24.2.2直线与圆的位置关系3切线长定理

24.2.2直线与圆的位置关系3切线长定理
24.2.2直线与圆的位置关系3切线长定理

)

切线长定理

《切线长定理》评课稿 舒兰十二中 曹雪松

李艳萍老师的《切线长定理》这一课体现了“阳光课堂” 的理念。所谓“阳光课堂”,它的核心理念是“积极向上、优质高效、和谐愉悦、整体提升”;“阳光课堂”的内涵:培养学生高尚健全的思想品格,自信乐观的人生态度,积极进取的阳光心态;提高学生自主学习、自我管理的能力,以达到知识与方法的优质高效;营造和谐愉悦的课堂氛围,创设轻松快乐的学习环境;整体提升学生的综合素养和教师的专业品质,全面推进教育内涵的发展。李艳萍老师此次的阳光教学行动,采用“问题导学”的教学模式,即学前准备——自主学习——合作探究——归纳提升——达标测评。 一、课前学案的充分“预设”与课堂的自由“生成”相呼应。 本节课中李老师课前以学案的形式预设问题:分别让学生画圆的一条切线,两条切线,三条切线、四条切线。以开放的形式为学生创造广泛的思考空间,同时赋予学生充分的思考时间。优秀的学生可以画出多种位置的切线发展他们思维的广泛性,学困生也可以在复习切线判定的基础上顺利完成,激发他们研究的兴趣。这样,不仅节省了课上时间,也兼顾到所有学生的发展,为课堂自由“生成”切线长的概念做好了铺垫。由于,课前学生亲自动手画出圆的切线,不仅增强了学生直观体验,更易于学生体会并发现切线和切线长的区别,完成基础目标的教学。 二、充分体现新课标中自主学习、合作探究的精神。 新课标中积极倡导自主、合作、探究的学习方式。以激发学生的学习兴趣、好奇心和求知欲。本节课中设置了三个探究问题主线:

问题一:观察从圆外一点画出圆的两条切线的图形,小组交流讨论你的发现和结论,加以验证,并向大家展示你的成果。此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性。学生在总结出切线长定理的同时,又通过观察图形发现了圆心和这一点的连线为圆的对称轴,利用对称性还可的到更多的边等、角等、弧等的结论。然后,通过动态演示强化切线长定理这一核心知识。可以看出设置探究性的问题,可以树立学生已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知转化为已知,把复杂问题化为简单问题,把一般问题转化为特殊问题的思考方法。本环节教师通过学生探究、学生讲解、学生总结、归纳总结得出本节课的核心知识“切线长定理”,又通过动态演示强化核心知识。最后通过习题、生活中的实例让学生应用核心知识,树立学生的应用意识。这样多种形式、多种角度强化核心知识,更易学生接受。 这一环节结束后,教师再次创设问题二:观察圆的三条切线组成三角形的图形,此环节让学生根据题设和已有的切线长定理,经过观察推理学生水到渠成的得出三角形的内切圆的相关概念。问题二的引入自然流畅,层层递进不仅符合学生认知规律,也激发了学生进一步研究的兴趣,达成本节课知识目标的教学。最后,通过在三角形铁皮上裁下一个最大的圆的实际问题的探究,帮助学生从实际中发现数学

直线和圆的位置关系与圆的切线性质

初中数学教学案例设计——直线与圆的位置关系 一、概述 九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。 二、设计理念 鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。 三、教学目标 (1)激发学生亲自探索直线和圆的位置关系。 (2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。 (3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。 (4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些收获?在现实生活中有哪些体现? 四、教学重点 直线与圆的三种位置关系——相交、相切、相离 从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。 五、教学难点 探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。 六、教学过程 教学步骤教师活动学生活动教学方式 复习过渡引入新知点与圆有哪几种位置 关系?设⊙O的半径为 r,点P到圆心的距离为 d,如何用d与r之间的 数量关系表示点P与 ⊙O的位置关系? 在教师引导下回忆前 面知识,为探究新知 识作好准备。 由学生归纳总结 创设情景欣赏《海上日出》图 片,感受生活中反映 直线与圆的位置关系 的现象。议一议: 学生分小组进行 讨论,可从直线与圆 交点的个数考虑:1 个交点,2 个交点, 没有交点。 学生分组讨论,师生 互动合作。 探索活动对学生分类中出现 的问题予以纠正,对 学生提出解决问题的 不同策略,要给予肯 活动一:操作、思 考 第一层次:动手操 作,并在操作中感受 经过对各种情况的 分析、归纳、总结, 对学生渗透分类讨论 的数学思想。

