院, 把握战略:MBA战略精要, 北京大学出版社, 2003 ?哈默尔、普拉哈拉德, 竞争大未来, 昆仑出版社, 1998 ?尼尔·瑞克曼, 合作竞争大未来, 经济管理出版社, 1998 ?卡尔·W.斯特恩、小乔治·斯托克, 公司战略透视, 上海远东出版社, 1999 ?乔尔·布利克、戴维·厄恩斯特, 协作型竞争, 中国大百科全书出版社, 1998

房地产信息管理系统的设计与实现 外文翻译

本科毕业设计(论文)外文翻译 译文: ASP ASP介绍 你是否对静态HTML网页感到厌倦呢?你是否想要创建动态网页呢?你是否想 要你的网页能够数据库存储呢?如果你回答:“是”,ASP可能会帮你解决。在2002年5月,微软预计世界上的ASP开发者将超过80万。你可能会有一个疑问什么是ASP。不用着急,等你读完这些,你讲会知道ASP是什么,ASP如何工作以及它能为我们做 什么。你准备好了吗?让我们一起去了解ASP。 什么是ASP? ASP为动态服务器网页。微软在1996年12月推出动态服务器网页,版本是3.0。微软公司的正式定义为:“动态服务器网页是一个开放的、编辑自由的应用环境,你可以将HTML、脚本、可重用的元件来创建动态的以及强大的网络基础业务方案。动态服务器网页服务器端脚本,IIS能够以支持Jscript和VBScript。”(2)。换句话说,ASP是微软技术开发的,能使您可以通过脚本如VBScript Jscript的帮助创建动态网站。微软的网站服务器都支持ASP技术并且是免费的。如果你有Window NT4.0服务器安装,你可以下载IIS(互联网信息服务器)3.0或4.0。如果你正在使用的Windows2000,IIS 5.0是它的一个免费的组件。如果你是Windows95/98,你可以下载(个人网络服务器(PWS),这是比IIS小的一个版本,可以从Windows95/98CD中安装,你也可以从微软的网站上免费下载这些产品。 好了,您已经学会了什么是ASP技术,接下来,您将学习ASP文件。它和HTML文 件相同吗?让我们开始研究它吧。 什么是ASP文件? 一个ASP文件和一个HTML文件非常相似,它包含文本,HTML标签以及脚本,这些都在服务器中,广泛用在ASP网页上的脚本语言有2种,分别是VBScript和Jscript,VBScript与Visual Basic非常相似,而Jscript是微软JavaScript的版本。尽管如此,VBScript是ASP默认的脚本语言。另外,这两种脚本语言,只要你安装了ActiveX脚本引擎,你可以使用任意一个,例如PerlScript。 HTML文件和ASP文件的不同点是ASP文件有“.Asp”扩展名。此外,HTML标签和ASP代码的脚本分隔符也不同。一个脚本分隔符,标志着一个单位的开始和结束。HTML标签以小于号(<)开始(>)结束,而ASP以<%开始,%>结束,两者之间是服务端脚本。

