发生器(乙炔)火灾爆炸事故树分析

发生器(乙炔)火灾爆炸事故树分析

https://www.360docs.net/doc/3017342933.html,专业的论文在线写作平台发生器(乙炔)火灾爆炸事故树分析

火灾爆炸事故树分析(一)

火灾爆炸事故树分析(一) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑

学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3油库静电火灾爆炸故障树的建立 油库静电火花造成油库火灾爆炸的事故树的建立过程,如图1所示。(1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。

案例氧气乙炔爆炸事故分析

案例一 2003年1月16日下午1时左右,江都市某工业气体充装站在氧气充装过程中发生一起氧气瓶爆炸事故,造成1死1伤。现将有关事故调查分析情况介绍如下。 事故的基本情况 2003年1月16日上午12时许,一位氧气代充客户到江都市某工业气体充装站充装气气,共6只氧气瓶。充装工将氧气瓶卸下后,先将30只氧气瓶分两组各15只进行充装。约在12点50分左右,其中一组充装结束,现场充装工关掉充装总阀,紧接着就开始卸充装夹具,当充装工卸下第3只气瓶夹具时,其中一只气瓶发生了爆炸,一名充装客户当场炸死在充装台上,一名操作人员受伤,该站共有6间充装间,每站站房长4m,宽6。充装间设有30个充气头,气瓶爆炸后,后浪把主充装间的防火墙推倒,把充装间充装管线全部炸坏,窗子的玻璃被震碎,充装间屋面全部掀光。爆炸气瓶被炸成3块,大块重29kg,中块得23.5kg,小块重3.5kg,气瓶爆炸后3.5kg的小块瓶片从屋内飞到充装站围墙外的麦田里,距爆炸点有35m。 事故原因分析 一、直接原因 从现场取证情况和查阅有关资料分析,意见如下: 1.对该站储罐内剩余液氧,邀请了扬子石化西欧气体有限公司有关专家进行现场取样,并带回南京分析,结果确认该储罐内液氧合格,排除了气源不合格的因素; 2.根据爆炸碎片上原有的气瓶制造和检验标记,从无缝气瓶检验站查阅该瓶检验报告,得知该瓶检验合格,并在检验有效期范围内,排除了过期瓶充装的因素; 3.在爆炸现场,发现该瓶主体被炸成3块(后在清理过程中发现颈圈),经称重约为56kg,与检验报告上称重量相符,一块重约3.5kg的碎片飞离充装站围墙外,距爆炸点约为35m。又从爆炸碎片中发现,瓶体内中下部一侧表面有一段400mm×150mm范围的金属烧熔痕迹,并留下了金属氧化物,这些情况都说明此次氧气瓶爆炸具有化学性爆炸的特征; 4.通过查阅相关资料和充装记录,并对现场进行勘察,同有关人员进行了询问、笔录,了解到充装台上的安全阀、压力表均在有效期内,有校验报告,当时充装压力为11.0MPa。又对爆炸现场进行了清理,发现爆炸瓶右侧有3只瓶内尚有气体,现场进行压力测试,发现这3只瓶内均有压力,且在10.0MPa左右,这就进一步排除了物理性爆炸的可能(不超压); 5.对上述3只气瓶采用吸耳球取样,并用着火烟头试验,发现烟并没有有明显的助燃作用,无气体爆鸣,同时对1只气瓶又进行了压力测试显示为9.0MPa。

火灾爆炸事故树分析

火灾爆炸事故树分析(油库静电) ——引言(1) 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 火灾爆炸事故树分析(油库静电)——事故树(2) 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3 油库静电火灾爆炸故障树的建立

火灾爆炸事故树分析(油库静电)——措施(4)