中考专题——切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 1.切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: (1)PA=PB (2)PO⊥AB,且PO平分AB (3)APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 2.弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧 ?BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙O的弦,AD是⊙O的切线,C为 ?AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙O于A,B两点,AC⊥PB,且与⊙O相交于D,若∠DBC=220,则∠APB=________. 【例2】如图,已知圆上的弧?? AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD . C B O A D A D P O

举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC. 【例3】已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为 A.1 个;B.2个;C.4个;D.5个. 【例4】如图,AE、AD、BC分别切⊙O于点E、D、F,若AD=20,求△ABC的周长.

圆切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

切割 线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 点到直线的距离: 连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo ,Yo )那么这点到这直线的距离就为:。

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

如果⊙O的半径为r,圆心O到直线的距离为d,那么 要点诠释: 这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定. 要点三、切线的判定定理、性质定理和切线长定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理: 圆的切线垂直于过切点的半径. 3.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 5.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 6.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 名称确定方法图形性质

直线与圆的位置关系,切线及三角形内切圆

直线与圆的位置关系,切线及三角形内切圆 直线与圆的位置关系,切线及三角形内切圆 学习目标] 1.直线为,OO的半径为r,圆心到直线的距离为d。 (1)直线与OO 相离无公共点; (2)直线与OO 相切,唯一公共点; (3)直线与OO 相交,两公共点。 注意:①由直线与圆的位置关系数量关系反之,数量关系位置关系;②直线与圆的位置关系,d , r数量关系,公共点个数三 者互相转化。 2. 重要公式: 在Rt△ ABC中,/ C= 90°,CD是AB边上的高,则: 即:AC- BC= AB?CD (是求斜边上高的常用方法) 3.切线的判定方法 ①定义法(不常用) ,即:唯一公共点; ②数量关系推理法, ③判定定理:垂直于过切点的半径的直线是圆的切线。 4.切线的性质:

①与判定均为互逆定理; ②其中性质定理及推论要熟练掌握。 实际上①垂直于切线;②经过切点;③经过圆心;任意 知道两个就能推出第三个。 5. 作图:作和已知三角形各边都相切的圆。 关键找内心, (各内角平分线交点)和半径。 6. 与三角形各边都相切的圆叫三角形内切圆, 这个三角形 叫圆的外 切三角形。 与多边形各边都相切的圆叫多边形的内切圆,多边形叫 圆的外切多边形。 三边的距离。 三角形的外接圆,圆心是三边中垂线交点,半径是圆心 到三个顶点的距离。 典型例题】 例1.已知半径为3的O0上一点P 和圆外一点Q ,如果 0Q = 5, PQ = 4,贝y PQ 和圆的位置关系是( B. 相切 D. 位置不 解:??? 0P=3, PQ = 4, OQ = 5 , 7. 三角形的内切圆、 圆心是角平分线交点, 半径是圆心到 A. 相交 C. 相离

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

直线与圆的位置关系(教案)

《直线与圆的位置关系》的教学设计 一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书A版数学②第四章第二节“直 线与圆的位置关系”第一课时。 二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。 三、教学目标: 1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题;2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想;3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。 四、教学重点、难点、关键: (1)重点:用坐标法判断直线与圆的位置关系 (2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解 (3)关键:展现数与形的关系,启发学生思考、探索。 五、教学方法与手段: 1.教学方法:探究式教学法 2。教学手段:多媒体、实物投影仪 六、教学过程: 1.创设情境,提出问题 教师利用多媒体展示如下问题: 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km 处,受到影响的范围是半径长为30km的圆形区域,已知港口位于台风中心正北50km处,如果 这艘轮船不改变航线,那么它是否会受到台风的影响? 教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。 设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。 2.切入主题,提出课题 (1)由学生将问题数学建模,展示平面几何解决方法,得出结论。教师带领学生一起回顾初中所学直线与圆的三种位置关系及判断方法。