如何阅读英文文献

面对海量的文献信息我们往往会感觉无从下手,更不要提阅读外国文献了。但是阅读外国文献 对于把握最新科研动态,扩充自己的知识是非常有必要的,今天我们一起来看看牛人们是怎样 阅读外国文献的~~ 学术牛人1:用自己的话概括和梳理文献及时回顾 心得和经验:我现在每天还保持读至少2-3 篇的文献的习惯.读文献有不同的读法.但最重 要的自己总结概括这篇文献到底说了什么,否则就是白读,读的时候好像什么都明白,一合上就什 么都不知道,这是读文献的大忌,既浪费时间,最重要的是,没有养成良好的习惯,导致以后不愿意读文献. 1.回顾重要内容 每次读完文献 (不管是细读还是粗读), 合上文献后,想想看,文章最重要的 take home message 是什么, 如果不知道,就从abstract,conclusion 里找, 并且从discuss 里最好确认一下. 这样一来, 一篇文章就过关了. take home message 其实都不会很多, 基本上是一些concepts, 如果你发现你需要记得很多,那往往是没有读到重点. 2.扩充知识面的读法 重点读introduction, 看人家提出的问题,以及目前的进展类似的文章, 每天读一两篇,一个 月内就基本上对这个领域的某个方向有个大概的了解.读好的review也行, 但这样人容易懒惰. 3.为了写文章的读法 读文章的时候, 尤其是看discussion 的时候,看到好的英文句型, 最好有意识的记一下,看一下作者是谁,哪篇文章,哪个期刊, 这样以后照猫画虎写的时候,效率高些.比自己在那里半天琢磨 出一个句子强的多. 当然,读的多,写的多,你需要记得句型就越少.其实很简单,有意识的去总结和 记亿, 就不容易忘记. 学术牛人2:根据文献重要程度编号精读综述和摘要 一、先看综述 先读综述,可以更好地认识课题,知道已经做出什么,自己要做什么,,还有什么问题没有解决。对于国内文献一般批评的声音很多.但它是你迅速了解你的研究领域的入口,在此之后,你再看外 文文献会比一开始直接看外文文献理解的快得多。而国外的综述多为本学科的资深人士撰写, 涉及范围广,可以让人事半功倍。 二、有针对地选择文献 针对你自己的方向,找相近的论文来读,从中理解文章中回答什么问题,通过哪些技术手段来 证明,有哪些结论?从这些文章中,了解研究思路,逻辑推论,学习技术方法. 1.关键词、主题词检索:关键词、主题词一定要选好,这样,才能保证你所要的内容的全面。因为,换个主题词,可以有新的内容出现。 2.检索某个学者:查SCI,知道了某个在这个领域有建树的学者,找他近期发表的文章。 3.参考综述检索:如果有与自己课题相关或有切入点的综述,可以根据相应的参考文献找 到那些原始的研究论文。

物流管理第三方物流毕业论文中英文资料外文翻译文献

中英文资料外文翻译文献 我国第三方物流中存在的问题、原因及战略选择 熊卫 【摘要】我国物流业发展刚刚起步,第三方物流的理论和实践等方面都比较薄弱。本文指出我国第三方物流存在的问题在于国内外第三方物流企业差距、物流效率不高、缺乏系统性管理、物流平台构筑滞后、物流管理观念落后等。分析了产生上述问题的原因,并提出了精益物流、中小型第三方物流企业价值链联盟、大型第三方物流企业虚拟化战略等三种可供选择的第三方物流企业发展战略。 【关键词】第三方物流;精益物流战略;价值链联盟;虚拟化战略 1引言 长期以来,我国国内企业对采购、运输、仓储、代理、包装、加工、配送等环节控制能力不强,在“采购黑洞”、“物流陷井”中造成的损失浪费难以计算。因此,对第三方物流的研究,对于促进我国经济整体效益的提高有着非常重要的理论和实践意义。本文试图对我国策三方物流存在的问题及原因进行分析探讨,并提出第三方物流几种可行的战略选择。 2我国第三方物流业存在的主要问题 (一)我国策三方物流企业与国外第三方物流企业的差距较大,具体表现在以下几个方面: 1、规模经济及资本差距明显。由于国外的大型第三方物流企业从全球经营的战略出发,其规模和资本优势是毫无疑问的,尤其初创时期的我国策三方物流业,本身的规模就很小,国外巨头雄厚的资本令国内企业相形见绌。 2、我国策三方物流业企业提供的物流服务水准及质量控制远不如国外同行。当国内一些企业还在把物流理解成“卡车加仓库“的时候,国外的物流企业早已完成了一系列标准化的改造。同时,国外的物流组织能力非常强大,例如德国一家第三方物流公司,公司各方面的物流专家遍布欧洲各地。如果有客户的货物需要经达不同的国家,那么欧洲各地的这些专家就在网上设计出一个最佳的物流解决方案。这种提供解决方案的能力

