过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析-赵梦瑾
过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析

赵梦瑾

摘要:介绍了锅炉过热器高温硫腐蚀和水蒸汽氧化腐蚀的过程机理,分析导致腐蚀不断进行的主要因素,并提出防治措施,促进锅炉安全经济运行。

1 前言

过热器用于回收烟气中的热量,提高锅炉效率。炉膛出口烟气温度比较高,为1000~1100℃,经过过热器后温度降至700~800℃。过热器在锅炉受压部件中承受的温度最高。高温硫腐蚀和水蒸汽氧化腐蚀是过热器管两种主要腐蚀形式,其中外壁高温硫腐蚀已受到较多关注。近年来由水蒸气氧化腐蚀而引发爆管以及剥落下来的坚硬氧化皮微粒造成的汽轮机固体颗粒侵蚀的事故日益突出,水蒸汽氧化腐蚀问题也越来越引起重视。

2 高温硫腐蚀

2.1 机理

高温积灰所生成的内灰层含有较多的碱金属,这些碱金属与飞灰中的铁铝等成分以及烟气中通过松散外灰层扩散进来的氧化硫进行较长时间的化学作用便生成碱金属的硫酸盐等复合物,复合硫酸盐附着在管壁上,对管子金属进行氧化腐蚀。在腐蚀发生过程中,从机理上讲主要会有如下几种反应发生[1]:

(1)在燃烧过程中,FeS2及有机硫化物与氧发生反应;

4FeS2 +11O2→2Fe2O3+8SO2

RS(有机硫化物)+ O2→SO2

2SO2+ O2→2SO3

(2)在高温条件下,煤中钠和钾被氧化成Na2O和K2O;

(3)Na2O和K2O与烟气中或沉积在管壁上的SO3发生反应生成碱性硫酸盐;

Na2O+ SO3→Na2SO4

K2O+ SO3→K2SO4

(4)碱性硫酸盐、氧化铁与SO3反应形成复合硫酸盐;

3Na2SO4+Fe2O3+ 3SO3→2Na3Fe(SO4)3

3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3

(5)在高温条件下,处于熔融状态的复合硫酸盐与管子金属发生下列反应。

4Na3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6Na2SO4+ 3SO2

4K3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6K2SO4+ 3SO2

这些复合硫酸盐在550~750℃范围内以熔化状态贴附在管壁上,并随着烟气的流动而被带走,造成管壁表面粗糙,而后面新生成的硫酸盐就越易在这些粗糙表面优先附着,又会重复上述的腐蚀反应。这是一个恶性循环过程,周而复始,随着腐蚀的进行,管壁就会被逐渐蚕食。当被侵蚀的金

属厚度小于管壁在当时压力下的极限厚度时,就会发生泄漏。

2.2 影响因素

2.2.1 燃料因素

高碱和高硫燃料腐蚀比较严重。

2.2.2 温度因素

腐蚀大约从550~620℃时开始发生,灰分沉淀物的温度越高腐蚀速度就越强烈,约在750℃时腐蚀速度最大。

2.2.3 管壁结渣

管壁结渣会造成管段的温度上升和局部烟速不均,同时管壁上的结渣在高温下呈液态,极易被局部过快的烟气带走,使得高温过热区域增加,加重腐蚀。

3 高温水蒸汽氧化腐蚀

3.1 机理

在450~700℃的温度范围,氧化性活性顺序依次为H2O>02+H2O>空气(氧含量为21%),蒸汽对过热器管材表现出强氧化性,加之,管道内部近似于无氧环境,因此过热器中主要是水蒸汽高温氧化腐蚀。

在450~570℃之间,水蒸气与铁反应生成Fe3O4并释放出氢气,但温度高于570℃,铁与水蒸气反应除了生成Fe3O4外,还生成FeO。FeO的增长速度比Fe3O4快得多,且会进一步氧化得到Fe2O3。为了更好的抵御氧化和承受高温,过热器管通常采用耐高温的含Cr合金钢。有研究表明,含Cr合金钢的水蒸汽氧化,有如下的反应[2]:

