飞行器翼型设计

飞行器翼型设计
飞行器翼型设计

1、翼型的定义与研究发展

在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。

通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。因此,对于不同的飞行速度,机翼的翼型形状是不同的。

对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形;

对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹;

对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。

3、NACA翼型编号

NACA四位数翼族:

其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24

五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。具体的数码意义如下:第一位数表示弯度,但不是一个直接的几何参数,而是通过设计升力系数来表达的,这个数乘以3/2就等于设计升力系数的十倍。第二、第三两位数是2p,以弦长的百分数来表示。最后

两位数仍是百分厚度。

例如NACA 23012这种翼型,它的设计升力系数是(2)×3/20=0.30;p=30/2,即中弧线最高点的弦向位置在15%弦长处,厚度仍为12%。

一般情况下的五位数编号意义如下

有现成实验数据的五位数翼族都是230-系列的,设计升力系数都是0.30,中弧线最高点的弦向位置p都在15%弦长处,厚度有12%、15%、18%、21%、24%五种。其它改型的五位数翼型在此就不介绍了。

1、低速翼型绕流图画

低速圆头翼型在小迎角时,其绕流图画如下图示。总体流动特点是

(1)整个绕翼型的流动是无分离的附着流动,在物面上的边界层和翼型后缘的尾迹区很薄;(2)前驻点位于下翼面距前缘点不远处,流经驻点的流线分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁面流去,另一部分从驻点起经下翼面顺壁面流去,在后缘处流动平滑地汇合后下向流去。

(3)在上翼面近区的流体质点速度从前驻点的零值很快加速到最大值,然后逐渐减速。根据Bernoulli方程,压力分布是在驻点处压力最大,在最大速度点处压力最小,然后压力逐渐增大(过了最小压力点为逆压梯度区)。而在下翼面流体质点速度从驻点开始一直加速到后缘,但不是均加速的。

NACA2412在迎角 7.40时的压强分布曲线

(4)随着迎角的增大,驻点逐渐后移,最大速度点越靠近前缘,最大速度值越大,上下翼面的压差越大,因而升力越大。

(5)气流到后缘处,从上下翼面平顺流出,因此后缘点不一定是后驻点。

当迎角大过一定的值之后,就开始弯曲,再大一些,就达到了它的最大值,此值记为最大升力系数,这是翼型用增大迎角的办法所能获得的最大升力系数,相对应的迎角称为临界迎角。过此再增大迎角,升力系数反而开始下降,这一现象称为翼型的失速。这个临界迎角也称为失速迎角。

归纳起来,翼型升力系数曲线具有的形状为

3、翼型失速

随着迎角增大,翼型升力系数将出现最大,然后减小。这是气流绕过翼型时发生分离的结果。翼型的失速特性是指在最大升力系数附近的气动性能。翼型分离现象与翼型背风面上的流动情况和压力分布密切相关。

在一定迎角下,当低速气流绕过翼型时,从上翼面的压力分布和速度变化可知:气流在

上翼面的流动是,过前驻点开始快速加速减压到最大速度点(顺压梯度区),然后开始减速增压到翼型后缘点处(逆压梯度区)。

小迎角翼型附着绕流

随着迎角的增加,前驻点向后移动,气流绕前缘近区的吸力峰在增大,造成峰值点后的气流顶着逆压梯度向后流动越困难,气流的减速越严重。这不仅促使边界层增厚,变成湍流,而且迎角大到一定程度以后,逆压梯度达到一定数值后,气流就无力顶着逆压减速了,而发生分离。这时气流分成分离区内部的流动和分离区外部的主流两部分。

在分离边界(称为自由边界)上,二者的静压必处处相等。分离后的主流就不再减速不再增压了。分离区内的气流,由于主流在自由边界上通过粘性的作用不断地带走质量,中心部分便不断有气流从后面来填补,而形成中心部分的倒流。

大迎角翼型分离绕流

不同迎角下翼型的绕流实验结果

根据大量实验,大Re数下翼型分离可根据其厚度不同分为:

(1)后缘分离(湍流分离),升力曲线如左图(a);

(2)前缘分离(前缘短泡分离),如(b);

(3)薄翼分离(前缘长气泡分离),如(c)。

(1)后缘分离(湍流分离)

这种分离对应的翼型厚度大于12%-15%,翼型头部的负压不是特别大,分离从翼型上翼面后缘近区开始,随着迎角的增加,分离点逐渐向前缘发展,起初升力线斜率偏离直线,当迎角达到一定数值时,分离点发展到上翼面某一位置时(大约翼面的一半),升力系数达到最大,以后升力系数下降。后缘分离的发展是比较缓慢的,流谱的变化是连续的,失速区的升力曲线也变化缓慢,失速特性好。

NACA4412——后缘分离(湍流分离)

(2)前缘分离(前缘短泡分离)

对于中等厚度的翼型(厚度6%-9%),前缘半径较小,气流绕前缘时负压很大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近发生流动分离,分离后的边界层转捩成湍流,

从外流中获取能量,然后在附到翼面上,形成分离气泡。起初这种短气泡很短,只有弦长的0.5 ~ 1%,当迎角达到失速角时,短气泡突然打开,气流不能再附,导致上翼面突然完全分离,使升力和力矩突然变化。

(3)薄翼分离(前缘长气泡分离)

对于薄的翼型(厚度4%-6%),前缘半径更小,气流绕前缘时负压更大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近引起流动分离,分离后的边界层转捩成湍流,从外流中获取能量,流动一段较长距离后再附到翼面上,形成长分离气泡。起初这种气泡不长,只有弦长的2%-3%;随着迎角增加,再附点不断向下游移动;当达到失速迎角时,气泡不再附着,上翼面完全分离之后,升力达到最大值;迎角继续增加,升力逐渐下降。

(4)除上述三种分离外,还可能存在混合分离形式,气流绕翼型是同时在前缘和后缘发生分离。

按产生阻力的原因分类,低速飞行时飞机上的阻力有:摩擦阻力,压差阻力,诱导阻力和干扰阻力等。摩擦阻力

空气也具有粘性。当气流流过飞机表面时,由于粘性,空气微团与飞机表面发生摩擦,阻滞了气流的流动,由此而产生的阻力就叫做“摩擦阻力"。

当气流流杀机表面与机体相接触的那后空气,做团粘附在机体表面上。于是这匡气流的流动速度降低为零。紧靠这层空气的外面←层空气虽然没有直接受机体表面的影响,但由于其相邻的空气层的速度为零,由于粘性,该层空气的流动速度也被减小到很小。这样层层影响,各层空气的流动速度逐渐加大,机体表面的阻滞作用逐渐刷、,一直到速度与外界自由流速相等;这样一种流速有变化的空气称之为“附面层"。附面层内,每相邻两薄层空气之间由于存在速度差便产生摩擦力。这种摩擦力的总和就是飞机的摩擦阻力。