编订:__________________ 审核:__________________ 单位:__________________ 火灾爆炸事故树分析(油库静电)——措施(4)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2700-83 火灾爆炸事故树分析(油库静电) ——措施(4) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 静电放电引起火灾爆炸必须具备以下四个条件:(1)有产生静电的来源;(2)使静电得以积聚,并具有足够大的电场强度和达到引起火花放电的静电电压;(3)静电放电的能量达到爆炸性混合物的最小引燃能量;(4)静电放电火花周围有爆炸性的混合物存在,其浓度必须处于爆炸极限内。反之,防止静电事故的措施是从控制这四个条件着手。控制前三个条件实质上是控制静电的产生和积累,是消除静电危害的直接措施。控制第四条件是消除或减少周围环境爆炸的危险,是防止静电危害的间接措施。 在油品的储运过程中,防止静电事故的安全措施主要有以下几个方面: 1 防止爆炸性气体的形成

大爆炸和火灾危险场所采用通风装置加强通风,及时排出爆炸性气体使浓度不在爆炸范围内,以防止静电火花引起爆炸。同时对应于爆炸浓度范围还与温度密切相关,把温度控制在爆炸温度范围之外也是防止静电引起爆炸的途径。对于油面空间不能采用正压通风的办法来防止爆炸性混合气体的形成,可采用惰性气体覆盖的方法(如氮气覆盖),或采用浮顶罐、内浮顶罐。浮顶罐或内浮顶罐虽可消除浮盘以下的油气空间,尤其是内浮顶罐浮顶上面含有较多可燃气体,但浮盘上部的可燃气体发生火花放电现象也应该予以重视。 2 加速静电泄漏,防止或减少静电聚积 静电的产生本身并不危险。实际的危险在于电荷的积聚,因为这样能储存足够的能量,从而产生火花将可燃性气体引燃。为了加速油品电荷的泄漏,可以接地、跨接以及增加油品的电导率。 2.1 接地和跨接 静电接地和跨接是为了导走或消除导体上的静电,

火灾爆炸事故树分析正式样本

文件编号:TP-AR-L2741 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 火灾爆炸事故树分析正 式样本

火灾爆炸事故树分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 当液相与固相之间,液相与气相之间,液相与另 一不相容的液相之间以及固相和气相之间,由于流 动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、 剧烈晃动以及发泡等接触、分离的相对运动,都会在 介质中产生静电。许多石油化工产品都属于高绝缘物 质,这类非导电性液体在生产和储运过程中,产生和 积聚大量的静电荷,静电聚积到一定程度就可发生火 花放电。如果在放电空间还同时存在爆炸性气体,便 可能引起着火和爆炸。油库静电引起火灾爆炸是一种 恶性事故,因而对于油库中防静电危害具有非常重要

的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能

火灾爆炸事故树分析(新编版)

火灾爆炸事故树分析(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0676

火灾爆炸事故树分析(新编版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库

静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正

发生器(乙炔)火灾爆炸事故树分析

发生器(乙炔)火灾爆炸事故树分析 唐俊岩王海瑜 一、前言 乙炔发生器是一种有火灾爆炸危险的设备。采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,进而提出了相应的对策措施,为企业消除事故及安全生产提供可靠保障。 乙炔是一种无色的气体,俗称电石气,是最简单的炔烃。乙炔的用途很广,常见的溶解乙炔用于焊接或切割金属材料。目前国内溶解乙炔的生产主要采用电石法。电石法生产乙炔又可分为排水式、联合式、电石入水式和沉浮式等几种。乙炔发生器是利用电石和水相互作用制取乙炔的设备,是乙炔生产的关键设备。由于乙炔的危险性,乙炔发生器有燃烧爆炸危险。本文采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,并提出相应的安全对策措施,为企业消除事故及安全生产提供可靠保障。 二、方法简介 事故树(Fault Tree Analysis, FTA),也称故障树,是一种描述事故因果关系的有方向的“树”,是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评价,既适用于定性分析,又能进行定量分析。 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系,它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判断灾害、伤害的发生途径及与灾害、伤害之间的关系,提供一种最形象、最简洁的表达形式。 三、分析步骤 事故树分析步骤见图1。 图1 FTA步骤