3H2O+2Cr=Cr2O3+6H

3H2O+2Fe=Fe2O3+3H2

3H2+ Cr2O3=2Cr+3H2O

Fe2O3+4Cr+5H2O= 2FeCr2O4+5H2

钢表面在蒸汽中生成氧化膜是一个很自然的过程,一旦Cr2O3膜形成后,进一步的氧化便慢了下来。但是,由以上反应式可以看出,一旦Cr2O3膜出现允许水分子渗透的微裂纹、微通道,钢的氧化反应将是自催化的。

3.2 氧化皮生成和剥落

钢表面在蒸汽中生成一层氧化膜,以阻止进一步的氧化,但在某些不利的运行条件下,如超温或温度压力波动条件下,金属表面的Cr2O3氧化膜遭到破坏,氧化反应迅速进行,产物附着在内壁上,逐渐形成氧化皮。氧化皮的绝热作用引起金属超温,影响管材寿命。过热器每增加0.025mm厚度的氧化物,管壁温度约增加1.67℃。

氧化皮积蓄到一定厚度,会在热应力的作用下剥落。氧化皮的剥落主要是因为氧化皮和金属间不同的机械特性,特别是温度特性引起的。在温度变化时金属材料和氧化层都会发生相应的应变,氧化层本身以及母材间的膨胀系数不同,当氧化皮应变所蓄积的能量大于该氧化皮脱层而产生新的内表面所需的能量时,就会发生剥落。随着氧化皮的厚度增加,允许的应变值减小。管材的温度、材质和运行条件不同,氧化皮剥落的临界厚度也会不同。剥落的氧化皮一部分被高速流动的蒸汽带

出过热器进入下一级设备,造成主汽门卡涩,损伤汽轮机叶片,或者随水循环进入水冷壁中,污染炉水;另有一些会落到U型弯处,造成蒸汽流动阻力增加,管壁超温,严重时引起爆管。

3.3 影响因素

3.3.1 材质因素

金属材料的抗氧化、抗腐蚀性能主要决定于金属表面是否形成稳定、致密的金属氧化膜。Cr含量对蒸汽侧氧化层的生成有很大影响,Cr含量越高,基体越不易受腐蚀。含Cr合金钢中当Cr含量高于20%时,合金表面才会形成致密的保护性氧化膜Cr2O3[3]。另外,不同钢材基体金属膨胀系数系数不同,与氧化皮膨胀系数差别有大有小,差别越大氧化皮越易剥落。如:12CrMoV基体金属膨胀系数与氧化皮的膨胀系数较接近,其氧化皮厚度即使长到0.5~1mm时也不易剥落[4],因此,氧化皮的生成和剥落与选用的材质有关。

3.3.2 运行条件

过热器温度和内部蒸汽压力大幅变化都对氧化皮的生成和剥落有很大影响。这些运行条件直接导致过热器管以及内部氧化层膨胀或收缩,破坏保护膜促进氧化反应进行,加快氧化皮的生成速率,并给氧化皮的剥落提供动力。具体运行条件如:停炉温降过程,母材和氧化层的热收缩性能不同;蒸汽压力突变,蒸汽压力低时的生长速度比压力高时的生长速度快,伊敏发电厂再热器产生氧化皮的量比过热器要多[4];运行中烟气冲击引起管排振动;弯管和焊口等位置的附加应力作用等。其中最重要的因素是温度,锅炉过热器内壁氧化层剥落情况主要发生在机组停炉过程中。除了温降幅度外,不同的温降速度对氧化皮剥落和氧化皮产生裂缝大小都有影响[2]。