在机翼上形成的附面层一般都是很薄的,厚度大的只有几厘米,螺旋桨上的附面层更薄,只有几毫米。可是巨型飞船和海轮船舷上的附面层,其厚度可以达几十厘米,甚至半米,却是相当厚了。

附面层中气流的流动情况也是不同的。一般机翼大约在最大厚度以前,附面层的气流各层不相混杂而成层地流动。这部分叫“层流附面层,'。在这以后,气流的活动转变为杂乱无章,并且出现了旋涡和横向运动。这部分就叫做“紊流附面层"。虽然紊流附面层内空气,傲团的运动是紊乱的,但是整个附面层仍然附着在机翼表面。层流转变为紊流的那一点叫“转缺点"?在紊流盹面层之后,附面层脱离了翼面币形成大量宏观的旋涡。这就是“尾迹"。附面层开始分离的一点叫“分离点".

附面层内的摩擦阻力同流动情况有很大关系。实践证明,层流附面层的摩擦阻力小,而紊流附面层的摩擦阻力大。因此,尽可能在机翼和飞视其他部件表面保持层流流动是有利的。层流翼型「声擦阻力要低得多。为了降低飞机的摩擦匪时使飞机表面尽量光滑。

压差阻力

“压差阻力,,它成的压强差。如果把→块平板垂直地竖立在气流中;强大大增大,后面压强减小。前后形成了巨大的压强差i了巨大的咀力。五差阻力。如果把平板平行于气流方向置于气流中则产生的压差阻力就微乎其微。由此可见,压差阻力同物体的迎风面积、形状和在气流中的位置都有很大关系。所

谓迎风面积,就是物体上垂直于气流方向的最大截面面积。从经验得知物体的迎风面面积越大,压差阻力也就越大。

物体的形状对压差阻力也有很大影响。由风洞实验可知,如果一个短圆柱体的轴向阻力为单位1的话,那

末同样的短圆柱体头部加上因锥,头部装一表面均匀弯曲的凸头,以及头部装凸头同时尾部再装一逐渐变尖的凸头,形成所谓“流线体"时。它们的阻力分别是短圆柱体的25,1/5和1/25。可见物体的形状对压差阻力影响之大。

流线体所以能大幅度降低压差阻力,实际上是流线体的头部占据了物体前面的气流滞止所形成的高压区同时流线体的尾部又填满了物体后面气流分离后充满旋涡的低压区,使气流能平滑地流过物体表面来降低物体前后的压力差。因此,为了降低压差阻力,飞机的迎风面积要尽可能小同时所有飞机部件都要加以整流形成流线体形状。

诱导阻力

机翼上也有摩擦阻力和压差阻力。对机翼而言,这二者合称“翼型阻力"。但机翼上除翼型阻力外还有“诱导阻力"(又叫“感应阻力,,)。这是机翼所独有的一种阻力。(当然,尾翼上也有)。因为这种阻力是伴随着机翼上升力的产生而产生的。也许可以说它是为了产生升力而付出的一种“代价”。

当飞机飞行时,下翼面压强大、上翼面压强小。由于翼展的长度是有限的,所以上下翼面的压强差使得气流从下翼面绕过两端翼尖,向上翼面流动。当流绕过翼尖时,在翼尖处不断形成旋涡。这种旋涡,从飞机的正前方看去,右边(飞机的左机翼)是逆时针方向的,左边(飞机的右机翼)是顺时针方向的。随着飞机向前方飞行,旋涡就从翼尖向后方流去并产生了向下的下洗速度。下就速度在两个翼尖处最大,向中心逐渐减小。在飞机对称面内减到最小。

这种下洗现象,常被候鸟一雁群所利用。当雁群随着气候的变化而迁徙时,常常排成人字形成或斜一字形。领队的大雁排在最前面,幼弱的小雁常排布后外侧。这样就使后雁处于前雁翼尖所形成的旋涡中。由于翼尖旋涡中的气流在翼尖外侧是向上流动的,形成上升气流。后雁在上升气流中飞仨较省力,对长途不着陆飞行是很有利的。

在机翼中任取某一剖面来研究。由于下洗,流过该剖面的气流除了原来的相对速度v之外又产生了垂直向下的下洗速度。。由v和“合成的合速度u是气流流经该翼剖面的真正相对速度。u与v的夹角E称为下洗角。升力Y是定义为总空气动力在垂直于相对速度v的方向上的分力,可是气流流过机翼以后,由于下洗速度仙的作用,使v的方向改变,向下转折一个下洗角E,而成为u和方向。因此,升力Y也随之偏转一个角度E,而与u 垂直成为Yl。然而飞机的飞行方向仍然是原来v的方向,因此Y1就产生一个与飞机前进方向相反的水平分力Q1。这是阻止飞机前进的阻力,这种阻力是由升力的诱导而产生的,因此叫做“诱导阻力"。它是由于气流下洗使原来的升力偏转而引起的附加阻力并不包含在翼型阻力之内。诱导阻力同机翼的平面形状、翼剖面形状和展弦比有关,所以为了减小机翼的诱导阻力,应该选取随圆形的机翼平面形状,并尽可能力日大机翼的展长即增加展弦比使翼尖处下洗严重区在机翼展乐中所占的比重下降。

干扰阻力

飞机上除了摩擦阻力、压差阻力和诱导阻力以外,还有一种“干扰阻力"值得我们注意。

实践表明,飞机的各个部件如机翼、r机身、尾翼等,单独放在气流中所产生的阻力的总和并不等于,而往往是小于组成一架飞机时的阻力。

所谓“干扰阻力"就是飞机各部分之间由于气流相互干扰而产生的一种额外阻力。

现在我们以机翼和机身为例,看看这种额外阻力是怎样产生的。

如图所示,气流流过机翼和机身的连接处,由于机翼和机身二者形状的关系,在这里形成了一个截面由大到小,再由小到大的气流通道。在A处截面比较大,到C点翼面最高点,气流通道收缩到最小,随后到B处又逐渐扩大。根据流体的流动特性,C处的速度大而压强小,B处的速度小而压强大,所以在CB一段通道中气流有从高压区B回流到低压区C的趋势。