四、重点解决的技术问题 1 绘制事故树 我在广泛收集、整理有关事故资料,认真消化了相关安全规程、操作规程和众多事故案例的基础上作出乙炔发生器发生爆炸事故树。 绘制事故树时,重点注意了以下问题: (1)尽可能全面收集有关的事故案例及规程、标准。 (2)系统、全面地发掘事故的发生原因及事件相互间的逻辑关系。作图过程中充分尊重生产、工艺、操作、安全等方面富有经验的同志的意见。 2 求最小割集 由于事故树较为复杂,计算最小割集时如全部具体到基本事件,则割集十分庞大,既不便于表达,也不便企业采取控制措施。因此,实际处理时本文视情况对事故树取到某一便于采取措施的中间事件作为基本分析单元。 3 结构重要度分析 结构重要度分析,是从事故树结构上分析各基本事件(这里指基本分析单元)的重要程度。即在不考虑各基本事件的发生概率,或者说假定各基本事件的发生概率都相等的情况下,分析各基本事件的发生对顶上事件发生所产生的影响程度。 4 控制措施 从理论上讲,每一组最小割集是反映事故树中可能引起顶上事件发生的一个基本事件组合,据此可有的放矢地制定预防控制措施,但因FTA推出的割集往往数目繁多,实际无法根据它们将应采取的所有措施一一列出。因此,根据目前所掌握的情况,考虑安全生产管理的实际状况及实施的验易程度,针对一些较为重大的问题提出了控制措施。 五、事故树分析 1事故树 乙炔发生器发生爆炸事故树见图2。

乙炔事故典型案例

乙炔事故典型案例 (1)1994年11月24日,河北省某电化厂乙炔工段乙炔发生器溢流,管堵塞,6时停车处理完毕,开车后下料管又堵,继续停车处理,工人们用木锤、铜锤敲打下料斗的法兰盘,13时50分发生爆炸,当场死亡1人、重伤1人、轻伤1人。事故原因是下料口堵塞时间过长,使发生器电石吸入水分分解放热(干式发生器),又因加料斗密封橡胶圈破裂,进空气,当下料口砸通,突然下料,形成负压,而发生爆炸。 (2)1994年12月5日,河北省沧州市一家化工厂乙炔站3号乙炔发生器加料斗发生爆炸,致使厂房坍塌,半径100米以内窗玻璃破裂,1人死亡,2人轻伤,估计损失38万元以上。事故原因是临时停电检修后,恢复生产未按操作规程进行所致。 (3)1995年5月的第一个星期,美国新泽西州享时敦一家乙炔生产厂发生爆炸,厂主当场死亡,2位工人受伤。经分析,是由于碳化钙进给管路堵塞之故。当时,厂主带领工人用水冲洗想疏通进给管路上的碳化钙,但水喷射到碳化钙上就产生乙炔气。当时为了工作方便用电灯照明,由于不慎电灯掉下灯泡破碎,瞬间点燃乙炔气引发爆炸。

(4)1995年5月8日,河北省某化工总厂乙炔分厂乙炔发生器爆炸,造成1人死亡、1人重伤、3人轻伤,200平方米的厂房倒塌。原因是因乙炔高压干燥器压力过高,排污过猛,产生火花所致。 (5)1995年6月30日,广西某化工厂违章使用浮筒式乙炔发生器,1名工人更换乙炔发生器内电石,并接上乙炔气胶管,浮筒即发生爆炸,该工人当场炸死。事故原因是浮筒内空气未排净,乙炔气内磷化氢含量超标,自然引爆。 (6)1996年2月29日,四川省某化工总厂氯碱车间l号乙炔发生器检修,2名工人对其进行冲洗置换,拆开人孔盖检查,未进行气体分析,检查过程中突然发生爆炸,冲击波将1名工人冲出栏杆,从5米高处坠地而亡,另1名工人受伤,直接经济损失2.2万元。 (7)1997年3月20日,内蒙古某工厂电解车间生产急需集钠罐,车间主任擅自决定用焊枪烘干(按规定在烘干室用电烘干)。因集钠罐内漏有乙炔气体,当点燃焊枪移向集钠罐时发生爆炸,1人死亡,2人重伤。 (8)1998年10月27日,新疆某氯碱厂检修供水总阀,3名管工在井里用气焊切割螺丝。当准备用焊枪再次点着照亮时,打火机刚