4 防治措施

4.1 材质方面

选择使用耐高温、耐氧化的材料,如T91、TP304H、TP347H、HR3C等;也可以对管材进行表面合金化,即在过热器管子内壁镀Cr,可有效控制蒸汽氧化。

4.2 运行、监控和检修措施

a.做好燃烧调整工作,保持合适的炉膛火焰中心,防止火焰偏斜。进行燃煤化验,及时调整风煤比,避免排烟温度过高。按时投入吹灰,预防结渣。控制好炉膛出口烟温和管内蒸汽温度不超温并及时投入减温装置。

b.控制锅炉升降负荷速度,避免频繁启停,减少热冲击。锅炉停炉过程中,尽量采取较低的温降速度,停炉12h后再打开炉门。锅炉启动过程中,尽量采取较快的启动速度,减缓氧化皮沉积形成堵塞的可能性。

c.根据实际运行情况,建立长期的监控机制,加强对高温过热器壁温的监控。做好氧化皮定期检测工作,掌握氧化皮生长和剥落的速率,同时对管材进行寿命评估,及时更换氧化较严重的管材。

5 结论

由于过热器的高温服役环境,外壁硫腐蚀和内壁水蒸气氧化腐蚀难以避免,在欠佳的运行条件和各种应力的作用下,造成过热器管失效事故,剥落下的氧化皮微粒损伤汽轮机叶片事故。了解其腐蚀反应机理,对处理上述事故有很大帮助。通过选材以及运行、监控和检修措施抑制腐蚀,促进

机组安全经济运行。

参考文献

[1] 董红年.高温过热器管硫腐蚀损坏试验研究.实验研究[A].2006,34(4).

[2] 冯斌,何铁祥,张玉福.过热器和再热器管内壁的高温水蒸气腐蚀研究.湖南电力[A].2006,26(6).

[3] 郭立峰,魏彦筱,张晓昱等.18-8奥氏体不锈钢水蒸汽氧化的失效分析.华北电力技术[B].2005(8).

[4] 银龙,宋寿春,毕法森等.超临界机组氧化皮的产生于防范.电力设备[J].2006,7(10).

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施 摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。 关键词:换热器;腐蚀;防腐 1 概述 换热器是将热流体的部分热量传递给冷流体或将冷流 体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。 随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。 2 化工换热器的常见腐蚀现象 引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。 2.1 换热器表面的腐蚀磨损 磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。 2.2 沉积物引起的电化学腐蚀 当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

换热器的防腐蚀措施标准版本

文件编号:RHD-QB-K5840 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换热器的防腐蚀措施标 准版本

换热器的防腐蚀措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。

(2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。 (3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。在同

一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。 ②胀管深度应达管板底部,以消除全部缝隙。 ③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

盐渍土对公路危害的浅析及处理措施

盐渍土对公路危害的浅析及处理措施摘要:对公路的路基路面进行养护是为了保持路况的完好,延长道路的使用寿命,是为经济建设提供保障的基本条件。本文阐述了盐性及盐渍程度、土的颗粒组成及细粒特性、水文地质和气候条件。通过盐渍土对路基路面、混凝土结构物的危害现场调查,综合施工经验,提出了对盐渍土进行处理的措施。 关键词:盐渍土、危害、防治措施 一、前言 近几年,我国道路建设步伐在不断的加快,各种路面病害情况也在不断出现,其中对盐渍土使得公路路基路面出现危害问题必须加以重视。盐渍土是指含盐量超过一定数量的土。盐渍土是土层盐渍化工程的产物,在公路工程中,主要是指地表土层1米厚度内,易溶盐含量平均大于或等于0.3%的含盐土层。盐渍土属特殊土类,因为它具有一般土所没有的特点,不能按一般土来对待。因此,只有不断分析盐渍土对公路路基路面危害的处理方法,才能保证道路的质量。 二、盐渍土的主要特点 1、盐渍土的三相组成与一般土不同,常规土体的三相组成是由气相--空气、液相--水、固相--土颗粒所构成。但是,盐渍土的三相组成由气相--空气、液相--溶液、固相--土与盐结晶的混合体所构成。液相中含有盐溶液,固相中含有结晶盐,尤其是易溶的结晶盐。也就是说,盐渍土的液相与固相会因外界条件变化而相互转化。 2、盐渍土中的盐遇水溶解后,土的物理和力学性质指标均会发生变化,其强度指标明显降低。 3、盐渍土中的盐浸水后,因盐溶解盐渍土中的水携盐上聚,使路基次生盐渍化,造成路基溶陷与潜蚀、路面翻浆、盐胀、溶陷及路面不规则变形、沥青面层起皮、脱落、网裂和坑洼等问题。 4、盐渍土中的岩溶液会导致建筑物和地下设施的材料腐蚀。腐蚀程度取决于材料的性质和状态以及盐溶液的浓度等。