这就形成了一股逆流。但飞机前进时不断有气流沿通道向后流,遇到了后面这股逆流就形成了气流的阻塞现象,使气流开始分离并产生很多的旋涡。这些旋涡表明气流的动能有了消耗,因而产生了一种额外的阻力。这一阻力是气流相互干扰而产生的,所以叫做“干扰阻力”。

不但在机翼和机身之间可能产生干扰阻力,而且在机身和尾翼连接处,机翼和发动机短舱连接处,也都可能产生。

从干扰阻力产生的原因来看,它显然和飞机不同部件之间的相对位置有关。如果在设计飞机时,仔细考虑它们的相对位置,使得连接处压强的增加不大也不急剧,干扰阻力就可以减小。

另外还可采取不同部件连接处加装流线型的“整流片”的办法,使连接处圆滑过度,尽可能减少旋涡的产生,也可减少“干扰阻力”。

以上我们把飞机低速飞行时所产生的四种阻力——摩擦阻力、压差阻力、诱导阻力和干扰阻力,都简单介绍了一下。这是从产生阻力的原因的观点来谈的。至于高速飞行时,飞机上还会产生波阻,关于波阻,我们在激波一节中再讨论。

如果从产生阻力的飞机部件的观点来谈,则飞机总阻力中包括机翼阻力、机身阻力、起落架阻力、尾翼阻力、发动机短舱阻力……以及暴露在气流中的各种零件的阻力。除机翼阻力之外的所有飞机部件和零件所产生的阻力的总和叫做“废阻力”(废阻力中包括干扰阻力)。实验表明,废阻力在飞机总阻力中占很大比例,一般约为总阻力的百分之六十到七十,必须予以充分的重视。

但是,在某些情况下,飞机阻力不但无害,而且是完全必需的。这时,应当采取措施迅速增加阻力。例如,当歼击机同敌机在空中格斗时,为了提高机动性,有时突然打开阻力板(又叫减速板),来迅速增大阻力,降低速度,绕到敌机后方有利位置进行攻击。另外某些高速飞机在着陆时、为了增大阻力、降低着陆速度,缩短滑跑距离,打开阻力伞就可达到目的。

阻力同升力一样,也是总空气动力的一部分,所以同样可以得出“阻力公式":

式中Cx为阻力系数,也由风洞实验求得。参考面积S视为该公式使用的部件不同而不同,对于机翼仍然是机翼平面面积,而对于机身则取为机身的最大横截面积。如果用该公式来计算全机阻力。那末在选定的参考面积下由风洞实验测得阻力系数Cx,使用该阻力系数和相应的参考面积来计算阻力。

阻力系数也与飞机的攻角有关,白开、阻力曲线中可以看出在某一攻角下阻力达到最小值,该攻角称为最小阻力攻角。而其他攻角的阻力都要比该攻角的阻力大。

与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有

L=G L V¥(升力与重力平衡)

F=D D//V¥(推力与阻力平衡)

M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件:

(1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。

(2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。(3)要有适当的气动外形、受力大小和飞行姿态。

(4)必须存在保持和改变飞行状态的能力。

1、飞机的气动布局

不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。

何为飞机的气动布局?

广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。

飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。

按机翼和机身连接的相互位置分为:

按机翼弦平面有无上反角分为:

按立尾的数量分为:

按机翼与平尾的相对纵向位置分为:

2、机翼的形状

机翼的外形五花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使结构重量尽可能的轻。所谓良好的气动外形,是指升力大、阻力小、稳定操纵性好。

美国战术运输机C-130

上单翼、平直机翼、4发翼下吊布置、正常式布局

F-22猛禽—当今世界最先进的第四代战斗机中单翼、双发、梯形翼、双立尾正常式

喷火战斗机—英国第二次世界大战名机下单翼、椭圆形机翼、正常式布局

B-52远程战略轰炸机(同温层堡垒)

上单翼、4发翼下吊、后掠翼、正常式布局

协和号超声速客机(Ma=2.04)

双发三角形机翼布局

S37前掠翼战斗机(三翼面布局)

A380客机远程宽身运输机

下单翼、四发翼下吊、后掠翼、正常式布局

一般而言:

运输机----多数采用上单翼(便于装货)

高亚音速客机---下单翼布局、后掠翼、正常式布局

(升阻比大,运行经济,座舱噪声低,视野宽)

(在机身下半部放置货物)

战斗机----多数采用中或下单翼,三角翼、大后掠翼正常或鸭式布局(速度快、阻力小、机动灵活、失速迎角大)

简单襟翼

简单襟翼的形状与副翼相似,其构造比较简单。简单襟翼在不偏转时形成机翼后缘的一部分,当放下(即向下偏转)时,相当于增大了机翼翼型的弯度,从而使升力增大。当它在着陆偏转50~60度时,大约能使升力系数增大65%~75%。

分裂襟翼

分裂襟翼(也称为开裂襟翼)象一块薄板,紧贴于机翼后缘下表面并形成机翼的一部分。使用时放下(即向下旋转),在后缘与机翼之间形成一个低压区,对机翼上表面的气流有吸引作用,使气流流速增大,从而增大了机翼上下表面的压强差,使升力增大。除此之外,襟翼下放后,增大了机翼翼型的弯度,同样可提高升力。这种襟翼一般可把机翼的升力系数提高75%~85%。

开缝襟翼

它是在简单襟翼的基础上改进而成的。除了起简单襟翼的作用外,还具有类似于前缘缝翼的作用,因为在开缝襟翼与机翼之间有一道缝隙,下面的高压气流通过这道缝隙以高速流向上面,延缓气流分离,从而达到增升目的。开缝襟翼的增升效果较好,一般可使升力系数增大85%~95%。

后退襟翼

后退襟翼在下放前是机翼后缘的一部分,当其下放时,一边向下偏转一边向后移动,既加大了机翼翼型的弯度,又增大了机翼面积,从而使升力增大。此外它还有开裂襟翼的效果。这种襟翼的增升