圆切线及切线长定理

. 切线长定理第24章圆切线的性质及判定 小题)一.选择题(共21D,AB=BC,以AB为直径的圆交AC于点D,过点?1.(2015衢州)如图,已知△ABC ,CE=4,则⊙O的半径是()的切线交的⊙OBC于点E.若CD=5 4 3 .C.A.DB . 与为切点,POO的切线,A枣庄校级模拟)如图,P是⊙O外一点,PA2.(2015?是⊙,则∠C 的度数为(上一点,连接CA,CB),⊙O相交于B点,已知∠P=28°C为⊙O 28°62°31°56°A.B.C.D. 3.(2015?河西区一模)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为() 40°50°55°60°A.B.C .D. 4.(2015?杭州模拟)如图,在△ABC中,∠BCA=60°,∠A=45°,AC=2,经过点C且与边AB相切的动圆与CB,CA分别相交于点M,N,则线段MN长度的最小值是()

3.DCA.B..22 经过圆心.若为切点,BC的切线,的弦,OAC是⊙OA是⊙天津)如图,2014.5(?AB 的大小等于(,则∠B=25∠°C)1 / 4 . °50°40°20°25 ..D .B.CAAC⊥,DEO交BC的中点于D6.(2015?临淄区校级模拟)如图,AB是⊙O的直径,⊙,则下列结论:,连接AD于E)DE是⊙O的切线, 正确的个数是(EDA=∠B;③OA=AC;④②①AD⊥BC;∠ 4个D.个C.3 个A.1 个B.2交的延长线上,弦CD的直径,点P在BA(2015?杭州模拟)已知:如图,AB是⊙O7.、交圆与GGF⊥BC,∠P=∠D,过E作弦AB于E,连接 OD、PC、BC,∠AOD=2∠ABC .则下列结论:BG两点,连接CF、F.则其中正BG弦CF的弦心距等于③OD∥GF;④①CD⊥AB;②PC是⊙O的切线;)确的是( ②③④①③④①②③①②④.D.C ..AB)圆周角的度数(2永川区期末)有下列结论:?(1)平分弦的直径垂直于弦;8.(2013秋)(5)等弧所对的圆周角相等;(4)经过三点一定可以作一个圆;等于圆心角的一半;(3)垂直于半径的直线是(6三角形的外心到三边的距 离相等; 圆的切线.)其中正确的个数为( 4个3个D.2.1个B.个C.A 上任意一点,为CD交于O,Q中,对角线.(2012?武汉模拟)正方形ABCDAC、BD9 .下列

切线长和切线长定理的应用

A 第20题 N C B D E F M O O 切线长和切线长定理的应用 例(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。 (1) 求证:OD ∥BE; (2) 猜想:OF 与CD 有何数量关系?并说明理由。 解:(1)证明:连接OE ∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分 ∴∠AOD=∠EOD=2 1 ∠AOE …………2分 ∵∠ABE=2 1 ∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF = 2 1 CD …………4分 理由:连接OC ∵BE 、CE 是⊙O 的切线 ∴∠OCB=∠OCE …………5分 ∵AM ∥BN ∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO ∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =2 1 CD ……7分 巩固提高 1、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。 (1) 求证:CD 是圆O 的切线; (2)若2OA =且6AD OC +=,求CD 的长? C O D B A