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

换热器原理及设计大纲.pdf

《换热器原理及设计》教学大纲 Principles and Design of Heat Exchanger 一、课程类别和教学目的 课程类别:专业课 课程教学目标:通过该门课程的学习,使学生了解各种常用热交换器(也称换热器)的工作原理,掌握以满足流动和传热为条件的热交换器的设计方法,了解热交换器的实验研究方法、强化技术和性能评价,为以后的学习、创新和科学研究打下扎实的理论和实践基础。 二、课程教学内容 (一)绪论 介绍热交换器的重要性、分类及其在工业中的应用,换热器设计计算的内容。 (二)热交换器计算的基本原理 介绍传热方程式、热平衡方程式的应用;讲授流体比热或传热系数变化时的平均温差的 计算方法、传热有效度、热交换器计算方法的比较、流体流动计算方法的比较。 (三)管壳式热交换器 介绍管壳式热交换器的类型、标准与结构;讲授管壳式热交换器的结构计算、传热计算和流动阻力计算、管壳式热交换器的设计程序、管壳式冷凝器与蒸发器的工作特点。 (四)高效间壁式热交换器 介绍螺旋板式热交换器、板式热交换器、板翅式热交换器、翅片管热交换器、热管热交 换器、蒸发(冷却)器、微尺度热交换器的结构、工作原理及其设计计算。 (五)混合式热交换器 讲授冷水塔的热力计算、通风阻力计算与设计计算,汽-水喷射式热交换器的相关计算、水-水喷射式热交换器的相关计算;介绍混合式热交换器的分类。 (六)蓄热式热交换器 介绍回转型蓄热式热交换器和阀门切换型蓄热式热交换器的构造和工作原理;讲授蓄热式热交换器的计算、蓄热式热交换器与间壁式热交换器中气流及材料的温度变化比较。 (七)热交换器的试验与研究 介绍传热系数的测定方法、阻力特性实验的测定方法;讲授增强传热的基本途径、热交换器的结垢类型与腐蚀方法、热交换器的优化设计与性能评价方法。 三、课程教学基本要求 (一)绪论

换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施 陶志远 (山东华鲁恒升化工股份有限公司山东德州253000) 【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。 【关键词】换热器泄漏局部腐蚀蒸汽加热 在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。 某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。 1设备技术参数 设备技术参数及操作数据见表1 筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。 表1 2泄漏情况 该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。 堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

内陆盐渍土环境下混凝土结构耐久性研究

内陆盐渍土环境下混凝土结构耐久性研究

内陆盐渍土环境下混凝土结构耐久性研究 [摘要]:本文以我国西部内陆盐渍土地带环境下的混凝土结构为背景,详细分析该环境下耐久性的影响因素、作用机理,并提出合理的技术措施,以保障复杂环境下的结构耐久性。 [关键词]:盐渍土环境;混凝土耐久性;腐蚀机理;解决措施 正文: 1.研究背景 我国西部青海、甘肃等西北部地区,不仅冬季寒冷、干燥、日照时间长,而且其土壤属内陆盐渍土,含有大量的SO42-(1.43%)、Cl1-(0.82%)和Mg2-(0.62%)等离子。这些地区的桥梁、隧道等构筑物的混凝土结构遭受冻融循环、盐侵蚀、剧烈温差等多因素的共同破坏作用,混凝土结构的服役环境极其恶劣。 我国正在实行西部大开发的政策,因此,大量的基础设施要建设在盐渍土地带环境下。由于盐渍土地带环境下的混凝土腐蚀速度远远超过一般环境下环境的腐蚀速度,不得不进行工程修复,因此造成了巨大的经济损失。所以,研究该环境下的混凝土的耐久性的研究具有非常重要的现实意义和深远的社会影响。 2.西部盐渍土环境下混凝土结构耐久性的影响因素综述 在西北地区,高寒、大温差、强辐射、干燥、大风沙、盐碱腐蚀等恶劣气候环境使得混凝土结构处于干湿变化、温度变化、冻融循环、