效果比前三种的增升效果都好,一般可使翼型的升力系数增加110%~140%。

除了上面提到的四种后缘襟翼以外,还有后退开缝襟翼和后退多缝襟翼,它们的增升效果更好,但同时构造也更加复杂。

后退式开缝襟翼

与后退襟翼相似

双缝或三缝式襟翼

效果较之之前的几种襟翼更好但构造复杂。大多用于大型运输机、民航客机。

前缘襟翼

位于机翼前缘的襟翼叫前缘襟翼。这种襟翼广泛用于超音速飞机上。因为超音速飞机一般采用前缘尖削,相对厚度小的薄机翼。在大迎角飞行,机翼上表面前缘就开始产生气流分离,最大升力系数大大降低。大迎角飞行时,放下前缘襟翼,一方面可减小前缘与相对气流之间的角度,使气流能够平顺地沿上翼面流过。另一方面也增大了翼切面的弯度。这样,气流分离就能延缓,而且最大升力系数和临界迎角也都得到提高。属

于前缘襟翼的还有一种叫克鲁格襟翼,装在前缘下部向前下方翻转,既增大机翼面积,又增大了翼切面的弯度,所以具有很好的增升效果,构造也很简单。这是最新研制的一种增升装置。波音喷气客机都使用了此种襟翼。

飞行器设计新技术

飞行器设计新技术 军用飞机发展很快,从20世纪50年代的第一代超音速战斗机起,到目前已经发展到第四代超音速战斗机,第三第四代战机采用了一系列新技术,下面就不同的方面浅谈一下飞行器设计中的新技术 一、气动布局技术 (一)近距耦合鸭式布局 没有水平尾翼,但在机翼(亦称主翼)前面装有水平小翼的飞机称为鸭式布局飞机。机翼前面水平小翼称为前翼或鸭翼。 鸭式布局有以下优点: 1.前翼不受流过机翼的气流的影响,前翼操纵效率高。 2.飞机以大迎角飞行时,正常式飞机平尾的升力为负升力(向下),这样就减少了飞机的总升力(有人称它为挑式飞机,即机翼升力不仅要平衡飞机的重量,而且还要克服平尾的负升力),从而不利于飞机的起飞着陆和大迎角时的机动性能。而鸭式飞机与此相反,前翼在大迎角飞行时提供的是正升力,从而使飞机总升力增大(有人称它为抬式飞机,即前翼与机翼共同平衡飞机重量),这样就有利于减小飞机起飞着陆速度,改善起飞着陆性能,同时也可以提高大迎角时的机动性能。 3.鸭式飞机配平阻力小,因而续航能力好。 鸭式飞机虽有上述优点,但是由于还存在不少问题有待解决,使鸭式飞机的主要优点(即鸭翼与机翼都产生正升力)的发挥受到很大的影响,因此在很长一段时间内,鸭式布局使用不广泛。 针对这一问题,航空界进行了一系列的研究工作。所谓近距耦合鸭式布局飞机,就是这方面研究的成果。 近距耦合鸭式布局飞机(简称近距耦合鸭式飞机)是指前翼与机翼距离很近的一种鸭式飞机,这种飞机往往采用小展弦比大后掠的前翼,此时前翼形成的脱体涡流经主翼表面,使主翼升力提高,而前翼也将受到主翼上洗气流的影响而增加升力。同时,主翼表面的低压抽气作用,又提高了前翼涡流的稳定性。因此,前翼与主翼近距耦合的结果,既增加了飞机的升力,也推迟了飞机的失速。近距耦合鸭式布局的研究成功,使鸭式布局在战斗机上重新流行。 (二)边条机翼 边条机翼是一种组合机翼,它是由中等后掠角和中等展弦比的基本机翼和位于翼根前部的大后掠角、小展弦比尖前缘的边条组成。 边条机翼的主要特点是: 1.提高了最大升力系数和抖动升力系数,因而提高了飞机的机动性能; 2.提高了临界M数,减小了波阻; 3.降低了超音速时的配平阻力,提高了超音速航程,同时也改善了超音速时的操纵性。 边条机翼的雏形第一次出现在F-5飞机上,它的向前伸出的机翼内翼部分形成了边条的雏形。加了这部分机翼后,机动性大大提高。随后,在F-16、YF-17、F-18、米格-29、苏-27等飞机上,边条有了进一步的发展,在F-18上,边条已占总机翼面积17.5%。 (三)前掠机翼 前缘和后缘均向前伸展的机翼称为前掠机翼。 前掠机翼不仅具有后掠机翼提高临界马赫数、降低波阻的优点,还从根本上克服了翼尖失速的缺点。因此,前掠翼飞机具有升力特性好,升阻比高,大迎角时操纵性好,比较

螺旋桨设计与绘制汇总

第1章螺旋桨设计与绘制 1.1螺旋桨设计 螺旋桨设计是船舶快速性设计的重要组成分。在船舶型线初步设计完成后,通过有效马力的估算获船模阻力试验,得出该船的有效马力曲线。在此基础上,要求我们设计一个效率最佳的螺旋桨,既能达到预定的航速,又能使消耗的主机马力最小;或者当主机已经选定,要求设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨。螺旋桨的设计问题可分为两类,即初步设计和终结设计。 螺旋桨的初步设计:对于新设计的船舶,根据设计任务书对船速要求设计出最合适的螺旋桨,然后由螺旋桨的转速计效率决定主机的转速及马力。 终结设计:主机马力和转速决定后,求所能达到的航速及螺旋桨的尺度。 在本文中,根据设计航速17.5kn,设计螺旋桨直径6.6m,进行初步设计,获得所需主机的马力和主机转速,然后选定主机;根据选定的主机,计算最佳的螺旋桨要素及所能达到的最大航速等。 1.1.1螺旋桨参数的选定 (1)螺旋桨的数目 选择螺旋桨的数目必须综合考虑推进性能、震动、操纵性能及主机能力等各方面因素。若主机马力相同,则当螺旋桨船的推进效率高于双螺旋浆船,因为单螺旋桨位于船尾中央,且单桨的直径较双桨为大,故效率较高。本文设计船的设计航速约为17.5kn的中速船舶,为获得较高的效率,选用单桨螺旋桨。 (2)螺旋桨叶数的选择 根据过去大量造成资料的统计获得的桨叶数统计资料,取设计船螺旋桨的叶数为4叶。考虑到螺旋桨诱导的表面力是导致强烈尾振的主要原因,在图谱设计中,单桨商船的桨叶数也选为4叶。 (3)桨叶形状和叶切面形状 螺旋桨最常用的叶切面形状有弓形和机翼型两种。弓形切面的压力分布较均匀,不易产生空泡,但在低载时效率较机翼型约低3%~4%。若适当选择机翼型切面的中线形状使其压力分均匀,则无论对空泡或效率均有得益,故商用螺旋桨