2、在Rt ABC ?中,90A ∠=?,点O 在BC 上,以O 为圆心的圆O 分别与AB 、AC 相切于E 、F ,若A B a =, AC b =,则圆O 的半径为( ) A 、ab B 、a b ab + C 、ab a b + D 、2 a b + C E O F B A C E O D B A P E O F D B A 例1图 例2图 例3图 3、如图,AB BC ⊥,DC BC ⊥,BC 与以AD 为直径的圆O 相切于点E ,9AB =,4CD =,则四边形ABCD 的面积为 。 4、如图,过O 外一点P 作圆O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD BE =,BD AF =,连结DE 、DF 、EF ,则EDF ∠=( ) A 、90P ?∠- B 、1902P ?-∠ C 、180P ?-∠ D 、1 452 P ?∠- 5、如图,已知ABC ?中,AC BC =, CAB α∠=(定值),圆O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。 (1)求POQ ∠; (2)设D 是CA 延长线上的一个动点,DE 与O 相切于点M ,点E 在CB 的延长线上,试判断DOE ∠的大小是否保持不变,并说明理由。 N Q P O D C B A 6、如图,圆O 为Rt ABC ?的内切圆,点D 、E 、F 为切点,若6AD =,4BD =,则ABC ?的面积为 。 C E O F D B A

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

培优训练之《直线与圆的位置关系、切线》专题

直线与圆的位置关系、切线》 培优训练 参考答案与试题解析 一.选择题(共12小题) 1. (2013杨浦区二模)00的半径为R,直线I与OO有公共点,如果圆心到直线I的距离为d ,那么d与R的大小关系是(B ) A d >R B d WR C d >R D d v R 考点:直线与圆的位置关系. 专题:探究型. 分析:直接根据直线与圆的位置关系进行解答即可. 解:???直线I与O0有公共点, 解答: ??直线与圆相切或相交,即d W R. 故选B. 点评: 本题考查的是直线与圆的位置关系,即判断直线和圆的位置关系:设O0的半径为r,圆心O 到直线I的 距离为d ,当d v r时,直线I和OO相交;当d=r时,直线I和00相切;当d > r 时,直线I和O0相离. 2. (2014?嘉定区一模)已知OO的半径长为2cm ,如果直线I上有一点P满足PO=2cm ,那么直线I与00的位 置关系是(D ) A相切B相交C相离或相切D相切或相交

第1页共19页

考点:直线与圆的位置关系? 分析: 情据讨线与相位置关系熠直线l和判断直线和?圖的位置分JOP垂直于直直线l和G OP相垂直直线r;(两直解答:解:当0P垂直于直线I时,即圆心0到直线I的距离d=2=r ,00与I相切; 当OP不垂直于直线I时,即圆心O到直线I的距离d v 2=r , 00与直线I相交. 故直线I与00的位置关系是相切或相交. 故选D. 点评:本题考查直线与圆的位置关系 .解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定. 3. (2013宝应县二模)在平面直角坐标系中,以点(3, - 5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是(D) A r >4 B 0v r v 6 C 4 < r V D 4 v r v 6

直线与圆的位置关系(解析版)

直线与圆的位置关系 班级:____________ 姓名:__________________ 一、选择题(每小题5分,共40分) 1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是() A.相交 B.相切 C.相离 D.相交或相切 2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为() A.± B.±2 C.±2 D.±4 3.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为() A.1 B.2 C.4 D.4 4.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为() A.4 B.2 C. D. 5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是() A.y=x B.y=-x C.y=x D.y=-x 6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为2时,a 等于() A. B.2- C.-1 D.+1 7.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 C. D.3 8.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是() A.0°<α<30° B.0°<α≤60° C.0°≤α≤30° D.0°≤α≤60° 二、填空题(每小题5分,共10分) 9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k=________.