盐碱腐蚀、风蚀等多种自然因素的作用下,日积月累,在混凝土结构中极易产生剥蚀、裂缝等,对混凝土的耐久性造成了很大的不利。 大体可将这些因素分为气蚀,磨损,冻融等物理因素,以及硫酸盐,碳化,碱-集料反应等化学因素。 3.西部盐渍土环境下混凝土结构耐久性的影响因素作用机理 3.1冻融循环 冻融破坏形式:混凝土冻融破坏有两种基本形式冻胀开裂和冻融剥蚀。冻胀开裂的特征是混凝土产生裂缝,裂缝在表面连结的同时向内部扩展延伸;盐冻剥蚀破坏是典型的冻融剥蚀破坏形式。 冻融循环破坏机理:混凝土的抗冻性是混凝土受到物理作用(干湿变化、温度变化、冻融变化等)后反映混凝土耐久性的重要指标之一。混凝土冻融作用破坏机理是混凝土在其冻融的过程中,遭受的破坏应力主要由两部分组成。其一是当混凝土中的毛细孔水在某负温下发生物态变化,由水转变成冰,体积膨胀,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力;其二是当毛细孔水结成冰时,由凝胶孔中过冷水在混凝土微观结构中迁移和重分布引起的渗管压。由于表面张力的作用,混凝土毛细孔隙中的水的冰点随着孔径的减小而降低。当胶凝孔水形成冰核的温度在-78℃以下时,由冰与过冷水的饱和蒸汽压差和过冷水之间的盐分浓度差引起水分迁移而 形成渗透压。另外胶凝不断增大,形成更大膨胀压力,当混凝土受冻时,这两种压力会损伤混凝土内部微观结构,当经过反复多次的冻融

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

板式换热器腐蚀主要成因

板式换热器腐蚀主要成因: (1)不锈钢传热板片由机械冲压而成,不可避免地残存一定量的表面残余应力,对于不含钼元素的不锈钢薄板,表面残余应力的消除是很困难的,或者甚至是不可行的。 (2)板片组装后形成了多缝隙结构,如板片之间的触点、密封槽底等部位。而缝隙容易造成Cl-的富集,局部富集程度往往远远超过了不锈钢自身抗应力腐蚀的能力。 (3)当板片表面的污垢严重时,介中的腐蚀元素(Cl、S等)可能大量附着于污垢,并在垢底缝隙处富集。 (4)密封槽底中的有害元素往往是粘结剂中的Cl因温度升高温析出来的。如氯丁胶系列的粘接剂、压缩石棉(含有CaCl2),往往在水与蒸汽工况条件下,析出的富集Cl-与H+形成HCl,使槽底缝隙处发生严重的应力腐蚀开裂。

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。

换热器的腐蚀分析正式样本

文件编号:TP-AR-L2856 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 换热器的腐蚀分析正式 样本

换热器的腐蚀分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)管子本身材料缺陷在腐蚀介质和高温条件 下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点 腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛 刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介 质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段 和未胀管间过渡区,管子内外壁存在较大拉应力,易 产生应力腐蚀破裂;管子与折流板处产生局部应力集 中,加之间隙存在,腐蚀介质浓聚,其结合部位易产 生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(新编版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