仓库火灾事故树分析

香精仓库火灾事故树分析 5.3.1绘制火灾事故树 本项目中香精仓库(即平面图中危险物保管仓库),主要存放香精,(易燃或可燃液体)。该仓库是比较容易发生火灾事故的场所。根据物料发生火灾的特点,按照事故树分析法将“香精仓库火灾”作为顶上事件,作香精仓库火灾事故树图(图5-1)。 T—顶上事件;A、B—中间事件;X—基本事件; 逻辑“或”门 表示下面的输入事件只要有一个发生就会引 起上面输出事件的发生。 逻辑“与”门表示下面的输入事件都发生,才能引起上面输出事件的发生。

图5-1危险品仓库火灾事故树图 图5-1中具体事件的标注如下: T :危险品仓库(易燃液体)火灾 A 1:引燃可燃物导致火灾 A 2:引爆易燃蒸气,导致火灾 B :着火源 X 1:可燃物料(正常事件) X 2:乙类易燃液体(正常事件) X 3:未及时发现火险 X 4:电器火花 X 5:外来火种 X 6:违章动火 X 7:静电火花 X 8:雷电火花 X 9:液体包装不密封 (1)求最小割集 X 1、X 2为正常事件,计算值取1。 T 1=A 1+A 2=X 1B 1+aX 2B 2= X 1X 3(X 4+X 5+X 6+X 7+X 8)+aX 2X 9(X 4 +

X5+X6+X7+X8) =X3X4+X3X5+X3X6+X3X7+X3X8+aX4X9+aX5X9+aX6X9+aX7X9+aX8X9得10个最小割集: K1={ X3 X4 } ;K2={ X3X5} ;K3={ X3X6};K4={ X3X7} ;K5={ X3X8};K6={ax4 X9};K7={aX5 X9};K8={ax6 X9} ;K9={aX7 X9};K10={aX8 X9}; 说明危险品仓库(易燃液体)发生火灾的可能事件10个,应采取相应的安全技术措施。 (2)结构重要度分析 基本事件的结构重要度系数采用估算法进行 1 ∑I(i)=∑ x i∈k J 2ni-1 I a=1/23-1+1/23-1+1/23-1+1/23-1+1/23-1=5/4 I(3)=1/22-1+1/22-1+1/22-1+1/22-1+1/22-1=5/2 I(4)=1/22-1+1/23-1=3/4 I(5)=1/22-1+1/23-1=3/4 I(6)=1/22-1+1/23-1=3/4 I(7)=1/22-1+1/23-1=3/4 I(8)=1/22-1+1/23-1=3/4 I(9)=1/23-1+1/23-1+1/23-1+1/23-1+1/23-1=5/4 因此得到结构重要度顺序:I(3)>I a=I(9)>I(4)=I(5)=I(6)=I(7)=I(8)由以上分析可见,未及时发现火险(未扑灭)对造成易燃物品仓库火灾事故发生的影响最为重要。液体包装不密封、散发的易燃液体蒸气浓度达到爆炸极限两事件的影响次之,应根据基本事件的结构重