5.5直线与圆的位置关系四

5.5直线与圆的位置关系(四) 班级 姓名 学号 学习目标 1.了解切线长的概念 2.经历探索切线长性质的过程,并运用这个性质解决问题. 学习重点:掌握切线长的性质. 学习难点:运用切线长的性质解决问题. 教学过程 一、情境创设 1、如图,点P 在⊙O 上,如何过点P 作⊙O 的切线? 2、如图,直角三角板的直角顶点A 在⊙O 上,一条直角边经过圆心O ,`另一条直角边经过⊙O 外一点P ,PA 是⊙O 的切线吗?为什么? 二、探究学习 1.尝试 (1)P 为⊙O 外一点,如何用直角三角板 经过点P 作⊙O 的切线?这样的切线 能作几条? (2)如图PA 、PB 是⊙O 的两条切线,切 点分别是A 、B ,沿直线OP 将图形对折,你发现了哪些等量关系? 你能通过证明验证这些关系吗? 2.概括 定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这 点到圆的切线长 性质:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线 平分两条切线的夹角。 3.典型例题 例1.如图,已知⊙O 的半径为3cm ,点P 和圆心O 的距离为 6cm ,经过点P 有⊙O 的两条切线PA 、PB , 则切线长为_____cm ,这两条切线的夹角为____, ∠AOB =______. ? P O A ? ? O A ? B O A P

例2.如图1,PA、PB是,切点分别是A、B,直线 EF也是⊙O的切线,切点为P,交PA、PB为E、 F点,已知12 ∠=?, P PA cm =,70 (1)求△PEF的周长; (2)求EOF ∠的度数。 例3.数学课上,数学老师把一个乒乓球放在一个V形架中,如图是它的平面示意图,CA、CB是⊙O的切线,切点分别是A、B,某同学通过测量,量得AB=4cm,∠ACB=600,如何求出乒乓球的直径? 4.练习 (1)如图AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q,求证:PO⊥OQ (2)如图AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q,已知AP=1cm,BQ=9cm,求⊙O的半径. 三、归纳总结 1、理解了切线长的定义、性质; 2、熟悉常见的基本图形(例6图形)和常用辅助线(作过切点的半径). 【课后作业】 班级姓名学号

切线长定理及其应用

切线长定理及其应用 知识点一 切线长定义及切线长定理 1. 切线长定义:过圆外一点作圆的切线,这点和 之间的线段长叫作这点到圆的切线长. 注意切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。 2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB. 推论: (1)△PAB 是等腰三角形; (2)OP 平分△APB ,即△APO=△BPO ; (3)弧AM=弧BM ; (4)在Rt OAP ?和Rt OBP ?中,由AB OP ⊥,可通过相似得相关结论; 如:222222,,OA OB OE OP AP BP PE PO AE BE OE EP ==?==?==? (5)图中全等的三角形有 对,分别是: 题型一 切线长定理的直接应用 【例1】如图所示,△O 的半径为3cm ,点P 和圆心O 的距离为6cm ,经过点P 的两条切线与△O 切于点E 、 F ,求这两条切线的夹角及切线长. 【例2】如图,P A 、PB 、DE 分别切△O 于A 、B 、C ,△O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.

【例3】如图所示,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__________. 【过关练习】 1.如图所示,PA、PB是△O的切线,A、B为切点,△OAB=30°.(1)求△APB的度数.(2)当OA=3时,求AP的长. e于A、B、C三点,△O的半径为5cm,△PED的周长为24cm,2.如图所示,已知PA、PB、DE分别切O △APB=50°.求:(1)PO的长;(2)△EOD的度数.

直线与圆的位置关系教案

【课题】4.2.1直线与圆的位置关系 【教材】人民教育出版社(A版)高中数学必修2第126页至128页【课时安排】 1个课时 【教学对象】高中一年级 【授课教师】 【教学重点】掌握直线和圆的几种位置关系,学会判定直线与圆的位置关系的两种方法: (1)直线到圆心距离与圆半径的大小关系,写出判定直线与圆的位置关系。 (2)通过解直线与圆方程组成的方程,根据解的个数,写出判定直线与圆的位置关系。 【教学难点】由位置关系得出大小关系式从而判断解的个数 【教学目标】 知识与技能 掌握直线和圆的几种位置关系,熟练掌握判断位置关系的两种方法。判断直线到圆心距离与圆半径的大小关系法和求解个数法 过程与方法 1、理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系; 2、体验通过比较圆心到直线的距离和半径之间的大小判断直线与圆的位置关系; 3、领会数形结合的数学思想方法,提高发现问题、分析问题、