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

桨叶的外形设计

叶片外形确定 设已知风轮尖速比0λ,直径D,叶片数B 和剖面翼型,叶片来流角?可由下式确定。0 33cot 2 2 r R ?λλ== 然后根据设计者经验取各剖面攻角α,一般取α满足升阻 比L/D 在最大值附近,再根据θ?α=-确定叶片扭角。最后根据 C = 要完整设计风力机叶片,可以按下面方法进行。 1. 风轮设计参数 给定风力机输出功率P 、设计风速1V 、机电效率12ηη,风能利用系数p C ,空气密度ρ 2. 风力机设计步骤 (1)计算风力机风轮直径D 根据公式321120.49P D C P V ηη=求得直径D (2)确定尖速比 根据设计风速,给定风力机转速,用电机加一个变速箱达到要求。这样就可以确定风力机的叶尖速比。 (3)确定叶轮的实度和叶片数目。已知尖速比,根据尖速比 与叶轮实度的关系图可以得到实度,对于小型的风力机叶片数目取3比较合适。 (4)将风轮分为10个剖面,每个剖面间隔0.1R,计算各剖面的λ值。 (5)选取翼型。确定升阻比最大时的攻角α和升力系数L C 。

(6)用公式0 33cot 22r R ?λλ==确定每个剖面的来流角? (7)确定每个剖面的形状参数N, 可用公式N = 计算 (8)对于每一个计算点,使用下列公式计算弦长.L rN C B C =, 根部区弦宽太大,故进行线化或其他处理. (9) 计算叶片展弦比SP. R C SP = C 为平均弦宽 (10)根据叶片的展弦比,对升力曲线进行修正。用经验性的校正调整攻角,以得到最佳的升阻比L/ D 根据升力曲线与轴相交处的攻角0α采用下列公式算出校正后的攻角c α, 03 (1)0.11L c P C S αα=+ + (11)根据公式c θ?α=-得到扭角,在根部,得到的扭角过大,也可做适当修正。 (12)绘制精确的叶片和翼型图。

些超轻型飞机中用的翼型

资料】一些超轻型飞机中用的翼型 Clark Y (低性能的允许制造误差大的,下表面很长一段是直线容易造) NACA 4412/4415 (低性能的允许制造误差大的,头部圆钝不易气流分离,下表面平坦容易制造) NACA 6412 (升力比较大,但下表面内凹,不便制造,俯仰力矩大,一般不用。模型上通常用较薄的NACA6409)

NACA 23012/23015/23018(综合性可靠的,商务飞机最常用的,厚度范围比较大) NACA 43012/43015(综合性较好的,可能侧重于飞行性能) NACA 63-618 (层流翼型制作要求高) NACA 66-618(层流翼型制作要求更高,第二个数字可以推测此类6系列翼型的层流范围,此类翼型通常用

较小弯度如66-116的用于高速飞机上) NACA 8-H-12(s翼型,俯仰安定性好,其他性能差,飞翼类用) FX 63-137(低速大升力翼型,通常仅用于人力飞机类慢速飞机)

FX 67-K-170(层流翼型制作要求高),Wortmann的层流翼型理论上说性能比NACA的6系列更先进些。 蟋蟀用的那个厚度21.7的没找到,将就着看看厚度19.1的吧: FX 60-126(翼尖处使用,抗失速)

EPPLER 266 (滑翔机任务专用,不适合动力飞机) 平板(通常在管子蒙皮结构中作为尾翼用) NACA0006~0008 (通常用做尾翼) 少数特技飞机也采用对称翼型。不过通常厚度相当大。 单层蒙布翼型,这个通常总是用根圆管做前缘。按传统的翼型制图理论,这个形状应该是常规翼型的那些中心线,然后厚度为0的那样翼型。当然那个理论是简单设想的扯淡。所以这个翼型实际是常规翼型的上表面的形状,一般只要做到曲率逐渐变化就可以了。由于实际的此类翼型性能都很差,所以你做的形状差 了很多也无所谓的。 一层半蒙布翼型,这个通常不是完整的翼型,上表面是完整的,下表面只蒙一部分然后就贴到上蒙皮下面去了。也就是说前半部分是个立体翼型,后半部分省略为单层蒙布。这样基本保留了翼型的气动性,又节省了重量。(带圆管前缘的单层蒙布翼型也可以看做这种翼型的特例——只贴个管子那么宽,现在的三角翼一般没有只有根圆管的,少说下表面也向后贴了个15%宽度) ================= 关于翼型厚度 对于超轻型飞机来说,常采用的厚度为15~16%左右。 厚度对升力并没太大影响,不过会略微增加点最小时的阻力,对于那些弯度比较小的翼型(通常是高速的 下用的)比较明显。

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

48 自转旋翼机桨叶结构设计-钱伟(6)

第二十八届(2012)全国直升机年会论文 自转旋翼机桨叶结构设计 钱伟1朱清华1陈宣友2 (南京航空航天大学直升机旋翼动力学重点实验室,南京,210016;中航工业发展中心,北京,100012) 摘要:本文以某一自转旋翼机桨叶结构设计为例,介绍了中小型自转旋翼机复合材料桨叶初步结构设计,包括关键材料的选取,整体结构安排,常用部件布置等。为桨叶后续分析及调整奠定基础。 关键字:自转旋翼机;桨叶;设计 1引言 自转旋翼机的抗风能力较高。一般来说,其抗风能力强于同量级的固定翼飞机,而大体与直升机的抗风能力相当。旋翼机的性价比很高,胜过同量级直升机1/5~1/10。 旋翼系统主要给旋翼机提供升力和俯仰、滚转姿态操纵,桨毂常用的是全铰接式、跷跷板式。由于不需反扭矩装置,主要型式是单旋翼构型。旋翼常采用2片或3片桨叶,由于应用于直升机的负扭桨叶对自转旋翼机来讲并没有多大优势,所以常用无扭转或甚至是正扭转桨叶[1]。 桨叶是旋翼飞行器的关键部件,对旋翼机的性能和飞行安全都有重要影响。因此,桨叶设计直接影响飞行性能、飞行品质和飞行安全性。 2桨叶的气动参数优化选择 对于整个旋翼桨盘,起阻碍转动作用的桨叶段形成了一个阻转区,起驱使转动作用的桨叶段形成了一个驱动区,桨根段形成了一个失速区,这是垂直来流状态下的区域分布。 当有前飞速度时,来流有偏角,为斜流,各方位加上前飞相对速度投影的影响。显然,在后行桨叶侧靠近桨根处有一圆形反流区,反流区位于失速区内,失速区内气动力主要表现为阻力。桨盘升力主要由阻转区和驱动区气动合力的垂直分力合成[1]。本文选取桨叶半径,弦长,负扭度,及翼型配置进行优化设计(该技术方法另文呈现)。 3桨叶结构布置 3.1桨叶结构形式 根据优化设计选择桨叶参数,如下表1: 表1 桨叶的主要设计参数 旋翼形式跷跷板式(带挥舞铰) 旋翼转向右旋(俯视逆时针旋转) 旋翼直径D=12.8m 旋翼转速1(前飞状态)Ω=27.22rad/s (260r/min) 旋翼转速2(起飞状态)Ω=39.79rad/s (380r/min) 桨叶平面形状矩形 桨叶翼型OA212 桨叶扭转角0° 桨叶弦长0.350m