乙炔生产爆炸案例

乙炔生产过程中危害因素分析及安全控制 江苏某医药原料有限公司是一家以生产医药中间体为主的企业,主产品1 ,4 - 丁炔二醇生 产能力达3000 t/ a。目前该公司有两台乙炔发生器,乙炔生产系统具有易燃、易爆等诸多危险、有害特性,如何实现乙炔系统的安全稳定运行,一直是该企业安全管理工作的重中之重。 1 乙炔生产事故案例分析 案例1:发生器加料口燃烧 某厂发生器在加料时,由于第1 贮斗排氮不彻底,电石块太大,在加料吊斗内“搭桥”。操作人员采用吊斗撞击加料口,致使吊钩脱落。于是现场挂吊钩,同时启动电动葫芦开关,结果引起燃烧,操作人员脸部和手部烧伤。 原因分析:乙炔气遇到电动葫芦开关火花引起燃烧。 案例2:乙炔发生器爆炸 安徽某厂乙炔工段1# 发生器活门被电石桶盖卡住,操作人员进入贮斗内处理时突然发生爆炸,死亡3 人。 " 原因分析:人进入发生器内处理被卡住的活门时,致使大量空气进入贮斗内,用工具敲击电石时产生火花,乙炔气与之接触后发生爆炸。 案例3:乙炔发生器发生爆喷燃烧 广西某厂乙炔工段当班操作人员发现乙炔气柜高度降至180 m3 以下,按正常生产要求,此时发生器需要添加电石,于是操作人员到三楼添加电石,1 # 发生器贮斗的电石放完后,又去放2 # 发生器贮斗的电石,当放出约一半电石物料时,在下料斗的下料口与电磁振动加料器上部下料口连接橡胶圈的密封部位,突然发生爆喷燃烧。站在电磁振动器旁的操作人员全身被喷射出来的热电石渣浆烧伤,送医院抢救无效死亡。 原因分析:操作人员在放发生器贮斗的电石时,没注意到乙炔气柜液位的变化,致使加入粉料过多,产气量瞬间过大,压力超高,气压把中间连接的胶圈冲破,大量电石渣和乙炔气喷出,并着火。 案例4 :乙炔发生器加料口爆炸 湖南某厂乙炔站1 # 发生器加料口爆炸起火,随后2 # 发生器加料口和贮斗胶圈的密封处 也发生爆炸起火,电石飞溅到一楼排渣池,产生乙炔气导致起火,为此发生器一、三、四楼都起火。

火灾爆炸事故树分析

编号:SM-ZD-45746 火灾爆炸事故树分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

火灾爆炸事故树分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,

氧气乙炔事故处理方法

氧气乙炔事故处理方法 Ting Bao was revised on January 6, 20021

第二部分现场处置方案 氧气、乙炔火灾事故现场处置方案 一.事故风险分析 1.1事故类型 在焊接切割作业时,由于使用压缩空气或氧气流的喷射,使火星、融珠和铁渣四处飞溅,将作业环境10m范围所有易燃易爆物品清理干净,应注意作业周边环境内有无可燃液体和可燃气体,以免由于焊渣、金属火星引起灾害事故。 1.2事故发生的区域、地点 所有使用氧气、乙炔切割的场所。 1.3事故发生的时间、事故的危害程度及影响范围 1.事故易发时间: 在使用氧气、乙炔焊接切割作业时 2.事故的危害程度及影响范围 一旦发生氧气、乙炔瓶火灾爆炸事故,轻者造成生产中断,重者会造成人员伤亡。事故影响不会波及厂区以外。 3.事故可能引发的次生、衍生事故 氧气、乙炔气瓶火灾爆炸可能会引发火灾。 二.应急工作职责 临场指挥:车间负责人 职责:启动预先约定的事故警报,向公司应急总指挥(总经理)报告事故现场情况;必要时,直接向宁城县安监局、消防部队等有关部门报告事故,请求支援;指挥现场人员进行力所能及的应急处置;疏散周围人员。 现场其它人员根据各自岗位应急职责,在车间负责人的指挥下,展开救援。 三.应急处置