盐渍地区混凝土耐久性综述

盐渍地区混凝土耐久性研究概况综述 陈庆敏武汉理工大学土建学院 摘要本文介绍了盐渍土的结构特征及化学成分,也介绍了国内西部及沿海盐渍区,钢筋混凝土材料腐蚀机理 的分析过程。同时对盐渍地区混凝土腐蚀的几种类型和抗腐方法,方案进行了介绍和评述,也介绍了不同矿物质 超细粉对硫酸盐腐蚀的抑制作用,并利用质量损失等指标对砂浆试件干湿循环试验进行分析,还介绍了盐渍地区 混凝土腐蚀破坏的主要因素及国内已有盐渍地区混凝土抗腐蚀性的部分研究成果。为我国西部和沿海建设奠定了 技术基础。 关键词盐渍地区;混凝土;耐久性;国内混凝土抗腐蚀研究 一概述 建国以来,我国水利,电力,交通,港口,铁道,工业与民用建筑及市政等部门兴建了大量混凝土工程,这些工程在国民经济建设中发挥了巨大的作用。现在我国又处在西部开发与建设之中,加之近几年大量的巨资工程在这些地区的投入使用。随着运行时间的增加,混凝土工程的腐蚀破坏问题日益突出,这一问题不仅影响到正常的生产,甚至危及到工程的安全运行。 近几年来混凝土腐蚀破坏的调查总结报告表明:混凝土腐蚀破坏在我国盐渍土主要分布的地区,该地区为地势较低的平原或盆地,如新疆的南疆.北疆及土哈一带,青海中西部、甘肃、宁夏、内蒙及青藏高原的低洼地区,沿海地区及华北下原、大同盆地、松辽平原等。这些大型混凝土的工程一般运行年限都非常的短,更甚上亿的工程运行一两年就停止运行。如西宁曹家堡飞机场于1996年建并运行,经过4年的时间,机场跑道老化、腐蚀、干裂十分严重,已影响了飞机的正常起飞和降落。跑道混凝土出现腐蚀、起砂,道面龟裂。另外西宁东郊硝湾330千伏变电所位于青海平安县内,所址上部近20m地层中大多沉积有棕红,棕褐色粘性土,地层中含混较多的石硝碎块和小颗粒。含有大量的易容盐。该变电所于1996年建成投入使用,2002年6月扩建投入运营了2号主变。占地88亩,投资一亿多元,在全部建成投入运行不到一年的时间里,变电所内几乎所有的已建建筑物基础,室内外地坪,道路灯产生了严重的变形,沉降,裂缝和扭曲,直接危机变电所的运行。种种事例表明盐渍地区混凝土的腐蚀破坏及耐久性研究具有重要的意义。 因此。如何建立适合我国盐渍地区混凝土破坏安全性的技术条件,尤其确保是国家重点工程项目的安全性,以及这些工程能安全,长期运行并创造巨大的经济效益和社会效益有着重要的意义。 二盐渍土的定义及结构特征 关于盐渍土的定义,国内外尚无统一标准。通常认为,土中含易溶盐超过0.3%,即谓盐渍土。盐渍土的成因也较为复杂。百科定义为:盐渍土是盐土和碱土以及各种盐化、碱化土壤的总称。盐土是指土壤中可溶性盐含量达到对作物生长有显著危害的土类。盐分含量指标因不同盐分组成而异。碱土是指土壤中含有危害植物生长和改变土壤性质的多量交换性钠。盐渍土主要分布在内陆干旱、半干旱地区,滨海地区也有分布。全世界盐渍土面积计约897.0万平方公里,约占世界陆地总面积的6.5%,占干旱区总面积的39%。中国盐渍土面积约有20多万平方公里,约占国土总面积的2.1%。 盐渍土在我国分布情况:A.近海地区的盐渍土大都以含氯盐为主(NaCl,CaCI 2,MgCI 2 ,等),而内陆 地区,有的足以含氯盐为主(如青海地区),有的是以含硫酸盐为主(Na2S04等),而大多数情况下是氯盐、硫酸盐同时存在,只是不同地区两者比例不同。B.西宁黄土状盐渍土属内陆盐渍土,形成来源于其母岩第三系强风化泥岩,经地下水、地表水溶滤后,随水流从山坡带到山脚,经蒸发作用盐分凝聚而成。按含盐类的性质分类,盐渍土又可分为氯盐盐渍土、硫酸盐盐渍土、碳酸盐盐渍土。西宁黄土

相关文档
最新文档