固定翼飞机翼型解析

固定翼飞机翼型解析 2008-07-18 06:53:50 来源: 作者: 【大中小】评论:3条 翼型的各部分名称如图1所示。翼弦是翼型的基准线,它是前缘点同后缘点的连线。中弧线是指上弧线和下弧线之间的内切圆圆心的连线。 中弧线最大弯度用中弧线最高点到翼弦的距离来表示。在一定的范围内,弯度越大,升阻比越大。但超过了这个范围,阻力就增大的很快,升阻比反而下降。中弧线最高点到翼弦的距离一般是翼弦长的4%~8%中弧线最高点位置同机翼上表面边界层的特性有很大关系。竞时模型飞机翼型的中弧线最高点到前缘的距离一般是翼弦的25%、50%。翼型的最大厚度是指上弧线同下弧线之间内切圆的最大直径。一般来说,厚度越大,阻力也越大。而且在低雷诺数情况下,机翼表面容易保持层流边界层。因此,竞时模型飞机要采用较薄的翼型。翼型最大厚度一股是翼弦的6%、8%。但是,线操纵特技模型飞机例外,它的翼型最大厚度可以达到翼弦的12%、18%。翼型最大厚度位置对机翼上表面边界层特性也有很大影响。翼型前缘半径决定了翼型前部的“尖”或“钝”,前缘半径小,在大迎角下气流容易分离,使模型飞机的稳定性变坏,前缘半径大对稳定性有好处,但阻力又会增大。

常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,如图2所示 对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上 双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上 平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上 凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上 S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上

风力机的翼型与叶片外形设计简介

风力机的翼型与叶片外形设计简介 摘要 关键词:风力机,翼型,叶片 Introduction to aerofoil and blade shape design for wind turbine Abstract Keywords: 引言 叶片是风力机重要的能量转换部件,其设计和制造直接影响风力机发电机组的高效安全运行。风力机的运行效率直接与叶片的空气动力设计有关,包括叶片长度、翼型、沿纵向翼型的分布和安装角。 1、翼型与叶片外形设计的重要性 2、叶片外形设计的大概过程,强调叶片外形设计时翼型的前提作用 3、给出论文的框架 1.1 风力机翼型设计 1.1.1风力机翼型设计发展过程及特点 讲清与飞机翼型的区别 翼型空气动力特性的好坏直接影响风力机的性能,翼型的形状也影响叶片的主体结构形式。在风力机叶片翼型参数的设计过程中,各个参数的变化都会对其他参数的设计产生影响。在设计中本着能够使单位叶素有最大的功率利用系数的原则,来选择翼型参数。 在20世纪七八十年代的风力机设计过程中,很多风力机直接采用了NACA系列中的航空翼型。但风力机的工作条件和飞机有较大的区别,一方面风力机叶片工作时,其攻角变化

范围大;另一方面风力机叶片设计要考虑低雷诺数的影响,风力机和飞机工作的雷诺数范围有所不同,其影响将就也不完全一样,过去在小型风力机设计中考虑雷诺数较少而是直接选 用,以翼弦为特征长度的雷诺数在风轮径向方向是变化的,在大型叶片设计中必须给以考虑。设计实践表明,使用航空翼型虽然可以得到很高的升阻比,但是在低雷诺数环境下,航空翼型易于发生泡式分离,从而使升阻比特性恶化。另外,航空翼型对表面粗糙度比较敏感,在翼型几何形状由于灰尘、结冰等原因发生变化时,翼型的气动特性往往也会迅速恶化,从而不适于直接作为风力机叶片翼型使用。 因此,选择翼型常根据以下原则:对低速风轮,由于叶片数较多,不需要特殊的翼型升阻比;对于高速风轮,叶片数较少,应选择在很宽的风速范围内具有较高的升阻比和平稳失速特性的翼型,对粗糙度不敏感,以便获得较高的功率系数;另外要求翼型的气动噪声低。 1.1.2风力机翼型分类 按风机发电量,按不同实验室; 不同类型的风力发电机对翼型的不同要求 1.1.3风力机翼型设计方法简要介绍 1.1.4风力机翼型小结 创新点在于:对于不同类型的风机翼型应该怎么样选取,在一个叶片上不同翼型的分布。 1.2 叶片外形设计 从轮毂中心到叶尖不同位置处,翼型的选择 从轮毂中心到叶尖不同位置处,相应翼型的弦长长度公式 从轮毂中心到叶尖不同位置处,相应翼型的攻角 失速型叶片与变桨型叶片的区别(安装角的问题) 陆上风机叶片与海上风机叶片的区别 MW风机与小型风机叶片的区别 1.3 金风750KW与1.5MW的翼型与叶片外形特点 提出目前叶片所存在问题

机翼组成详细说明

关于飞机机翼 机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型。 前缘:翼型最前面的一点。 后缘:翼型最后面的一点。 翼弦:前缘与后缘的连线。 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。

翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢? 首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。

固定翼航空模型飞机的组成

模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机等组成。 1、机翼(由主翼及副翼两部分组成)——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定,可控制飞机做出横滚等动作。 A.机翼翼弦的25%~30%处是飞机的重心所在。 B.机翼的形状(即翼型)由翼肋维持,翼肋由前缘、主梁和后缘连起来。 2、尾翼——包括水平尾翼(由水平安定面及升降舵两部分组成)和垂直尾翼(由垂尾安定面及方向舵两部分组成)两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的 升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装 载必要的控制机件,设备和燃料等,即是动力系统和遥控设备的搭载平台。 A.机身一般由几个舱组成,以层板制成的隔框分开。 B.机身里装有动力系统和遥控设备。以油动飞机为例,经典的安装顺序,从机头 到机尾,依次是发动机、油箱、接收机和接收机电池、舵机。