3.1应急处置程序 氧气、乙炔气瓶发生火灾后,现场第一发现人应大声呼救,向周围人员发出警报; 车间负责人履行现场临时指挥职责,启动报警设备,告知周围车间人员,向公司应急指挥(总经理)报告现场情况,启动《氧气、乙炔火灾爆炸事故现场处置方案》,指挥现场人员进行力所能及的现场处置,划定警戒线,疏散周围人员。 如仅依靠车间的应急力量无法控制事故,现场临时指挥请求公司应急总指挥(总经理)启动《公司生产安全事故应急预案》。 3.2现场应急处置措施 1.当气体导管漏气着火时,首先应将焊割炬的火焰熄灭,并立即关闭阀门,切断可燃气体源,用灭火器、湿布、石棉布等扑灭燃烧气体。 2.氧气、乙炔气瓶口着火时,设法立即关闭瓶阀,停止气体流出,火即熄灭。 3.氧气、乙炔气着火可用二氧化碳、干粉灭火器扑灭;乙炔瓶内丙酮流出燃烧,可用泡沫、干粉、二氧化碳灭火器扑灭。 4.如气瓶库发生火灾或邻近发生火灾威胁气瓶库时,应采取安全措施,将气瓶移到安全场所。 5.如果事态严重,直接扩大应急,请求社会救援,拨打119。 四.注意事项 1.禁止敲击,碰撞瓶体,要轻拿轻放 2.不得靠近热源和电气设备,夏季要防止爆晒 3.吊装、搬运时应使用专用夹具和防震的运输车 4.使用时要注意固定乙炔瓶,防止倾倒,严禁卧放 5.使用必须装设专用的减压器、回火防止器 6.瓶内气体严禁用尽,必须留有不低于下表规定的剩余压力

火灾爆炸事故树分析标准范本

解决方案编号:LX-FS-A48586 火灾爆炸事故树分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火灾爆炸事故树分析标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

静电火灾爆炸事故树分析(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 静电火灾爆炸事故树分析(通用 版) Safety management is an important part of production management. Safety and production are in the implementation process

静电火灾爆炸事故树分析(通用版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整

改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,

火灾爆炸事故树分析示范文本

火灾爆炸事故树分析示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火灾爆炸事故树分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 当液相与固相之间,液相与气相之间,液相与另一不 相容的液相之间以及固相和气相之间,由于流动、搅拌、 沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发 泡等接触、分离的相对运动,都会在介质中产生静电。许 多石油化工产品都属于高绝缘物质,这类非导电性液体在 生产和储运过程中,产生和积聚大量的静电荷,静电聚积 到一定程度就可发生火花放电。如果在放电空间还同时存 在爆炸性气体,便可能引起着火和爆炸。油库静电引起火 灾爆炸是一种恶性事故,因而对于油库中防静电危害具有 非常重要的意义。因此,如何安全有效地管理和维修油 库,提高油库的安全可靠性,已是当前油库安全管理工作