解决问题的能力。 情感态度与价值观 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“坐标法”等数学思想的内涵,养成良好的思维习惯。 【教学方法】教师启发讲授、学生探究学习 【教学手段】PowerPoint,动画演示 【教学过程设计】 1、回顾旧知(3分钟) 平面几何中,直线与圆有哪几种位置关 系?在初中,我们怎样判断直线与圆的位 置关系? 一艘轮船在沿直线返回港口的途中,接到气象台的台风预 报:台风中心位于轮船正西70km处,受影响的范围是半径 教师 运用 边提 问边 回答 的形 式引 导学 生回 忆知 识点 老师 引导 学生 思考 学生 回忆 并回 答问 题 学生 观察 动画 并思 考如 何解 决 回顾知识点 的益处在于 不仅复习了 以前学习的 知识,又为 今后的学习 作铺垫 与学生进行 互动交流, 学生更积极 思考,并可 活跃课堂氛 围

切线长定理—知识讲解(提高)

切线长定理—知识讲解(提高) 责编:康红梅 【学习目标】 1.了解切线长定义;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点二、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 这个三角形叫作圆的外切三角形. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

【典型例题】 类型一、切线长定理 1.(2015?常德)已知如图,以Rt△ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF . (1 )求证:EF 是⊙O 的切线; (2)若⊙O 的半径为3,∠EAC=60°,求AD 的长. 【答案与解析】 证明:(1)如图1,连接FO , ∵F 为BC 的中点,AO=CO , ∴OF∥AB, ∵AC 是⊙O 的直径, ∴CE⊥AE, ∵OF∥AB, ∴OF⊥CE, ∴OF 所在直线垂直平分CE , ∴FC=FE,OE=OC , ∴∠FEC=∠FCE,∠0EC=∠0CE, ∵∠ACB=90°, 即:∠0CE+∠FCE=90°, ∴∠0EC+∠FEC=90°, 即:∠FEO=90°, ∴FE 为⊙O 的切线; (2)如图2,∵⊙O 的半径为3, ∴AO=CO=EO=3, ∵∠EAC=60°,OA=OE , ∴∠EOA=60°, ∴∠COD=∠EOA=60°, ∵在Rt△OCD 中,∠COD=60°,OC=3, ∴CD=, ∵在Rt△ACD 中,∠ACD=90°,

数学必修直线与圆的位置关系教案

直线与圆的位置关系 教学目标 1、知识与能力目标 A.知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系; B.能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。 C.掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。 2、过程与方法目标 让学生通过观察,看图,分析,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的位置关系。此外,通过直线和圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和把几何形成的结论转化为代数方程的形式的思想。培养学生借助直观解决抽象问题的能力,也就是由数到形,有形到数;有直观到抽象、由抽象到直观的转化能力(数形结合的思想)。 3、情感态度与价值观目标 通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。 教学重点与难点 教学重点:直线和圆位置关系的判断和应用 教学难点:通过解方程组来研究直线和圆的位置关系。 教学准备

制作多媒体课件,学生准备计算器,直尺,量角器。 教学过程: 一、复习 1.直线方程的形式 2.圆的方程形式 3.点与圆的位置关系 4直线与圆的位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点; 二、新课讲解 1.问题情境 问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为50km的圆形区域.已知港口位于台风中心正北70km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响? 师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课. 师:你怎么判断轮船受不受影响? 生:台风所在的圆与轮船航线所在直线是否相交. 师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系. 学生解决方法一:设O为台风中心,A为轮船开始位置,B为

直线与圆的位置关系

直线与圆、圆与圆的位置关系 1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式 Δ=b 2-4ac ????? >0?相交=0?相切<0?相离 [知识拓展] 圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.

(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆O2:(x-a2)2+(y-b2)2=r22(r2>0). [ 常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×) (4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×) (5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√) (6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)

相关文档
最新文档