4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三 个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 6、螺旋桨——按材料分有塑料桨,碳纤桨,玻纤桨,尼龙桨,木桨。固定翼螺旋桨的参数有长度和螺距两个参数(单位都是英寸)如:19*8的2叶木桨,这桨的长度就是19英寸、螺距就是8英寸。其中螺距指的是螺旋桨每旋转一圈飞机前进的理论值。 7、整流罩(桨罩)——降低风阻、美观大方。 8、舵机——与遥控器接收机搭配一起使用,执行遥控器发射的指令。主要参数是扭力、灵敏度、重量、尺寸。一般一架固定翼汽油飞机至少需要配6个舵机(副翼2个、升 降舵2个、方向舵1个、油门1个)。

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

机翼外形发展史

机翼外形发展史 1903年12月17日,这是一个载入史册的日子,莱特兄弟制造出的第一架依靠自身动力进行载人飞行的飞机"飞行者"1号试飞成功。它采用了一副前翼和一副主机翼,并且都是双翼结构,用麻布蒙皮和木支柱联结而成。一台汽油活塞发动机被固定在主机翼下面的一个翼面之上,机翼后面安装着左右各一副双叶螺旋桨,机尾是一个双翼结构的方向舵,用来操纵飞机的方向,而飞机上下运动则由前翼来操纵。飞机没有起落架和机轮.只有滑橇。起飞时飞机装在滑轨上,用带轮子的小车拉动辅助弹射起飞。驾驶员俯伏在主机翼的下机翼中间拉动操纵绳索的手柄操纵飞机。这次飞行的留空时间只有短短的12秒,飞行距离只有微不足道的36米,但它却是人类历史上第一次有动力、载人、持续、稳定和可操纵的重于空气飞行器的首次成功升空并飞行,从此,人类的航空事业揭开了崭新的一页。 100多年来,飞机的发展取得了丰硕的成果,运输机、侦察机、战斗机等各种各样的飞机应运而生,同时随着飞机种类的不同及功能需求的不同,机翼的外形也发生了翻天覆地的变化。 在飞机诞生之初,机翼的形状千奇百怪,有的像鸟的翅膀,有的像蝙蝠的黑翼,有的像昆虫的翅膀;有的是单机翼,有的是双机翼。聪明的古人观察出鸟类所以会飞,完全因为那对奇妙的翅膀。于是,好奇的人们开始制造各式各样的翅膀,因此最初飞机的机翼大多数与鸟类的翅膀相似。随后,随着时代的进步,人们的目光不仅仅局限于鸟类,人们吸取桥梁建造方面的经验,把上下机翼通过支柱和张线联成一个桁架梁,增加结构受力高度,以提高机翼刚度,减轻结构重量。这些优点使双翼机成为早期飞机的主要型式。随着飞机速度的不断提高,双机翼支柱和张线的阻力越来越大,成为提高速度的主要障碍。高强度铝合金问世后,人们已有可能制造出结构重量不太大而又能承受大载荷的薄机翼。从20世纪30年代起,双机翼逐渐被单机翼取代。在现代的飞机中,除对载重量和低速性能有特殊要求的小型飞机外,双机翼已不多见。 到第二次世界大战时,虽然绝大多数飞机"统一"到单机翼上来,但单机翼的位置又有上单机翼、中单机翼和下单机翼之分,其形状有平直机翼、后掠机翼、三角机翼、梯形机翼、变后掠角机翼、前掠角机翼之别。 1945年,英国研制了两架飞机,安装了当时先进的喷气发动机,速度达到音速。但过了不多久,这两架飞机先后在空中解体坠毁。后来人们通过研究才发现原来飞机接近音速时,机翼上出现"激波",使机翼表面的空气压力发生变化 空气作用力的总作用点后移,飞机会突然自动俯冲,又使飞机增速更快,最后 超过它本身能承受的强度,所以飞机散架了。后来,用其他飞机做试验飞行时,还发现一个严重的问题,就是机翼上产生激波后,飞机的阻力会急剧增加,比低速飞行时大10倍甚至几十倍,所以即使用喷气式发动机,也很难使飞机超音速。当时把这种困难叫做"音障"。 为了解决机翼影响飞行速度的问题,许多国家都在研制新型机翼。德国人发现把飞机的机翼做成向后斜的形式,像燕子的翅膀,可以延迟"激波"的产生,减小由于激波引起的阻力,也可以缓和飞机接近音速时自动俯冲的不稳定现象。这种形状的机翼被称为后掠翼,后掠翼是机翼设计的一种型态,特指机翼沿着翼展方向的轴线与机身具有一个向后的角度,即掠角为锐角。机翼的后掠程度由后掠角大小来进行表示。后掠翼是平直机翼发展而来的,适用于较高的飞行速度,气动特点为可增大机翼的临界速度,并减小超音速飞行时的阻力。1948年,美国把后掠机翼应用在F-86战斗机上,苏联也于40年代末期,研制出带后掠翼的喷气式米格-15歼击机。但是,后来进一步研究表明,为了超音速飞行,后掠翼并不是

2.3翼型设计

2.3翼型设计 大展弦比(≥8)亚音速运输机半翼展中段较大区域存在准二维流动,因此,在二维 机翼确定后,就需根据设计指标进行翼型设计/选择,并进行机翼配臵设计。 〃标准翼型,有对称和非对称两种; 〃尖头翼型—超音速飞机 有双弧形翼型,普通翼型前缘削尖和平板削尖翼型; 〃超临界翼型—亚音速飞机; 〃层流翼型—亚音速飞机 自然层流翼型和层流控制翼型两种。 翼型设计发展 由压力分布形态分为: 尖峰翼型;

●超临界翼型—长的超音速区; ●全自然层流翼型—长层流流动区; ●后缘分叉翼型—新概念翼型: 基于后缘分离的翼型设计思想—背离库塔条件。 后缘分叉翼型设计原理 ●Aerobie 翼型—提供环形、飞碟、碟形翼飞行器稳定性 Aerobie 翼型