管理信息系统外文翻译

管理信息系统外文翻译-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

英文文献翻译 二〇年月日

科技文章摘译 Definition of a Management Information System There is no consensus of the definition of the term "management information system". Some writers prefer alternative terminology such as "information processing system", "information and decision system", "organizational information system", or simply "information system" to refer to the computer-based information processing system which supports the operations, management, and decision-making functions of an organization. This text uses “MIS” because it is descriptive and generally understood; it also frequently uses “information system” instead of “MIS” to refer to an organizational information system. A definition of a management information system, as the term is generally understood, is an integrated, user-machine system for providing information to support operations, management, and decision-making functions in an organization. The system utilizes computer hardware and software; manual procedures; models for analysis planning, control and decision making; and a database. The fact that it is an integrated system does not mean that it is a single, monolithic structure; rather, it means that the parts fit into an overall design. The elements of the definition are highlighted below. 1 Computer-based user-machine system Conceptually, management information can exist without computer, but it is the power of the computer which makes MIS feasible. The question is not whether computers should be used in management information system, but the extent to which information use should be computerized. The concept of a user-machine system implies that some tasks are best performed by humans, while others are best done by machine. The user of an MIS is any person responsible for entering input data, instructing the system, or utilizing the information output of the system. For many problems, the user and the computer form a combined system with results obtained through a set of interactions between the computer and the user. User-machine interaction is facilitated by operation in which the user’s input-output device (usually a visual display terminal) is connected to the computer. The computer can be a personal computer serving only one user or a large computer that

无法获取全文的英文文献的摘要

Human milk oligosaccharides: Only the breast Journal of Paediatrics and Child Health Volume 33, Issue 4, pages 281–286, 1997 Keywords: infection; human milk; oligosaccharides; lactose; sialic acid Abstract: Over 100 years ago it was first deduced that a major component of human milk must be an unidentified carbohydrate that was not found in cows milk. At first this was thought to be a form of lactose and was called gynolactose. We now know that this was not a single carbohydrate but a complex mixture of approximately 130 different oligosaccharides. Although small amounts of a few oligosaccharides have been found in the milk of other mammals, this rich diversity of sugars is unique to human milk. The oligosaccharide content of human milk varies with the infant's gestation, the duration of lactation, diurnally and with the genetic makeup of the mother. Milk oligosaccharides have a number of functions that may protect the health of the breast fed infant. As they are not digested in the small intestine, they f orm the ‘soluble’ fibre of breast milk and their intact structure is available to act as competitive ligands protecting the breast-fed infant from pathogens. There is a growing list of pathogens for which a specific oligosaccharide ligand has been described in human milk. They are likely to form the model for future therapeutic and prophylactic anti-microbials. They provide substrates for bacteria in the infant colon and thereby contribute to the difference in faecal pH and faecal flora between breast and formula-fed infants. They may also be important as a source of sialic acid, essential for brain development. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants The Journal of Pediatrics Volume 145, Issue 3, pages 297–303, 2004 Abstract: 1、Objective:To determine the association between maternal milk levels of 2-linked fucosylated oligosaccharide and prevention of diarrhea as a result of Campylobacter, caliciviruses, and diarrhea of all causes in breast-fed infants. 2、Study design:Data and banked samples were analyzed from 93 breast-feeding mother-infant pairs who were prospectively studied during 1988-1991 from birth to 2 years with infant feeding and diarrhea data collected weekly; diarrhea was diagnosed by a study physician. Milk samples obtained 1 to 5 weeks postpartum were analyzed for oligosaccharide content. Data were analyzed by Poisson regression. 3、Results:Total 2-linked fucosyloligosaccharide in maternal milk ranged from 0.8 to 20.8 mmol/L (50%-92% of milk oligosaccharide). Moderate-to-severe diarrhea of all causes (n = 77 cases) occurred less often (P = .001) in infants whose milk contained high levels of total 2-linked fucosyloligosaccharide as a percent of milk oligosaccharide. Campylobacter diarrhea (n = 31 cases) occurred less often (P = .004) in infants whose mother's milk contained high levels of 2′-FL, a specific 2-linked fucosyloligosaccharide, and calicivirus diarrhea (n = 16 cases) occurred less often (P = .012) in infants whose mother's milk contained high levels of lacto-N-difucohexaose (LDFH-I), another 2-linked fucosyloligosaccharide. 4、Conclusion:This study provides novel evidence suggesting that human milk oligosaccharides are clinically relevant to protection against infant diarrhea. Separation of human milk oligosaccharides by recycling chromatography. First isolation of lacto-N-neo-difucohexaose II and 3′-galactosyllactose from this source Carbohydrate Research Volume 178, Issue 1, Pages 79-91, 1988 Abstract:

相关文档
最新文档