所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。

事故树法分析宿舍火灾

4.2 故障树分析法分析 4.2.1 故障树分析方法简介 故障树分析法的优点是能识别导致事故的基本事件与人为失误的组合,可为人们提供设法避免或减少导致事故基本原因的线索,从而降低事故发生的可能性;便于查明系统内固有的或潜在的各种危险因素,为设计,施工和管理提供科学的依据;并使有关人员,作业人员全面了解和掌握各项防灾要点。但是故障树步骤较多,计算复杂。广泛应用于高度重复性的系统 4.2.2 故障树分析法步骤 1.熟悉系统:要详细了解系统状态及各种参数,绘出工艺流程图或布置图。 2.调查事故:收集事故案例,进行事故统计,设想给定系统可能发生的事故。 3.确定顶上事件:要分析的对象即为顶上事件。对所调查的事故进行全面分析,从中找出后果严重且较易发生的事故作为顶上事件。 4.确定目标值:根据经验教训和事故案例,经统计分析后,求解事故发生的概率(频率),以此作为要控制的事故目标值。 5.调查原因事件:调查与事故有关的所有原因事件和各种因素。 6.画出故障树:从顶上事件起,逐级找出直接原因的事件,直至所要分析的深度,按其逻辑关系,画出故障树。 7.分析:按故障树结构进行简化,确定各基本事件的结构重要度。 8.事故发生概率:确定所有事故发生概率,标在故障树上,并进而求出顶上事件(事故)的发生概率。 9.比较:比较分可维修系统和不可维修系统进行讨论,前者要进行对比,后者求出顶上事件发生概率即可。 10.分析:原则上是上述10个步骤,在分析时可视具体问题灵活掌握,如果故障树规模很大,可借助计算机进行。目前我国故障树分析一般都考虑到第7步进行定性分析为止,也能取得较好效果。 4.2.3 事故树分析 1、事故树的建立 学生宿舍是学校人口密集型场所,针对如何科学合理应对火灾的发生这一问题,提出采用事故树一一找出了发生火灾的基本事件,然后进行定性的合理分析,了解火灾发生的基本原因后建立校园宿舍火灾事故树如下:

液化气罐区火灾爆炸事故树

T A1—形成混合气 A2—遇火源 A3—液态烃泄露A4—未报警A5—静电火花 A6—附近有机动车通行A7—罐爆裂 A8—静电未消除A9—罐超压A10—安全阀未起作用A11—未报警A12—未报警A 13 —无显示 A14—液面无显示 A15—压力无显示 X1—烟头未掐灭X2—阀门泄露X3—法兰片断裂X4—报警器故障X5—无报警器 X6—收油或油排入事故罐过快X7—未安装阻火器X8—阻火器故障X9—无接地线X10—接地线断开X11—收油过量X12—安全阀下部阀门未开 X13—安全阀故障X14—无报警器 X15—报警器故障X16—液面计上下阀门未开X17—液面计故障X18—无液面计 X19—无压力表X20—压力表故障 液化石油气储罐区 火灾爆炸事故树分析

该事故树的结构函数为:T = A1·A2 T= A1·A2 = A3·A4(X1+A5 + A6)= (X2+X3+A7)(X4+X5) (X1+X6+A8+X7+X8)= (X2+X3+A9·A10)(X4+X5) (X1+X6+X9+X10+X7+X8)= [X2+X3+X11·A11·(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10)=[X2+X3+X11·A12·A13 (X12+X13)](X4+X5)(X1+X6+X7+X8+X9+X10) = [X2+X3+X11(X14+X15)(A14+A15)(X12+X13)](X4+X5) (X1+X6+X7+X8+X9+X10) =[X2+X3+X11(X14+X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10) =[X2+X3+(X11X14+X11X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5) (X1+X6+X7+X8+X9+X10) = [X2+X3+(X11X14X12+X11X14X13+X11X15X12+X11X15X13) (X16+X17+X18+X19+X20)](X4+X5)(X1+X6+X7+X8+X9+X10) = (X2+X3+X11X12X14X16+X11X12X14X17+X11X12X14X18+X11X12X14X19 +X11X12X14X20+X11X12X15X16+X11X12X15X17+X11X12X15X18 +X11X12X15X19+X11X12X15X20+X11X13X14X16+X11X13X14X17 +X11X13X14X18+X11X13X14X19+X11X13X14X20+X11X13X15X16 +X11X13X15X17+X11X13X15X18+X11X13X15X19+X11X13X15X20) (X4X1+X4X6+X4X7+X4X8+X4X9+X4X10+X5X1+X5X6+X5X7+X5X8 +X5X9+X5X10) =X2X4X1+X2X4X6+……+X2X5X10+X3X4X1+X3X4X6+……+X3X5X10

相关文档
最新文档