2.3.1 翼型种类与特征 气动特征:层流、高升力、超临界; 用途:飞机机翼、直升机旋翼、螺旋桨、风机翼型等。 1、早期翼型 1912年:英国RAF-6/15翼型; 一战:德国哥廷根翼型; 1920-:美国NACA4、5和6系列层流翼型, 前苏联ЦАГИ翼型; 德国DVL翼型。 设计方法: 半经验,依赖于风洞试验。 2、现代先进翼型 1960年代开始; 设计方法: 计算空气动力学发展,按指定目标压力分布/优化方法设计。种类: 超临界翼型、先进高升力翼型、自然层流翼型。

2.3.2翼型的气动设计 翼型的几何描述 图1 翼型几何定义示意图 上表面坐标: 下表面坐标: 前缘,后缘,弦线,弯度线(中弧线),厚度,弯度,前缘半径,后缘角。 一、经典翼型 1、NACA4、5位数字翼型 现在普遍使用的NACA系列翼型始于1929年,在兰利变密度风洞中的系统研究,称为4位数系列翼型。这族翼型有相同的基本厚度分布,可以通过系统的变化弯度类型和量值得到该族相关的其他翼型。研究得到的这族翼型比以前发展的翼型有更大的最大升力和较小的最小阻力。研究也得到了翼型中线和厚度对翼型气动特性的影响。具有相同厚度分布但最大弯度位臵有很大提前

飞行器翼型设计

1、翼型的定义与研究发展 在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。 通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。因此,对于不同的飞行速度,机翼的翼型形状是不同的。 对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形; 对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹; 对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。 3、NACA翼型编号 NACA四位数翼族: 其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24 五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。具体的数码意义如下:第一位数表示弯度,但不是一个直接的几何参数,而是通过设计升力系数来表达的,这个数乘以3/2就等于设计升力系数的十倍。第二、第三两位数是2p,以弦长的百分数来表示。最后

两位数仍是百分厚度。 例如NACA 23012这种翼型,它的设计升力系数是(2)×3/20=0.30;p=30/2,即中弧线最高点的弦向位置在15%弦长处,厚度仍为12%。 一般情况下的五位数编号意义如下 有现成实验数据的五位数翼族都是230-系列的,设计升力系数都是0.30,中弧线最高点的弦向位置p都在15%弦长处,厚度有12%、15%、18%、21%、24%五种。其它改型的五位数翼型在此就不介绍了。 1、低速翼型绕流图画 低速圆头翼型在小迎角时,其绕流图画如下图示。总体流动特点是 (1)整个绕翼型的流动是无分离的附着流动,在物面上的边界层和翼型后缘的尾迹区很薄;(2)前驻点位于下翼面距前缘点不远处,流经驻点的流线分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁面流去,另一部分从驻点起经下翼面顺壁面流去,在后缘处流动平滑地汇合后下向流去。 (3)在上翼面近区的流体质点速度从前驻点的零值很快加速到最大值,然后逐渐减速。根据Bernoulli方程,压力分布是在驻点处压力最大,在最大速度点处压力最小,然后压力逐渐增大(过了最小压力点为逆压梯度区)。而在下翼面流体质点速度从驻点开始一直加速到后缘,但不是均加速的。

翼型的几何参数及其发展

翼型的几何参数及其发展 1、翼型的定义与研究发展 在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。 通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。因此,对于不同的飞行速度,机翼的翼型形状是不同的。 对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形; 对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹; 对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。 第一次最早的机翼是模仿风筝的,在骨架上张蒙布,基本上是平板。在实践中发现弯板比平板好,能用于较大的迎角范围。1903年莱特兄弟研制出薄而带正弯度的翼型。儒可夫斯基的机翼理论出来之后,明确低速翼型应是圆头,应该有上下缘翼面。圆头能适应于更大的迎角范围。

一战期间,交战各国都在实践中摸索出一些性能很好的翼型。如儒可夫斯基翼型、德国Gottingen 翼型,英国的RAF 翼型(Royal Air Force 英国空军;后改为RAE 翼型---Royal Aircraft Estabilishment 皇家飞机研究院),美国的Clark-Y 。三十年代以后,美国的NACA 翼型(National Advisory Committee for Aeronautics ,后来为NASA ,National Aeronautics and Space Administration ),前苏联的ЦАΓИ翼型(中央空气流体研究院)。 2、翼型的几何参数 翼型的最前端点称为前缘点,最后端点称为后缘点。前缘点也可定 义为:以后缘点为圆心, 画一圆弧,此弧和翼型的相切点即是前缘点。 前后缘点的连线称为翼型的几何弦。但对某些下表面大部分为直线的翼 型,也将此直线定义为几何弦。翼型前、后缘点之间的距离,称为翼型 的弦长,用b 表示,或者前、后缘在弦线上投影之间的距离。 翼型上、下表面(上、下缘)曲线用弦线长度的相对坐标的函数表示。 这里,y 也是以弦长b 为基准的相对值。上下翼面之间的距离用 翼型的厚度定义为

各种不同的翼型介绍

各种不同的翼型介绍 飞机最重要的部分当然是机翼了,飞机能飞在空中全靠机翼的浮力,机翼的剖面称之为翼型,为了适应各种不同的需要,航空前辈们发展了各种不同的翼型,从适用超音速飞机到手掷滑翔机的翼型都有,100年来有相当多的单位及个人做有系统的研究,与模型有关的方面比较重要的发展机构及个人有: 1NACA:国家航空咨询委员会即美国太空总署﹝NASA﹞的前身,有一系列之翼型研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位数” 翼型是层流翼。 2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。 3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。 4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速﹝低雷诺数﹞飞机翼型有一系列的研究,对遥控滑翔机及自由飞﹝无遥控﹞模型非常适用 5班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择。 有些翼型有特殊的编号方式让你看了编号就大概知道其特性,如NACA2412,第一个数字2代表中弧线最大弧高是2%,第二个数字4代表最大弧高在前缘算起40%的位置,第三、四数字12代表最大厚度是弦长的12%,所以NACA0010,因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10%,但要注意每家命名方式都不同,有些只是单纯的编号。因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类: 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 6其它特种翼型。 以上的分类只是一个粗糙的分类,在观察一个翼型的时候,最重要的是找出它的中弧线,然后再看它中弧线两旁厚度分布的情形,中弧线弯曲的方式、程度大至决定了翼型的特性,弧线越弯升力系数就越大,但一般来说光用眼睛看非常不可靠,克拉克Y翼的中弧线就比很多内凹翼还弯。 飞行中之阻力如何减少阻力是飞机设计的一大难题,飞行中飞机引擎的推力全部用来克服阻力,如果可以减少阻力则飞机可以飞得更快,不然可以把引擎

相关文档
最新文档